Sylvain Durand

Anne-Marie Alt

Daniel Simon

Nicolas Marchand

Alt Simon & Durand

Marchand

Feedback Control of a H.264 Video Decoder

Keywords: Feedback scheduling, QoS, Energy-performance trade-off, Fast predictive control, H.264 video decoder Ordonnancement régulé, Qualité de Service, compromis énergie/performance, commande prédictive rapide, decodeur vidéo H

Embedded devices using highly integrated chips must cope with conflicting constraints, while executing computationally demanding applications under limited energy storage. Automatic control and feedback loops appear to be an effective solution to simultaneously accommodate for performance uncertainties due to the tiny scale gates variability, varying and poorly predictable computing demands and limited energy storage constraints. This report presents the practical example of an embedded video decoder controlled by several cascaded feedback loops to carry out the trade-off between decoding quality and energy consumption, exploiting the frequency and voltage scaling capabilities of the chip. The inner loop controls the Dynamic Voltage and Frequency Scaling (DVFS) through a fast predictive control strategy to adapt the computing speed of the chip to the demands of the video flow decoder. The outer loop is fed back with measures coming from the current frame decoding execution, and computes the scheduling set-points needed by the inner loop to process the next frame decoding. The feedback loops have been implemented on a standard PC and some experimental results are provided. It is shown that a noticeable reduction of the energy consumption can be achieved through a very small execution overhead while preserving a requested decoding quality, and that the robustness of feedback loops accommodates for the uncertainty coming both from the silicon's variability and from the demanded computing burden.

Framework and related works

The upcoming generations of embedded devices are integrating more and more multimedia and telecommunication applications, such as PDAs, mobile phones and tablets, thus requiring increasing on-board computing power. On the other hand, they become even more miniaturized (which means limited energetic resources) while needing increased autonomy. These constraints are clearly conflicting, therefore technological evolutions are needed to improve both their power consumption, computational efficiency and fabrication yield. In this paper, we propose the use of feedback control loops as a possible solution. The approach is applied to an embedded video decoding device whose requirements can be categorized in three main points : a) Energy saving requirements :

In current CMOS integrated chips, the energy reduction is a quadratic function of the supply voltage and a linear function of the clock frequency [START_REF] Chandrakasan | Minimizing Power Consumption in Digital CMOS Circuits[END_REF]. As a result, Dynamic Voltage Scaling (DVS) can be used to efficiently manage the energy consumption of a device [2]. The supply voltage can be reduced, but one has to take care that scaling down the voltage of a microprocessor increases signals delays along the paths through electronic gates, thus needing to decrease its clock frequency as well. Therefore, adapting the supply voltage is very interesting when possible but implies the use of Dynamic Frequency Scaling (DFS) to keep correct the system behavior. The addition of DFS to DVS is called Dynamic Voltage and Frequency Scaling (DVFS) and results in simultaneously managing the frequency and the voltage. In many cases, the only performance requirement is that the tasks meet their deadline. Such cases create opportunities to run the processor at a lower computing level and achieve the same perceived performance while consuming less energy. Decreasing the processor clock frequency reduces power consumption but simply spreads the computation out over time, thereby consuming the same total amount of energy as before. Finally, reducing the voltage level as well as the clock frequency achieves the desired goal of reduced energy consumption at an appropriate performance level [3]. Furthermore, several behaviors are known to minimize the energy consumption while guaranteeing good computational performance (see [4] for further details). Classically, each task is considered independently, running at a constant voltage whose value is set to meet the deadline. If only a limited number of discrete voltage levels are available, the voltage values closest to the optimal one are the best choices to lower the energy consumption. Selecting some of these levels leads to a drastic energy reduction even if the number of levels is very small. At the end, the voltage has to be reduced as much as possible and the frequency adapted to the computational load [START_REF] Pouwelse | Dynamic Voltage Scaling on a Low-Power Microprocessor[END_REF]. A closed-loop DVFS approach is hence a good solution for energy saving.

