N
N

N

HAL

open science

Using UKCPO09 probabilistic climate information for UK
water resource planning
B.V. Christierson, Jean-Philippe Vidal, S.D. Wade

» To cite this version:

B.V. Christierson, Jean-Philippe Vidal, S.D. Wade.

mation for UK water resource planning. Journal of Hydrology, 2012, 424-425, p. 48 - p.

10.1016/j.jhydrol.2011.12.020 . hal-00675607

HAL Id: hal-00675607
https://hal.science/hal-00675607

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Using UKCP09 probabilistic climate infor-

67.


https://hal.science/hal-00675607
https://hal.archives-ouvertes.fr

Author version of the manuscript accepted for publication in the Journal of
Hydrology.

Christierson, B. v., Vidal, J.-P., Wade, S. D. (2012) Using UKCP09 probabilis-
tic climate information for UK water resource planning. Journal of Hydrology.
doi: 10.1016/j.jhydrol.2011.12.020

The original publication is available at:
http://dx.doi.org/10.1016/j.jhydrol.2011.12.020



Using UKCPO09 probabilistic climate information for
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Abstract

Water companies in the United Kingdom have considered climate change in
their water resources plans for more than a decade through studies funded by
UK Water Industry Research (UKWIR). This paper presents an initial assess-
ment of the impact of the UK Climate Projections 2009 (UKCP09) on river
flows at a national scale for the 2020s under the A1B scenario and the impli-
cations for water resource planning. A daily hydrological modelling framework
based on two conceptual model structures and the Generalized Likelihood Un-
certainty Estimation (GLUE) methodology has been applied to 70 catchments
across the UK. A Latin Hypercube Sampling approach was adopted to handle
the probabilistic nature of UKCP09. Results show a decrease in mean annual
flow over most of the UK, with negative median values of all monthly changes
except in winter over the western and northern mountainous areas. Furthermore
the results indicate a high likelihood of a significant decline in summer flows.
An analysis of variance shows that the main uncertainty in river flow changes
comes from the spread in climate projections. Finally results are found to be
consistent with a previous UKWIR, assessment based on individual projections
from 6 Global Climate Models (GCMs) under the A2 scenario. The reduction
in summer low-flows, critical for water resources, appears however more limited
with UKCP09. Although most expected changes are within natural variability,
the drier conditions overall and the greater spread of results with respect to pre-
vious assessments indicates a need for testing the robustness of water resource
plans.

Keywords: climate change, probabilistic, river flow, UK, uncertainty,
UKCP09

1. Introduction

The potential impacts of climate change have been considered in UK water
resources planning for a decade (Subak, 2000; Arnell and Delaney, 2006; Charl-
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ton and Arnell, 2011; Hall et al., 2011). This could be achieved notably thanks
to a series of national-scale studies funded by UK Water Industry Research
(UKWIR) and the Environment Agency (EA) that provided projected changes
in monthly river flows and annual average recharge for UK catchments along
with practical methods for including such changes in water resource plans (see,
e.g., Vidal and Wade, 2007a; von Christierson et al., 2009). Table 1 provides an
overview of the main climate change studies with reference to the five-year water
company Asset Management Plans (AMPs). As new climate change projections
become available studies to produce new hydrological scenarios and accompa-
nying guidance are initiated and subsequently incorporated in policy documents
for water resources planning (Environment Agency, 2009a).

Table 1: Review of the integration of climate change impacts on UK water resources planning,
including timelines covering UK Asset Management Plans (AMPs). Factors here refer to
changes between a future time slice and a present-day period.

AMP Period  Climate Water Industry Policy documents
change Research tech-
scenarios nical documents

and guidelines

1 (1990-1995) CCIRG - -
(1991, 1996)

2 (1995-2000) UKCIPYS8 UKWIRO7 (Ar- -
(Hulme and nell et al., 1997),
Jenkins, flow factors re-
1998) calculated based

on UKCIP98

3 (2000-2005) UKCIP02 UKWIR02 (Ar- Water resources planning
(Hulme nell, 2002) guidelines (Environment
et al., 2002) Agency, 2003)

4 (2005-2010) UKWIRO06 UKWIR06 Water resources plan-
(Vidal (Prudhomme ning guideline (Environ-
and Wade, et al, 2005, ment Agency, 2007) -+
2008a) Wade et al., supplementary guidance

2005, 2006; on climate change (Ar-

Beven et al., nell and Reynard, 2007),

2006; Vidal and Water resources planning

Wade, 2007a,b)  guideline (Environment
Agency, 2008)

5 (2010-2015) UKCP09 UKWIR09 (von In progress
(Murphy Christierson
et al., 2009) et al., 2009)

Each of the impact studies in Table 1 had to deal with a different set of
national climate scenarios, but also with the associated uncertainty, which dif-
fered from one set to the other (see the review of Hulme and Dessai, 2008). For



example, CCIRG (1991) provided climate change information based on several
General Circulation Models (GCMs) whereas the following three reports from
the Climate Change Impact Review Group (CCIRG, 1996) and the UK Cli-
mate Impact Programme (UKCIP98a and UKCIP02; Hulme and Jenkins, 1998;
Hulme et al., 2002) essentially based their analysis on projections from one cli-
mate model. Different emissions scenarios have also been considered from the
UKCIP98 report onwards. In spite of these diverse treatments of uncertainty
the results were however consistently presented as individual projections, e.g.,
the “medium-high” scenario from the UKCIP02 report. The latest UK cli-
mate scenarios (UKCP09, Murphy et al., 2009) provide for the first time proba-
bilistic projections, aiming at sampling different types of uncertainties through
the use of large “perturbed physics” ensemble of the Met Office HadCM3 cli-
mate model. The probabilities encapsulate uncertainties from different sources:
natural variability, climate models with different parameters and process de-
scriptions, outputs of models from the Met Office and other institutions, etc.
The probabilistic nature of UKCP09 represents an opportunity to move from
a scenario-based impact and adaptation framework (see all previous studies in
Table 1) to a risk-based decision-making framework (see Hall et al., 2011, for
a first attempt). This however first requires to propagate the probabilistic cli-
mate information through the hydrological modelling step, which is particularly
challenging (New et al., 2007; Stainforth et al., 2007).

This paper presents a practical method for using probabilistic information
in future climate change impact assessments developed through a recent project
undertaken on behalf of UKWIR, (von Christierson et al., 2009). It also aims at
assessing how taking account of the new UKCP09 probabilistic projections will
affect the climate change impact assessments undertaken by the water compa-
nies for draft Water Resources Management Plans (WRPs) for the last Periodic
Review (PR09). These assessments, submitted in autumn 2009 (Charlton and
Arnell, 2011), were indeed based on the previous national-scale impact study
achieved in 2008 (Vidal and Wade, 2007a). The main challenge of the study
was to develop a practical and sufficiently credible approach to undertaking
the assessment in a relatively short space of time whilst making use of a com-
plex dataset. It introduces a simplified multi-scenarios approach developed to
specify plausible ranges of impacts on river flows for assessing the sensitivity
of the latest water resources plans. The method does not make full use of the
new probabilistic data sets but nevertheless gives a useful indication of the dif-
ferences between the UKCP09 and the previous projections in terms of river
flow and provides a first attempt at developing a practical method for using
probabilistic information in future climate change impact assessments for water
resource planning.