b) Process variability requirements : Systems on Chip (SoC) integrate extremely small scale CMOS manufacturing, e.g. silicon foundries currently target 32 nm or even smaller (22 nm) gates. A nasty consequence of this very high integration is the variability in the silicon process : although a circuit is designed to run at a nominal clock frequency, the fabricated chip may vary by far from the expected performance [START_REF] Romanescu | Reducing the Impact of Process Variability with Prefetching and Criticality-Based Resource Allocation[END_REF]. Moreover, some cores may behave differently inside the same chip. In particular, different cores will be capable of different maximal clock frequencies even if coming from the same design [START_REF] Fesquet | Controlling Energy and Process Variability in System-on-Chips: Needs for Control Theory[END_REF]. Actually, this phenomenon is one of the leading causes for chip failures and delayed schedules at a sub-micrometric scale. To take full benefit of the potentially available computing power, it is needed that each computing node (or cluster of nodes) can be driven up to its maximal clock frequency. A common solution is the use of a Globally Asynchronous Locally Synchronous (GALS) architecture, e.g. [START_REF] Ferringer | VLSI Implementation of a Fault-Tolerant Distributed Clock Generation[END_REF] : by removing the globally distributed clock, such circuits provide a cost effective solution for large SoC design. In practice, several nodes sharing a common frequency domain are gathered in a cluster , and clusters working at different frequencies are linked via an Asynchronous Network on Chip (ANoC) [START_REF] Thonnart | Design and Implementation of a GALS Adapter for ANoC Based Architectures[END_REF]. A GALS architecture can mitigate the impact of process and temperature variations, because a globally asynchronous system does not require that a global common frequency is dictated by the longest path delay of the whole chip, i.e. the critical path. In this case, the clock in each frequency domain is only determined by the slowest path in its domain. Furthermore, GALS techniques allow each locally synchronous island to be set independently, making voltage and frequency scaling more convenient than with the standard synchronous approach [START_REF] Zakaria | Integrated Asynchronous Regulation for Nanometric Technologies[END_REF].

c) Quality of Service (QoS) requirements : Highly integrated chips are expected to be used in many computing intensive fields. Typical ones are multimedia applications, such as receiving, decoding and displaying high definition television streams on mobile devices. This particular case depicts the study described in the present paper. Thanks to the important embedded computational power, many functions that were traditionally hardwired can now be implemented in software. This is for example the case for the radio communication receiving system, where components like filters, mixers and codecs can now be implemented with increased flexibility inside the programmable components of a Software Defined Radio (SDR) system. The extra computing power can also be used to decode video streams with high definition quality. However, high computing power has drawbacks in terms of energy consumption, especially for the case of mobile devices with limited embedded energy stored in battery. Consequently, trade-offs between measures of the multimedia application quality, available on-board energy and desired time to battery exhaustion must be managed, and may be translated into a control problem formulation. Trading performance and resources is relevant of QoS problems, which were primarily stated and studied in the framework of networking. More generally, and beyond the initial (network related) meaning, QoS may be viewed as the management of some complex quality measures, assumed to provide an image of the satisfaction of application requirements. Indeed, QoS problem statements have been already used for energy-aware multimedia applications [START_REF] Chiang | Scalable Video Coding of H.264/AVC Video Streaming with QoS-based Active Dropping in 802.16e Networks[END_REF], most often focusing on networking load and communication management rather than on computing itself. However an approach stating video processing as a QoS problem is reported in [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF]. The QoS is evaluated via end-users perception criteria and enables tuning decoding parameters such as picture quality, deadline misses and quality level switches. Scalable processing is provided using several quality levels for frame decoding, each one associated with a corresponding computing cost.

Control and Computing interaction

Video processing is known to be subject to fluctuations and content-dependent processing times : at run-time QoS management is made adaptive and robust against the incoming stream uncertainties by an active closed-loop control, where measures of the system's outputs (e.g. actual CPU load and deadlines miss) are fed back to the decoder's input to choose the next frame decoding quality level.

Control and real-time computing are used together in embedded control systems since decades. However it has been recognized only quite recently (e.g., [START_REF] Cervin | Feedback-Feedforward Scheduling of Control Tasks[END_REF] and [START_REF] Lu | Feedback Control Real-Time Scheduling: Framework, Modeling and Algorithms[END_REF]) that more integrated co-design approaches between control and computing are likely to enhance both the performance and the robustness of real-time control systems. In particular it has been shown that digital objects, such as real-time schedulers and cyclic control tasks, can be efficiently managed through feedback loops. Therefore, they inherit the robustness and adaptivity properties brought by closed-loop control. Moreover, digital processes can often be modeled through simple dynamics, e.g. using fluid modeling, therefore leading to simple controllers with very small execution overheads [START_REF] Hellerstein | Feedback Control of Computing Systems[END_REF]. When applied to video codecs, feedback control has been mainly used for bit-rate management at the encoder side to accommodate the bandwidth of the communication link between the encoder and the decoder. For example, [START_REF] Sun | A Robust and Adaptive Rate Control Algorithm for Object-Based Video Coding[END_REF] combines prediction and PID control to simultaneously handle buffer occupancy and picture quality for an MPEG-4 video encoder. In other works, e.g. as reported in [START_REF] Brites | Evaluating a feedback channel based transform domain Wyner-Ziv video codec[END_REF], feedback channels are exploited in the coding process itself to enhance the compression rate and speed. Adaptive streaming can be post-processed on-the-fly, e.g. using a PI bit-rate controller in the server side as in [START_REF] De Cicco | Feedback Control for Adaptive Live Video Streaming[END_REF] or a Markov Decision Process (MDP) based algorithm as in [START_REF] Xiang | Adaptive scalable video streaming in wireless networks[END_REF]. On the decoder side, using feedback is mainly motivated by energy consumption considerations, therefore considering the voltage and working frequency as control variables. For example, in [START_REF] Pouwelse | Power aware video decoding[END_REF] a feed-forward/feedback heuristics on-the-fly selects a H.263 decoder clock frequency, based on frame lengths modeling. Following the ideas of previously cited works for the control of web servers ([START_REF] Lu | Feedback Control Real-Time Scheduling: Framework, Modeling and Algorithms[END_REF]), a PI controller is used in [START_REF] Lu | Reducing multimedia decode power using feedback control[END_REF] to control a MPEG decoder's speed and storage buffers occupancy to re-Inria duce the power consumption while preserving some real-time guarantees (but only simulation results are provided). Finally, in the already cited [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF] reference, the QoS specification of a MPEG-2 decoder is implemented on a single fixed frequency CPU, using different quality levels as control variables driven by a MDP based controller.

Guidelines The work presented here uses two low-levels control loops, the first one (based on fast Model Predictice Control) controls the chip's DVFS and computing speed and the second one controls the scheduling of the video frames through a simple Proportional control loop. The control architecture is expected to be supplemented by an outer QoS loop, whose design is out of the scope of this paper.

Even when considering a single CPU with constant processing power, the approach shows a very effective and flexible decoding adaptation capability. Such closed-loop control scheme follows several steps. Control design first needs a definition of the control objectives and an analysis and modeling of the process to be controlled. Basically, control uses an error signal between the desired and the measured (or estimated) state or output of the system. The output signals which are significant for control purpose must be identified and the corresponding sensors must be implemented. Then various control algorithms can be used to cyclically compute commands to be applied to the process via actuators, which must be also identified and implemented.