The purpose of this paper is therefore threefold: (1) developing a practical
method for using probabilistic climate projections in a national-scale hydro-
logical impact assessment, (2) comparing results with the previous national-
scale assessment currently used for Water Resources Management Plans, and
(3) quantifying the uncertainties in changes in river flows and identifying their
sources. The first two objectives are driven by the industry context and propose



a both innovative and practical framework to deal with recent developments in
climate projections. The last objective is to propose for the first time a national-
scale assessment of uncertainties in future river flows that include both climate
and hydrological modelling uncertainties.

The paper is structured as follows. Section 2 introduces the 70 modelled
catchments, observed river flow and climate data. This paper makes use of
different sets of climate projections for the 2020s. First, the national-scale pro-
jections derived for the previous water resources assessment, called UKWIR06
projections (Vidal and Wade, 2007a), and second, two datasets provided by the
Met Office as part of the UK Climate Projections: the actual UKCP09 prob-
abilistic changes (Murphy et al., 2009, chap. 4), and an ensemble of regional
projections obtained with 11 variants of the Met Office HadRM3 Regional Cli-
mate Model (Murphy et al., 2009, chap. 5).

Section 3 describes the overall modelling framework. It details the method
used for sampling probabilistic projections and the approach adopted to assess
the structure and parameter uncertainties in the hydrological modelling. In
order to identify the modifications induced solely by the use of new climate
projections on future river flows, this paper has aimed to replicate as closely
as possible the hydrological modelling approach developed by Vidal and Wade
(2007a) from the previous national-scale assessment.

Section 4 presents national-scale results derived from the sampled UKCP09
probabilistic projections, first in terms of monthly precipitation and evapotran-
spiration, and then in terms of future river flows. Albeit some assessments
have been done on changes in low-flows (von Christierson et al., 2009, see), this
paper will focus on changes in annual and monthly flows. Climate and hydro-
logical changes derived from UKCP09 probabilistic projections are then com-
pared with changes derived from UKWIRO06 projections at the national scale.
A more detailed comparison of changes in river flows derived from the three
climate datasets is moreover performed for two specific contrasted catchments,
the Thames@Kingston and the Ribble@QArnford.

The decomposition of uncertainty between future climate and hydrological
modelling is investigated in Section 5. Section 6 discusses the limitations and as-
sumptions of this study and provides some elements for further work. UKCP09
implications for UK water resource planning are finally examined in Section 7.

2. Data

2.1. Catchments and flow data

Catchment selection was based on: (1) consistency with previous studies
(Arnell et al., 1997; Arnell, 2002; Vidal and Wade, 2007a) to allow for com-
parison between results; (2) low levels of artificial influences (abstractions and
discharges) or availability of naturalised flow series; (3) reasonable geographical
spread of catchments throughout the UK; and (4) availability of rainfall, tem-
perature and river flow data over the 1961-1990 baseline period. Figure 1 shows
the location of the 70 selected catchments. Most of these are part of a network of



benchmark catchments (Bradford and Marsh, 2003) recently used for assessing
trends in runoff, low flows and floods (Hannaford and Marsh, 2006, 2008). Daily
flow data have been retrieved from the National River Flow Archive (NRFA®).
Existing naturalised time series for Lee@FeildesWeir and Thames@Kingston
have been preferred to raw gauged time series. At least twenty years of data are
available for more than 50 catchments, and only one catchment holds less than
10 years of data.

Two catchment case studies are used in this study for presenting detailed re-
sults. The Ribble@Arnford is a small mountainous catchment located in North-
West of England. It covers a moorland area with an altitude ranging between
110 and 700m, and is exposed to high precipitation totals falling preferentially
from late summer to late winter (Vidal and Wade, 2008b). It has a wholly nat-
ural flow regime with a low baseflow index. The Thames@Kingston is a large
catchment located in the south-east of England, one of the driest region in the
UK, and it has a flow regime sustained by groundwater. This catchment expe-
riences high levels of abstractions for meeting the demands for drinking water
of the London area, so the present balance between water supply and demand is
already in deficit (Environment Agency, 2009b). The effects of climate change
on water resources on this specific catchment have therefore been extensively
studied in previous works (see, e.g., Wilby and Harris, 2006; Manning et al.,
2009).

2.2. Observed climate data

Daily catchment rainfall was provided by the Met Office (Perry et al., 2009)
for the 1961-1990 period currently used as the baseline period in climate change
impact assessments. Daily potential evapotranspiration (PET) time series were
built using a formula based on mean temperature (Oudin et al., 2005a) es-
pecially established for conceptual hydrological models as the ones used here.
This formula proved very efficient in terms of streamflow simulation efficiency
when compared with 27 different PET formulas using data from more than 300
catchments under various climates (Oudin et al., 2005b). The dependence on
temperature only makes it well suited in a climate change context where only
few variables are usually available, as it is the case with UKCPO09 probabilis-
tic projections. The temperature-based formula has been applied to monthly
temperature from the gridded data set derived by Perry and Hollis (2005). Re-
sults have been allocated to the middle Julian day of each calendar month and
interpolated to the daily time scale with a cubic spline algorithm (de Boor,
1978) to obtain daily time series. This temporal disaggregation approach is
much more reliable than the traditionally used sine curve method based on
mean PET (Wilby and Harris, 2006) as it takes account of within-year tempo-
ral shifts which are projected to occur in a changed climate. The implications
of this choice of PET calculation is further discussed in Section 6.

www.ceh.ac.uk/data/nrfa/
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Figure 1: Location of catchment case studies. Numbers refers to NRFA IDs. Manifold@Ilam
(28031) is a subcatchment of Dove@RocesterWeir (28008); Coln@Bibury (39020) and Ken-
net@Theale (39016) are subcatchments of Thames@Kingston (39001); Kennet@Marlborough
(39037) is a subcatchment of Kennet@Theale (39016).



2.8. Climate projections

Three climate data sets are used here: (1) the UKCP09 probabilistic changes,
(2) an ensemble of projections with 11 variants of the Met Office HadRM3
Regional Climate Model (RCM), and (3) the UKWIRO06 projections derived for

the previous national-scale assessment of water resources.

UKCPO09 probabilistic changes. UKCP09 presents an approach that incorpo-
rates improvements in the Met Office Hadley Centre’s climate models into a
statistical framework for presenting probabilistic climate change data (Murphy
et al., 2009). The UKCP09 approach seeks to sample the uncertainties in future
climates related to two sources of climate model error: parameter and structural
error. The effects of parameter uncertainties have been explored by construc-
tion of an ensemble of variants of the HadCM3 climate model and development
of an emulator trained on model results to reproduce a distribution consistent
with any parameter combination. Structural uncertainty has been examined by
incorporating the results from 13 GCMs in the probability distribution using a
statistical framework devised by Goldstein and Rougier (2004). HadCM3 pro-
jections have then been downscaled based on a further ensemble of 11 variants
of the regional climate model HadRM3, and a statistical procedure has been
applied to build local-scale distribution of changes for various climate variables.
Detailed information about the generation of UKCP09 climate projections are
given by Murphy et al. (2007) and Murphy et al. (2009, chap. 3).

Available outputs for users are statistical distributions of monthly and sea-
sonal climate change factors (between 1961-1990 and a future time slice) given
as samples of 10 0000 members, for different UK administrative and river-basin
regions as well as for individual 25 km grid squares over the UK (Murphy
et al., 2009, p. 18). Such outputs are moreover available for each of the follow-
ing 3 emissions scenario: Bl (low), A1B (medium, used here) or A1FI (high)
(Nakicenovié et al., 2000). Finally, change factor distributions are available for
several time slices of the 21st century, and the period selected here is the 2020s
(2011-2040) because of its relevance for water resource planning. Variables con-
sidered here are precipitation and temperature.