Using a GALS approach offers an easy integration of different functional units. Moreover, it allows to slow down some parts of the circuit for better energy savings since each part can easily have its own independent clock frequency and voltage. Hence, such an architecture appears as naturally enabling distributed power management systems as well as for local DVFS. This is even better not only in terms of power and performance, but also in terms of variability [START_REF] Marculescu | Energy Awareness and Uncertainty in Microarchitecture-Level Design[END_REF]. As a result, a feedback control loop can be used to adapt the voltage/frequency of each part in order to respect some real-time constraints of the application and the allocated energy budget. Furthermore, another control could lighten the computing load of a given functional unit by dealing with the QoS at the application level, with the limitation of processing power and/or channel of communication and with some constraints in energy consumption. This latter loop also manages the different voltage/frequency domains of the chip with their own performance. A practical example of such an architecture is part of the ARAVIS 1 project, which aims at providing architectural solutions for manufacturing circuits in nano-metric technologies with strong technological uncertainties. The proposed solution consists in using a closed-loop scheme to improve performance and several overlapped loops were suggested in order to manage the energy and activity in a chip in advanced technology. The setup to control the embedded video decoding mechanism of our case study is then based on this architecture.

The paper is organized as follows. In section 2, an overview of the video decoding process is given : the H.264/SVC standard is introduced, focusing on the scalability properties which are further used for control purpose. section 3 details a closed-loop multi-layer architecture for video decoding under computing resource and energy consumption constraints. Finally, some experimental results are presented in section 4 using a short movie decoding as a support example.

H.264/SVC codec overview

H.264 (also known as MPEG-4/AVC) is an international video coding standard for Advanced Video Coding proposed by the Joint Video Team : it was first approved in 2003 [START_REF] Wiegand | Overview of the H.264/AVC Video Coding Standard[END_REF]. It is intended to be used in many multimedia applications such as downloading and streaming via Internet, software defined radio, multimedia for mobile devices and high definition television. More recently the Scalable Video Coding extension (SVC) has been defined to provide scalability capabilities, e.g. enabling multiple resolutions and various quality levels in compressed bitstreams. Therefore this extension is expected to provide the actuators needed by a QoS control loop working on top of the decoder.

Features of H.264/SVC

The H.264/SVC reference software, which implements the features of the Joint Scalable Video Model (JSVM2) algorithm, has been elected for preliminary experiments. Although it is not optimized, this software implements all the features defined for the H.264 standard and for the associated SVC extension which are detailed in [START_REF] Schwarz | Overview of the Scalable Video Coding Extension of the H.264/AVC Standard[END_REF].

Basically SVC enables to decode only some selected parts of the incoming compressed bitstream. First, the raw input video flow is encoded to obtain a compressed bitstream. At coding time SVC allows for encoding the input video with combinations of different temporal rates, spatial resolutions and quantization steps. At the output of the encoder, the bitstream which contains several quality layers is sent to the decoder via a communication medium. Before decoding, selected partial bitstreams are extracted from the initial bitstream. Finally, only selected partial bitstreams are decoded, while switching between layers is possible in some cases. Three types of scalability are allowed by SVC : i) Spatial scalability enables to encode a video with several resolutions (i.e. number of pixels in a picture). The original high resolution video is down-converted to new video streams with lower resolutions. The final bitstream contains the video with all the encoded resolutions. The decoder decodes first the picture with the lowest resolution, then pictures with higher resolutions if needed.

ii) Temporal scalability enables to encode all or a part of the frames of the original video with different rates. For example it can be chosen to encode only half of frames to save computing power or networking bandwidth : in that case the displayed video only contains 15 frames per second rather than 30 frames per second in the original video stream.

iii) Quality scalability allows to encode the frames with several quantization steps. The quantization step selectively cancels some information from the original video : its effect can be compared to a low-pass filter. Indeed, the human eye is more sensible to the low frequencies than high frequencies, so that canceling high contrasts can be done progressively with a moderate impact on the visual perception. High quantization steps lead to lower quality pictures but also to lower computing costs. For a frame containing several quantization based quality layers, the decoder must process first the lowest quality layer (with the highest quantization step), then layers of increasing quality.