As there is no correlation between distribution samples of changes from one
grid square to the next (Murphy et al., 2009, chap. 1), it is not possible to
average outputs from several adjacent grid squares that may cover a single
catchment of interest. Due to the national extent of this study which gathers
both small and large catchments, it was decided to use monthly probabilistic
factors for the 23 river-basin regions given by Murphy et al. (2009, p. 18).
Figure 2 compares regional and grid factors for the Ribble@Arnford, located
in the North-West England region which is characterized by a relatively high
spatial variability of precipitation. This figure makes use of violin plots (Hintze
and Nelson, 1998) which trace full density distributions instead of only quartiles
in box plots. It shows that the differences between regional and grid monthly
factors are negligible for temperature and remain small for precipitation. The
use of regional factors thus seems a reasonable assumption, but it should be
kept in mind that there may be local differences for precipitation in particular.



<

——
—
—
— T
-

40

AP (%)
20 0 20
| | | |
-
<

-40

o
o

regional

— median

y $ .

J F M A M J J A S [¢] N D
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West England river-basin region.



HadRMS3 projections. 11 variants of the HadRM3 RCM have been created by
the Met Office in order to dynamically downscale global climate model results
as part of UKCP09 (see Murphy et al., 2007, for details on the overall process).
The projections comprise an 11-member ensemble of 25km-resolution transient
climate projections over the UK under the A1B emissions scenario. Their main
advantages compared to the UKCPQ9 probabilistic changes is their availability
as continuous spatio-temporal projections. However, the 11-member ensemble
does not incorporate the full range of uncertainty available in the UKCP09
projections. In this work, RCM projections have been used only for the two
catchment case studies.

UKWIRO06 projections. The UKWIR06 projections have been used as the driv-
ing projections for the previous national-scale impact assessment (Vidal and
Wade, 2007a). These were derived from global climate projections through a
downscaling method called BLS — for Bias-corrected Local Scaling — and de-
scribed in detail by Vidal and Wade (2008a). The method was based on disag-
gregation and bias-correction schemes initially developed by Wood et al. (2002)
for seasonal forecasting and now widely used for climate change impact assess-
ment on water resources (see, e.g., Maurer et al., 2010). The BLS method
consists of the following steps: (1) building appropriate time series from land
areas covered by GCM sea cells; (2) correcting monthly GCM output inherent
biases through quantile-quantile transformation at the GCM spatial scale; and
(3) disaggregating bias-corrected outputs to a finer scale by using monthly spa-
tial anomalies of observations. An assessment of the BLS method against other
dynamical and statistical downscaling techniques can be found in Vidal and
Wade (2008b). An improved version of this method has been recently applied
within the IMAGINE2030 project (Sauquet et al., 2009) to build climate forc-
ings for hydrological models and reservoir operation models in order to assess
the impact of climate change on hydropower in the French Pyrenees mountain
range (Vidal and Hendrickx, 2010). The UKWIR06 projections have also been
used to assess the impact of climate change on meteorological droughts over the
UK (Vidal and Wade, 2009).

The UKWIRO06 projections considered here consist of transient monthly pro-
jections for precipitation and temperature at a 5 km spatial resolution over the
UK (Vidal and Wade, 2008b) for the 2020s under the A2 emissions scenario,
which corresponds to the medium-high scenario from the previous UK climate
assessment (UKCIP02, Hulme et al., 2002). They are available for the 6 GCMs
that were used for the Third Assessment Report of the IPCC (2001).

3. Methods

Figure 3 illustrates the methodology applied to compute distributions of
monthly flow factors from the UKCP09 monthly change factors. The Latin Hy-
percube Sampling applied to UKCP09 distributions is described in Section 3.1
and Section 3.2 details the methods applied to all three climate data sets to

10
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Figure 3: Schematic framework of the hydrometeorological process for deriving river flow
factors for the 2020s from UKCPOQ9 climate change distributions (see text for details)

derive daily time series forcings for the 2020s. The approach used for the hydro-
logical modelling part is described in Section 3.3 which covers model structures
used, methodology for taking account of parameter uncertainty, and combina-
tion of results into distribution of flow factors.

3.1. Sampling UKCPO09 climate change factors

One of the main challenges of this study was to develop a sampling strategy
of UKCP09 changes that would allow a quick and robust assessment of climate
change on river flows whilst still capturing the uncertainty in the UKCP09
projections. According to UKCP09 guidance at least 100 random samples are
needed for impact assessments in order to maintain the probabilistic represen-
tativeness of the original sampled data. Such a sample size is however still too
large for practical applications at the national-scale, and a strategy based on
Latin Hypercube Sampling (LHS, McKay et al., 1979) has been adopted here to

11



produce a smaller representative sample of the full UKCP09 dataset. LHS meth-
ods have been proved to be more efficient than random sampling (Stein, 1987)
and they have previously been used successfully to assess the uncertainty of
climate model parameters, notably for the development of UKCP09 projections
themselves (Murphy et al., 2007), but also to assess the uncertainty in con-
ceptual hydrological model parameters (Murphy et al., 2006; Shirmohammadi
et al., 2008). This is however the first attempt at applying it to probabilistic
climate change data. The approach chosen here is the optimal stratified LHS
described by Stocki (2005).

Figure 4 illustrates the stratified LHS method as applied to the 10,000
UKCPQ9 factors. For simplicity the figure shows the selection process for nine
samples and two dimensions corresponding to seasonal rainfall factors for winter
(PDJF) and summer (PJJA). The 10,000 samples are split into nine columns
each of which contain a 9th of the samples, and then each column is again split
evenly into 9 to give a total of 81 blocks, each of which contains roughly the
same number of samples. LHS is used for selecting the blocks from which a
sample is selected. From the blocks, a single UKCP09 sample is randomly se-
lected to give 9 samples (in blue in Figure 4). By selecting the samples this way
the samples are regularly spaced across the chosen climate variables to give the
best representation of the overall distribution for the given sample size. Also,
this method has an equal chance of selecting any given sample so therefore the
samples are equally weighted. The stratified LHS has here been applied with
eight dimensions corresponding to the seasonal changes in precipitation and
temperature. The importance of different seasons tend to vary across the coun-
try between different types of catchments and preliminary experiments proved
the importance of to considering all four seasons in this national-scale study.
Moreover, the sample size has been chosen equal to 20 as a trade-off between
accuracy and modelling efforts. This choice is further discussed in Section 5.2.

3.2. Building daily climate time series for the 2020s

The UKCP09 monthly change factors have been applied to historical catch-
ment precipitation and temperature data to generate future daily time series,
following in this way the delta change methodology used for previous national-
scale assessments (Arnell et al., 1997; Arnell, 2002).

The 11 HadRM3 monthly time series for the 2020s have been first spatially
averaged over the two catchment case studies and then bias-corrected following
the same framework as for the UKWIRO06 projections, without the downscaling
part (Vidal and Wade, 2008a). Indeed, RCM outputs have been shown to be
biased with respect to observations over the historical period for example by
Cloke et al. (2010) over the Medway@Teston (Thames river-basin region, 40003
in Figure 1).

The catchment-scale monthly time series derived from the 6 UKWIR06 pro-
jections and the 11 HadRM3 projections have been temporally downscaled to
derive daily time series for the 2020s. For each calendar month, a month with
the most similar amount of precipitation is selected from the observed catch-
ment daily time series within the same season. The daily precipitation pattern

12
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of this particular month, rescaled to match the monthly amount, is then used
as the daily pattern of the future GCM-derived time series. Future PET values
have been calculated for the middle Julian day of each calendar month with
the temperature-based formula. These were then interpolated thanks to a cubic
spline algorithm to obtain daily time series, as done for computing historical
PET (see Section 2.2).

8.8. Hydrological modelling

The hydrological modelling framework had been developed for the previous
national-scale assessment and is detailed by Wade et al. (2006) and Vidal and
Wade (2007a). The sets of hydrological calibrated models retained from the
assessment have been reused for the present study. The main modelling steps
are described in the following paragraphs.

Model structures. Two hydrological model structures were used: PDM, a lumped
conceptual model (Senbeta et al., 1999) and Catchmod, a semi-distributed con-
ceptual model (Wilby et al., 1994). The rationale behind using two model
structures is that they provide an initial estimate of the uncertainty linked to
the choice of a given model structure, following the approach of recent climate
change impact studies (Kay et al., 2009; Wilby and Harris, 2006).

PDM (Probability Distributed Model) has been developed and used for more
than 20 years (Moore, 1985, 2007), notably in climate change impact studies
(Arnell et al., 1997; Prudhomme et al., 2003; Bell et al., 2007; Prudhomme and
Davies, 2009a,b). This study made use of a version of PDM with 5 parameters
described by Senbeta et al. (1999) and implemented by Wood (2005), using a
linear reservoir for routing the fast and slow pathways.

Catchmod also has a long history and is currently being promoted as the
standard hydrological model by the Environment Agency (WSAtkins, 2002). It
has also been widely used in climate change impact assessments (Diaz-Nieto
and Wilby, 2005; Wilby and Harris, 2006; New et al., 2007; Lopez et al., 2009;
Manning et al., 2009). Catchmod works with different zones contributing to the
output flow and corresponding to different paths, and this study makes use of
models with 3 zones for fast, medium and slow paths with 5 parameters each.
Within a given catchment, the area of each zone has been determined based
on hydrogeological data from the Catchment Spatial Information module of the
National River Flow Archive, following the rules detailed below and ensuring
the consistency among all modelled catchments. As Irish catchments are not
included in the NRFA database, the percentage area of each zone has been
estimated from geological maps.

Each hydrogeological category has been attributed to a given flow path: fast
(”Very low permeability”), slow ("High permeability (fissured and intergranu-
lar)”, ”Moderate permeability (fissured)”) and medium (all other categories).
Similarly, each drift category has been attributed to either the fast (”Landslip”,
”Lacustrine clays, stilts and sands”, ” Alluvium”, ”Boulder clay”, ”Morainic
drifts”) or the medium slow path (all other categories). the catchment area

14



covered by drifts is first computed by adding areas of all drift categories. mak-
ing the hypothesis that the remaining area is composed of the same percentage
of hydrogeological categories as the whole catchment allows computing areas
for each hydrogeological category without drifts. The area of each zone is then
taken as the sum of areas from the corresponding flow path. A brief com-
parison of Baseflow Index (BFI) values with percentage areas for each zone of
all catchments led to a positive correlation (0.68) with slow path areas, and a
negative correlation (-0.59) with fast path areas (both significant at the 95%
confidence level), along with virtually no correlation with medium path areas.
This comparison thus supports the empirical rules derived made for allocating
hydrogeological and drift categories to flow paths. It has to be noted that this
consistent process over the UK led to model 5 catchments with only two zones
(medium + slow), and 27 with only one zone (24 slow, 2 medium and 1 fast).

GLUE methodology. The GLUE (Generalized Likelihood Uncertainty Estima-
tion) methodology (Beven and Binley, 1992) has been adopted in this study in
order to assess the uncertainty in both model structure and model parameters.
The GLUE methodology has been widely used over the last fifteen years for
rainfall-runoff modelling over various locations (see for example Beven, 1993;
Freer et al., 1996), and has recently been applied in climate change impact
studies, notably in the UK (Cameron, 2006; Romanowicz, 2007; Cloke et al.,
2010). Several studies are currently ongoing in order to improve this modelling
framework (see for example Vrugt et al., 2009, and discussions), but for simplic-
ity the commonly used methodology has been adopted here, with the choices
described below.

PDM and Catchmod parameter ranges shown in Table 2 and Table 3 respec-
tively have been derived from a literature review of studies using these models
over various UK catchments (Wood, 2005; WSAtkins, 2002; Wilby, 2005). The
ranges were chosen in order to encompass all physically plausible parameter val-
ues for a UK catchment, and thus allow a consistent approach for all 70 modelled
catchments. For each catchment, 5000 parameter sets for each model structure
were randomly sampled within the defined parameter ranges, thus providing
10,000 different catchment models. For simplicity uniform sampling was cho-
sen over more complex and efficient sampling strategies (e.g., Markov Chain
Monte-Carlo, Blasone et al., 2008), which is in line with other applications of
the GLUE methodology (Beven, 2000; Cloke et al., 2010).

Table 2: PDM Parameter ranges.

Parameter Min Max
Maximum value of storage capacity depth (mm) 0 3000
Slow tank constant (days) 0.1 1000
Fast tank constant (days) 0 100
Reflected power parameter 0 20
Parameter for groundwater flow 0 0.02
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Table 3: Catchmod parameter ranges.

Parameter Fast Medium Slow
Min Max Min Max Min Max

Slope of drying curve 0.1 04 01 04 0.1 0.4

Potential drying constant 0 150 0 250 0 250

(mm)

Direct percolation (%) 0 100 0 100 0 100

Time constant for linear reser- 0 10 5 50 30 120

voir (days)

Constant for non-linear reser- 0 500 500 10000 500 10 000

voir (m?.days)

The GLUE methodology requires a likelihood measure to assess the per-
formance of a given model. A number of such measures have been used within
GLUE over the years (see, e.g., Choi and Beven, 2007). Romanowicz and Beven
(2006) found that the choice of different measures influences the shape of the
resulting distribution, but to a much lesser extent the uncertainty bands for
the predictions. The likelihood measure chosen for this study was based on the
Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) applied to the loga-
rithm of flows. This particular measure reduces the influence of high flows and
gives more weight to low to median flows (Krause et al., 2005). Models with a
daily NSE > 0.5 over the whole 1961-1990 baseline period were considered to
be behavioural and retained for subsequent analysis. This threshold and the
associated uncertainty will be discussed in Section 5.

The number of behavioural models and NSE for the best-fit model, using
either the PDM or Catchmod structure, can be found in Figure 5. It shows
that behavioural models are easier to find within the parameter space with
Catchmod structure, due to the higher number of parameters. Nine catchments,
mainly located in the Thames and Anglian regions, could not be modelled with
the PDM structure. As already noted by Young (2002), the PDM structure
appears not to be adapted to catchments with low standard annual rainfall. A
detailed examination of the two catchments that could not be modelled with
the Catchmod structure suggests that the constraints imposed to the areas
attributed to each flow path are too strong in these particular cases.

Derwing distributions of flow factors. For a given catchment, each behavioural
model from either model structures has first been run under the observed 1961-
1900 climate to derive baseline monthly mean flows as well as the corresponding
likelihood measure. The same hydrological model has then been forced by one
of the future climate projections described in Section 3.2 to compute future
monthly flows. Monthly flow factors could then be computed for this particu-
lar hydrological model and were attributed the present-day likelihood measure.
This procedure has been applied to all behavioural models, regardless of their
model structures, leading to weighted distributions of monthly flow factors for
one future projection. The individual climate projections within a data set
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Figure 5: Number of behavioural models for all 70 catchments (left) and NSE for best-fit
parameter set (right), for PDM and Catchmod model structure. Squares denote catchments
where no behavioural model could be found from one or the other structure.

(UKCP09, UKWIR06 or HadRM3) have finally been combined by applying
equal weights to each member.

4. Results

4.1. Changes in precipitation and potential evapotranspiration

This section presents intermediate results in terms of climate for the 2020s
as derived from the three climate data sets through the sampling of initial
distributions (for UKCP09), the aggregation at the catchment scale, and the
calculation of PET.

Sampled UKCP09 changes at the river-basin scale. Figure 6 shows the central
estimates of changes in precipitation derived from the sampled UKCP09 factors
at the river-basin scale. The general pattern indicates an increase in winter
precipitation mainly across the north-western part of the UK, together with a
widespread decrease in summer precipitation. Similar features were also found
by Vidal and Wade (2008a) in the UKWIRO06 projections although impacts in
the southwest in the summer were smaller. The UKCP09 factors also indicate
larger increases in rainfall in the winter in the west of the country and the
impacts in northern Ireland are larger compared to the UKWIR06 projections.

Figure 7 shows the central estimates of changes in PET derived from sampled
UKCP09 temperature factors and the temperature-based formula. The maps
show an increase in PET across the country with the largest changes occurring
in the winter months and larger changes in the northern part of the UK. The
increase in PET is a reflection of warming of up to 2 percent across the coun-
try. Changes in summer mean temperatures are greatest in parts of southern
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Figure 6: Maps of central estimates of monthly precipitation changes derived from the sampled
UKCPO09 probabilistic changes over river-basin regions.



Figure 7: As for Figure 5, but for PET.

England (up to 4.2C (2.2 to 6.8C)) and least in the Scottish islands (just over
2.5C (1.2 to 4.1C)). Whilst temperature increases are larger in southern Eng-
land this results in smaller relative changes in PET than in the north where the
absolute baseline PET is much lower. Similar changes in PET were observed in
the UKWIRO06 projections.

Catchment case studies. Figure 8 compares the precipitation and PET annual
cycles of changes for the Ribble@QArnford, as given by the individual climate
projections from the three different climate scenario data sets described in Sec-
tion 2.3. The visible annual cycle of precipitation changes already noted in
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Figure 8: Annual cycle of changes in precipitation (top row) and PET (bottom row) for the
Ribble@Arnford. Left: 20-member sampled subset of UKCP09 changes; middle: changes
from the 6 individual UKWIRO06 projections; right: changes from the 11-member ensemble of
bias-corrected regional projections.

Figure 6 can be seen again in the top-left plot, with an increase in winter
precipitation and a decrease in summer precipitation. A similar cycle was also
observed in the UKWIRO06 projections (Vidal and Wade, 2008a), but can hardly
be identified in the 11-member ensemble of HadRMS3 projections. This last ob-
servation corroborates the fact that this ensemble of regional projections does
not include the full range of uncertainty available through the UKCPQ9 projec-
tions, as HadCM3 is the only driving GCM for this ensemble. A remarkable
feature shown by Figure 8 is a very similar dispersion of the UKCP09 and UK-
WIRO06 ensembles. Changes in PET indicate a much more pronounced annual
cycle, with nearly all projections showing an increase in PET all year round,
but with much more dispersion in winter than in summer for all 3 sets. Once
again, the HadRM3 ensemble stands out from the two other sets by showing a
consistently large increase in winter PET.

Annual cycles of changes in precipitation and PET for the Thames@Kingston
catchment are shown in Figure 9. Conclusions similar to the Ribble@Arnford
can be drawn from these plots, with one major difference: the dispersion of
UKCP09 (and HadRM3) precipitation changes for some months in winter and
summer are much higher than for the Ribble@Arnford, with some members
showing increases beyond 40%. The larger UKCP09 uncertainty bands in the
south-east of England compared to the north-west of the British Isles have
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Figure 9: As for Figure 8, but for the Thames@Kingston.

already been shown by Murphy et al. (2009, table 4.5 and Figure 4.11).

4.2. River flow changes derived from UKCPO09 climate changes

Changes in mean annual flow. Figure 10 shows changes in annual flow derived
from UKCPO09 climate changes presented as violin plots. Individual results
from the ensemble of hydrological models multiplied by the number of UKCP09
climate change subsets have been used to fit continuous probability density
functions-weighted with the associated likelihood measures-using kernel density
estimates with gaussian kernel (Wilks, 2006, p. 35).

Firstly, the map shows a relatively large uncertainty in projections, with
most catchments exhibiting changes with a non-null probability ranging between
-10% and +10%. The distributions shown in Figure 10 gathers two properties of
the climate change factors used: first, their range is conditioned for a large part
on the initial UKCP09 change factors distributions, as exemplified in Figure 2.
Second, the multi-modal characteristics of the distributions for most catchments
is linked with the sampling step that provides only a discrete subset of factors.
It thus confirms that very low and very high percentiles of changes have to be
treated with caution. Figure 10 also shows that this climate uncertainty can
be intensified through the hydrological processes, as it appears to be the case
in the pervious catchments of south-east England. Median changes in annual
flow appear to be slightly positive in Scotland and Northern Ireland, but clearly
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Figure 10: Distributions of changes in mean annual flow (%) for the 2020s for the 70 modelled
catchments with the sampled UKCP09 climate change forcings. Blue and red colors in the
violin plots indicate the position of the distribution with respect to zero (no change).

negative for the rest of the UK. This representation however hides the intra-
annual variations that are examined below.

Changes in mean monthly flows. Figure 11 plots the first, second and third
quartiles of monthly changes in river flow. These percentiles have been chosen
to give a robust measure of the dispersion of the distributions whilst avoid-
ing potential discrepancies on the extremes caused by the sampling of climate
change distributions (see Section 5.2).

Results in terms of central estimates (middle column) show a marked sea-
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sonal cycle, with large reductions in summer flows. A geographical split between
the western and northern mountainous part of the UK (Scotland, Northern Ire-
land, North-West England, Wales and Cornwall) and the rest of the UK is also
clearly visible: a small increase in winter flows (from November to March) can
be noted over this western part, whereas in all other catchments, a decrease
in river flows is visible all year round. This is a direct consequence of the geo-
graphical split observed in winter precipitation changes in the sampled UKCP09
data, which occurs over mainly mountainous and impervious catchments (Bower
et al., 2004).

Looking at the third quartile maps (right), it can be seen that most of
the catchments feature negative or very slightly positive values of summer flow
changes. This shows that a relatively high probability can be assigned to a
decline in summer flows. In the UK this period unfortunately corresponds to the
low-flow period when the supply-demand balance is tight, especially in south-
east England. The first quartile maps (left) show that the largest flow decrease
can be seen in the Thames, Anglian and Severn river-basin regions, with values
below -10% all year round and much lower in summer.

4.3. Comparison with river flow factors using other climate projections

At the national scale. Figure 12 shows maps of central estimates as well as
first and third quartile of the distribution of changes in monthly river flows as
derived from the hydrological model ensembles forced by the six UKWIR06 pro-
jections. It synthesizes the scenarios developed for the previous national-scale
assessment (Vidal and Wade, 2007a) which were incorporated into the water
resources planning guideline by the Environment Agency (2008) as a framework
for water companies to follow in developing and presenting their water resources
plans. Compared with Figure 11 showing flow factors using UKCP09 the general
features — overall decrease of central estimates, geographical split, etc. — were
already present in UKWIRO06 flow factors, but some differences can be spotted.
From November to March, the whole UKWIR06 distribution seems to be shifted
towards higher flow factor values, leading to a potentially higher increase in soil
moisture and recharge to groundwater aquifers. Conversely the upper quartile
of distributions for July to September shows lower and negative values over most
of England, suggesting higher confidence in the reduction of summer low-flows
than in the UKCP09 data set. The range of uncertainty is generally higher in
the UKCP09 projections in the summer which was also reflected in the climate
factors.

Catchment case studies. Figure 13 and 14 present detailed information about
the change in the annual hydrological cycle for the two catchment case studies.
These include plots of the 1961-1990 baseline period mean flows for each month
together with an estimate of the corresponding natural variability. The interval
of natural variability has been computed as the 90% level bootstrap confidence
interval derived from the observed monthly flow time series. They also show
the monthly distributions of river flow derived from the three future climate
data sets described in Section 2.3. River flow factors derived from the overall
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Figure 11: From left to right: first, second and third quartiles of monthly changes in river flow
(%) for the 2020s for the 70 modelled catchments with the sampled UKCPO09 climate change
forcings.
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Figure 12: As for Figure 11, but with UKWIRO06 climate projections forcings.
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Figure 13: Mean monthly flow for the Ribble@Arnford for the 1961-1990 baseline period
and for the 2020s as derived from the three future climate datasets. Grey bands show the
90% interval of 1961-1990 natural variability (see text for details). Median values of future
distributions are plotted as dotted vertical lines only if they fall outside of the range of natural
variability. Note the different y-scales for each month.
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Figure 14: As for Figure 12, but for the Thames@QKingston.
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method detailed in Section 3 have been applied to the baseline mean monthly
flows in order to compute the corresponding values in cubic meters per second.
Continuous probability density functions have been fitted to these values using
kernel density estimates.

Figure 13 shows the baseline and future flow regimes for the Ribble@Arnford.
Future mean monthly flows are shown as distributions which combine the un-
certainty due to the climate forcings (cf. Section 2.3) and the uncertainty due
to the hydrological modelling (cf. Section 3.3). The first thing to notice in
Figure 13 is the multi-modal characteristic of most distributions, which derives
from the discrete property of all three future climate forcing ensembles. The
LHS sampling performed on UKCP09 climate change distributions helped to
reduce such characteristic with respect to the other two data sets, in spite of
the relatively low ensemble size. The important feature shown by this plot is
the fact that most distributions are largely included in the range of natural
variability as defined above. Indeed, median values of future distributions fall
outside this range only in August, when future flows are projected to decrease by
around 25% according to both UKCP09 and UKWIRO06 projections. Moreover,
despite the variation of distribution shapes between these two data sets, central
estimates and dispersion are of a similar order, which reinforces the confidence
in the results for this catchment. It should also be noted that the distributions
derived from the HadRM3 ensemble also exhibit a very different shape from the
whole UKCP09 distributions.

Looking at results for the Thames@Kingston in Figure 14, the dispersion
of distributions in monthly flows appears to be larger than the range of nat-
ural variability for UKCP09 and HadRM3 data sets compared to the Rib-
ble@Arnford. The main reason may be found in the larger dispersion — noted
in Figure 9 — in winter and summer precipitation within the corresponding cli-
mate change data sets noted. Another major difference to the Ribble catchment
is the projected decrease of summer flows according to the UKWIRO06 scenar-
ios, with median values falling below the lower part of the natural variability
range from June to September. Similar cases can also be found for the other
two climate data sets, but only in July for UKCP09, and in August for the
HadRM3 ensemble. The projected flows derived from UKCP09 climate changes
thus appear more conservative than the previous assessment, as a consequence
of the under-dispersed summer distributions already noted in Section 4.3. This
probably results from an insufficient spread in climate forcings in UKWIR06,
composed of individual projections from only 6 GCMs.

5. Analysis of uncertainties

The paragraphs below propose an analysis of (1) the source of uncertainties
in UKCP09-derived river flow changes and (2) the uncertainty related to the
LHS sampling adopted for dealing with UKCPQ9 probabilistic information.
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5.1. Decomposition of uncertainty between climate and hydrology

The distributions of changes shown in Figure 11, 13 and 14 combine two
types of uncertainty: (1) the uncertainty in UKCPO09 climate projections and
(2) the uncertainty of the modelled hydrological response to each projection.
An analysis of variance of monthly changes in river flow has been performed
in order to evaluate the amount of uncertainty due to each type. For a given
catchment ¢ and a given month m, let F}, ;, be the factor of change in % given
by the hydrological model h under the climate projection p. Let note:

20 n.

ﬁwgmzzyﬁ (1)

p=1h=1

the mean of all flow factors where n. is the number of behavioural models
retained, 20 is the number of sampled climate projections, and:

Ne

= > R 8

¢ h=1

.

the mean of factors derived from a single projection p. One can write the total
sum of squares T'S\S of factors for this catchment and this particular month:

20 nc

755 =33 (Fpn—F)" (3)

p=1h=1

TSS can be furthermore written as (von Storch and Zwiers, 1999, chap. 9):

TS5 =BSS+ WSS (4)
where:
Bsszii(ﬁp—?)z (5)
ne =

is the between-climate-projections sum of squares and:

20 n.

wss =33 (Fu—F)° (6)

p=1h=1

is the within-climate-projection sum of squares. One can then calculate the
proportion of variance due to climate projections, with an unbiased estimator
of the numerator (von Storch and Zwiers, 1999, chap. 9):
20—1
BSS — 20.(%_1)1/[/55’ o
TSS
Figure 15 shows the distribution of R? across all catchments for each month
of the year. This proportion of variance can be seen as the part of uncertainty

R; =
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Figure 15: Proportion of variance of monthly changes in river flow due to climate projections
for all 70 modelled catchments.

due to the spread of climate projections. The uncertainty in climate projec-
tions appears to dominate systematically over the uncertainty in hydrological
modelling response, with very high median values for all months. The spread
of values across the 70 modelled catchments, represented by box plots in Fig-
ure 15, shows a spatial diversity of this uncertainty attribution that is higher
in winter. This results from the north-west/south-east differential spread of
changes in winter precipitation already discussed in Section 4.1. The uncer-
tainty in hydrological modelling response is thus very small compared to the
uncertainty in climate projections, even with the relatively low threshold of the
likelihood measure adopted here (see Section 3.3) that led to retain a relatively
large variety of hydrological model parameter sets. It has however to be noted
that this decomposition of uncertainty holds for changes in monthly flows, but
may be different for example for low-flow indices likes the Q95 (flow exceeded
95% of the time).

5.2. Effect of sampling size

Experiments were conducted on applying stratified LHS with different sam-
ple sizes for the two catchment case studies. Sampled UKCP09 changes were
then propagated through hydrological models in order to see the impact of sam-
pling on monthly river flow changes. Figure 16 presents some results for the
Thames@Kingston catchment, with eight dimensions (seasonal changes in pre-
cipitation and mean temperature) and different sample sizes. It shows that a
sampling of size 20 (chosen in this study) captures most of the uncertainty for
the three quartiles, as no significant improvement is achieved for sample sizes
above 100. Note that the convergence to values above 0 is due to the rounding
of factors preliminary to the analysis. Note also that results for small sample
sizes are associated with some sampling uncertainty as only one set of samples is
shown here. Figure 16 also shows that more extreme quantiles tend to be more
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Figure 16: LHS of seasonal changes in precipitation and temperature: Effect of sample size
n on changes in river flows for the Thames@Kingston. Left: root mean square deviation of
monthly changes (in percent) from the experiment with n = 1000 for different quantiles of the
distribution (5, 25, 50, 75 and 95). Right: annual cycles of flow changes for n = 20 and n =
1000, for the same quantiles.

dependent on sample size and that using twenty samples introduces noticeable
uncertainty in more extreme quantiles. This strongly suggests that the tails of
distributions in river flow changes should be treated with caution.

6. Assumptions and related limitations

Formulation of potential evapotranspiration. As shown by Ekstrom et al. (2007),
Kay and Davies (2008) and Kingston et al. (2009), potential evaporation is a
critical source of uncertainty for assessing hydrological impacts, and different
calculation methods may lead to different estimates of changes in PET. Kingston
et al. (2009) tested 6 different formulations of PET based on inputs from 5 dif-
ferent GCMs. They found potentially large differences of latitudinally averaged
changes in PET between the different formulations, as a response of a global
2°C temperature rise. Kay and Davies (2008) compared the temperature-based
Oudin formula used here Oudin et al. (2005b) with a version of the Penman-
Monteith formula, with inputs from 5 GCMs and 8 RCMs over the UK, in both
present and future climate. They first found that, with climate model input
over the 1961-1990 period, using the Oudin formula gives a better fit than the
more complex Penman-Monteith formula with respect to the MORECS (Meteo-
rological Office Rainfall and Evaporation Calculation System) data (Hough and
Jones, 1997), the common reference PET data set for the UK. They also found
that both methods lead to quite different changes in PET for the end of the
century under the A2 emissions scenario, with no method giving systematically
higher changes than the other, depending on the month of the year and the lo-
cation. Ekstrom et al. (2007) compared the temperature-based Blaney-Criddle
and Penman-Monteith formulas for a case study in North-West England, with
inputs from the HadRM3H RCM in both present and future climates. They
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found that the Blaney-Criddle formulation lead to (1) a better fit with PET
calculated with Penman-Monteith formula with observed input data, and (2)
much smaller changes that the Penman-Monteith formula.

According to Kay and Davies (2008) and Ekstrém et al. (2007), such surpris-
ing results may originate from the reliability of other GCM- or RCM-derived
variables than temperature used in the data-intensive Penman-Monteith formu-
lation. Based on a comparison study over deciduous forests, Shaw and Riha
(2011) suggest that using temperature-based formulas may lead to an overes-
timation of water deficits. Different and somewhat complementary issues are
moreover related to the choice of using or not an offline PET formulation. Tak-
ing account explicitly of the effect of increasing CO2 may indeed for lessen PET
increase, due to a modified transpiration of plants as well as a changed canopy
resistance (see for example Betts et al., 2007; Bell et al., 2011).

From the studies referenced above, it can be seen that the issue of PET
formulation for climate change impact assessments is currently far from settled.
Ideally, one would systematically use different formulations to take account of
the associated uncertainty. Only the Oudin et al. (2005b) formula has been used
here for two main reasons: first, the use of different formulations would have con-
siderably increased the computation burden resulting from the multiplication of
catchments, climate projections, hydrological model structure and hydrological
model parameter sets. Second, this study aimed at examining the differences
with the previous national-scale assessment due solely to different climate pro-
jections. The entire hydrological modelling approach has therefore been kept as
close as possible to the one developed by Vidal and Wade (2007a). In particular,
choosing another formulation of PET would have inevitably changed the sets
of behavioural models for each catchment, making uncertainty assessments and
comparisons rather problematic.

In order to assess the confidence in hydrological results obtained here as
a consequence of this particular choice of PET formulation, changes in PET
presented in Section 4.1 are qualitatively compared below to other studies having
implemented other types of PET calculation over the whole of UK and for
the two catchment case studies. One of the main UK-wide results in PET
changes presented in Figure 7 is a north-west to south-east gradient, with higher
increases in Scotland. Kay and Davies (2008) also found this gradient in maps
of mean annual PET changes derived from an ensemble of GCM and RCM
projections for the 2080s with both the Penman-Monteith equation and the
temperature-based formulation proposed by Oudin et al. (2005a). Ekstrom
et al. (2007) found a north-south gradient over the UK when applying a Penman-
Monteith formula to HadRM3 outputs, even if absolute change values have been
considered unreasonably high by the authors.

At the catchment scale, more detailed comparisons can be drawn. For the
Ribble@Arnford, the larger uncertainty in winter relative changes shown in Fig-
ure 8, also found by Kay and Davies (2008) with both Penman-Monteith and
temperature-based formulations, ensues from the much smaller absolute values
of PET in the winter months compared to summer months. Median values of
PET changes are moreover consistent with those found by Fowler et al. (2008)
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for a nearby catchment, the Eden@TempleSowerby. Indeed, using a Penman
formulation embedded in a stochastic weather generator (Kilsby et al., 2007)
conditioned by 13 RCM projections from the PRUDENCE project (Christensen
and Christensen, 2007), they found a similar annual cycle and changes about
twice higher than the one shown in Figure 8, for a more distant period, namely
the 2050s. For the Thames@Kingston, changes in PET compares reasonably
well with values obtained by Wilby and Harris (2006) on this specific catchment
for the same period. The confidence in the results from the present study is
increased by the fact that a completely different scheme for computing PET
was used, based on statistical relationships between large-scale predictors and
observed PET from the MORECS data set. For the Thames basin, and using
the weather generator described by Kilsby et al. (2007), Manning et al. (2009)
found an increase of about 90% in winter and 50% in summer for the 2080s
under the A2 emissions scenario, which is consistent with the values shown in
Figure 9 and obtained here for a much closer period.

As a conclusion, changes in PET obtained here are generally consistent with
other studies having implemented different formulations, with reasonably similar
orders of magnitude. Moreover, based on their analysis derived from various
climate projections, Kay and Davies (2008) argue that “the hydrological impact
uncertainty due to PE formulation is less than due to GCM structure, or even
RCM structure”, which reinforces the confidence on the analysis performed in
Section 5.1 about the sources of uncertainty.

Natural variability, robustness of hydrological models and drought extremes.
Several comments can be made on the suitability of the approach described
here for simulating potential drought extremes in the future. The first one is re-
lated to the suitability of the hydrological modelling approach adopted here for
simulating drought extremes. Previous studies projected a decrease in summer
low flows for the 2020s in the UK (Arnell et al., 1997; Arnell, 2002), and models
developed in this study should be able to simulate the hydrological behaviour
of catchments during the periods of very low flows. The ability of models in
simulating such future droughts can be partly assessed by investigating their
performance during the benchmark 1976 drought, which was the most severe
within the 1961-1990 period in most of the UK in terms of surface flow (Cole
and Marsh, 2006; Marsh et al., 2007; Wade and Vidal, 2007). A specific analysis
has been performed on 5 catchments (66011, 60002, 27028, 48004 and 43005,
see the NRFA database for details) with areas around 200km? and with various
combinations of BFT (0.28 to 0.90) and standard average annual rainfall (744mm
to 2041mm). The very low summer flows appear to be well simulated in all 5
catchments (not shown), proving the robustness of the hydrological modelling
approach adopted here.

However, the stability of parameters in a non stationary climate is not fully
guaranteed, as demonstrated for example by Merz et al. (2011). They calibrated
hydrological models on Austrian catchments for several consecutive 5-year pe-
riods and found significant biases in validation due to changes in climatic con-
ditions. Based on modelling experiments in Australian catchments, Vaze et al.
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(2010) demonstrated that rainfall-runoff models calibrated with more than 20
years of observed data can be used in climate change impact studies when ab-
solute changes in mean annual rainfall remain lower than 15 to 20%. Their
conclusions therefore support the approach adopted for the present study where
(1) the majority of catchments used more than 20 years of observed data for
calibration and (2) absolute changes in annual rainfall is limited to 10% for the
whole of the UK until the 2050s (see Murphy et al., 2009, table 4.5).

Another issue concerns the use of climate change factors—even if they are
probabilistic—for deriving future climate time series. Such an approach does
indeed not incorporate potential changes in natural variability that would lead
for example to multi-year droughts. Therefore, the guidelines elaborated for
UKWIR (Vidal and Wade, 2007a) describe various approaches depending on
the availability of data and tools and for example include resampling approaches
that may help taking account of natural variability. It has to be mentioned
that the UKCPO09 climate projections are accompanied by a weather generator
(Kilsby et al., 2007) able to simulate climate time series conditioned by UKCP09
probabilistic changes (Jones et al., 2009). Such a tool may in principle be
useful to incorporate the effects of a changing natural variability, but as pointed
out by Hall et al. (2011), simulated “year-to-year patterns are independent, so
multiyear droughts occur no more frequently than would be expected under the
assumption of independent annual totals”.

From climate change impact assessments to global change impact assessments.
The present work only considered the effect on river flows consecutive to changes
in climate, with the underlying assumption that no changes will occur in the
catchment. This assumption is shared by the vast majority of recent studies,
and results should be used as such. In particular, no information is given about
the actual flow projected in the 2020s, which will depend on (1) changes in
land use that will affect the climate-runoff processes and (2) changes in water
use and water management that will affect the actual flow in the river. A
global change impact assessment study would thus require, on top of climate
change scenarios : (1) scenarios of land use change (vegetation, soils, etc.), (2)
scenarios of water use based on water demand for drinking water, irrigation or
hydropower (Vidal and Hendrickx, 2010, see for example), but also (3) scenarios
of water management for taking account of changes in management rules as a
consequence of changes in resource. Such an integrated study would therefore
require information highly specific to each catchment or water resource zone
considered and could hardly be considered for national-scale assessments like
the one presented here.

7. Implications of UKCPO09 for UK water resource planning

The initial comparison of the impacts of climate change on river flows using
UKWIR06 and UKCP09 indicate slightly more conservative estimates of flow
reductions in the summer and smaller flow increases in winter in UKCP09 al-
though the uncertainties tend to be larger, mainly in summer. The implications
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of the differences in results between UKCP09 and UKWIR06 for water resources
will be catchment and water resource zone specific. The overall implication for
water resources planning is that central estimates of Deployable Outputs (DO,
the amount of water available to maintain water supply) may change, although
based on the results only minor changes in DO are anticipated.

For already vulnerable catchments in the south-east and Anglian regions
water resource plans may need to be revised to take account of these larger flow
reductions and associated uncertainties. In the northern and western part of the
UK changes in annual flow appear to be slightly positive although inter-annual
variations could affect water resource availability. Smaller winter flow increases
under UKCP09 may marginally reduce recharge estimates and reservoir DO
whereas smaller reductions in summer flows in UKCP09 may improve estimates
of DO for any run-of-river schemes for the 2020s period. The results are broadly
in line with those of the European ENSEMBLES climate work (Morse et al.,
2009), which indicated decreasing water availability in southern Europe and
increasing water availability in northern basins. The UKCIP09 indicates a sim-
ilar divide between the north and south of the UK. The ENSEMBLES project
looked at projections for 2100 and this may be an indication that the trends
observed for the 2020s will persist into the future.

Few water companies have yet re-assessed source yields using UKCPO09.
Welsh Water and Thames Water are in the process of utilising the probabilistic
data for re-assessing source yields and associated uncertainties but no standard
agreed methodology has been developed. The 20 sets of monthly climate factors
and flow factors for the 70 model catchments are available from this study and
depending on the water resource system either of these datasets can be used in
existing hydrological and water resource models. Currently the main limitation
for the water companies is the inability to run their systems models in batch
mode, which means that running 20 climate scenarios can be onerous. Com-
puter advances however does mean that more of the water companies will be
able to run multiple scenarios in future.

The Environment Agency is currently running a number of research projects
that will lead to development of guidance for using UKCP09, the RCMs and the
Weather Generator data for the next generation of water resource management
plans due in 2012. Whilst these projects are still in progress, indications are that
water resource planning will move towards a more risk based system with the
level of climate change risk analysis being tightly linked to system vulnerabilities
and planned investment. Simple sensitivity analysis may be carried out initially
based on changes in critical climate variables indicated by UKCPQ9 to determine
whether further detailed analysis will be required. More targeted sampling of
UKCPO09 is also considered focusing the impact assessment on those projections
likely to cause a problem for water supply for particular systems.

8. Conclusions

This study has developed a practical approach to undertaking an initial
climate change impact assessments on river flows in the UK at the national
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scale using the recent probabilistic UKCP09 scenarios and a multi-modelling
approach. The outcome of the study is a comprehensive database of future
impacts of climate change for the 2020s on river flows for 70 catchments across
the UK which can be used by the water industry for water resource impact
assessments.

The analysis of the impacts of climate change using the UKCP09 scenarios
indicates that for the 2020s and Medium emissions scenario: (1) winters are
most likely to be warmer and wetter and summers will be warmer and drier
in the 2020s compared to the 1961-1990 period; (2) uncertainties in climate
modelling are large, particularly in summer with a small proportion of climate
projections indicating drier winters and wetter summers; and (3) a small increase
in winter flows is projected over the north-western part of the UK, whereas in
all other catchments, a decrease in river flows is visible all year round. Overall
the results indicate that in most lowland basins river flows are likely to be
lower all year around. Within the modelling framework, this is due to inclusion
of some projections with drier winters combined with a higher PET all year
round, tipping the water balance of vulnerable basins in the south-east England
and Anglian regions.

Compared to the previous climate change impact assessment UKWIRO0G,
results indicate that overall river flows will be marginally lower with reduced
flows in spring, summer and autumn particularly in the south-east. For most
catchments the central estimates from the UKWIR06 flow factors were greater in
January to April, indicating higher winter flows than the UKCP09 flow factors.
Similarly the UKWIR06 flow factors were lower in most catchments in May and
August, indicating lower spring and summer flows than the UKCP09 factors.
These differences are due primarily to the choice of climate models, wider range
of models and better representation of natural variability in UKCP09.

This study successfully provided a first look at the impacts of the UKCP09
projections on UK river flows for the 2020s and will form the basis for further
research into practical uses of the probabilistic projections and development of
guidelines and methods for future water resource plans.
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