These different scalability properties can be combined to encode/decode a video stream as depicted in Figure 1. It is stated that the decoding process necessarily flows from lower to higher quality layers. Obviously all the quality layers needed by the decoder must have been previously encoded and transmitted over a communication channel to the decoder.

Video bitstream structure

A video sequence is made of three types of pictures : I pictures are reference pictures which are encoded independently of any other, P pictures are encoded using the previously encoded I picture, and B pictures are encoded using both the I and P pictures of there patterns. Hence the order in which pictures are displayed is different from the order of the pictures encoding/decoding. For instance, if the display order is IBBBPBBBI then the encoding/decoding order will be IPBBBIBBB. The IPB pattern is defined at coding time and is invariant along all the video stream. The constant interval between successive I pictures is the intra period of the pattern and the number of P pictures between two I is also constant and known as the group of pictures .

The bitstream is made of so-called access units (which contain one picture each). Each access unit is divided in NAL (Network Abstraction Layer) units of two types : slices (or Video Coding Layer units) which contain pixels related information, and non-VCL units which contain access unit structure related information, such as the slice parameters. The number, size and shape of the slices inside access units are defined at coding time and constant over all the bitstream. Slices are themselves divided in macro-blocks.

Decoding process

The bitstream is necessarily decoded from the worst to the best quality layers. Switching between resolution layers is only possible when decoding I pictures, and the P and B pictures can only be decoded with the decoded resolution and quantization layers decoded for their I reference picture (but they can be decoded with a quantization lower than their I reference) [START_REF] Schwarz | Overview of the Scalable Video Coding Extension of the H.264/AVC Standard[END_REF]. The decoding process for each layer and for each slice follows the following steps, which are identical for all slices : i) Initialization of the slice and decoding parameters.

ii) Slice parsing, analysis of the bitstream and entropy decoding. Entropy decoding consists in converting the binary information in decimal coefficients corresponding to each macro-block.

iii) Slice decoding : this step reconstructs the picture thanks to the decimal coefficients computed in the entropy decoding. iv) Optional final processing using a loop filter. This filter is applied to improve the final quality of the picture and is executed at the end of the total frame decoding process.

Feedback scheduling setup for video decoding

Control design needs sensors to observe the controlled process and actuators to implement its outputs. In the particular case of feedback control of computing systems, sensors are provided by software probes used to build on-line indicators carrying out the processing activity. Actuators are provided by function activation, parameter tuning, or processing suspend and resume under control of an Operating System (OS). As the bitstream decoding quality is the object of control, models of the decoder quality (i.e. the control related model) as a function of various execution parameters (desired quality levels) are estimated from experiments. These models will be further used to formalize the control objectives, e.g. using a QoS formulation. Besides data coming from the reported experiments, many ideas and assumptions are inspired by the work described in [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF].

Ideally the goal of the QoS controller is to maximize the quality of the displayed video stream under constraint of energy consumption. Hence, according to an available computing budget, the video must be decoded with the lower possible quantization step, higher resolution and maximal rate. The allowed computing budget itself depends on the available on-board energy storage and desired operating life. This high level controller works with long term objectives with a time scale slow compared with the time scale of frames processing. At the lower level, frames decoding has basic deadlines related to the video display rate, typically 40 ms for frames displayed at standard television rate. However the decoding computing load is subject to fluctuations due to the varying content-dependent computation duty of the successive frames. Therefore an on-line adaptation of the decoding parameters (quality layers) can be associated with the frequency scaling capabilities of the cluster to meet the requested video rate. These various control objectives and timing scales lead to define a hierarchy of two control loops to manage the decoding quality. At high level, a QoS controller manages the application performance according to the available resources and end-user's requirements. At a lower level, the frame controller works at the pictures stream time scale and tightly cooperates with the processing speed controller integrated in each cluster. This latter controller is a third control loop needed for energy-performance management. The control hierarchy is as depicted in Figure 2.

i) The QoS controller software runs in a master processor on top of the OS. It communicates with the clusters via an ANoC. The QoS controller manages the application performance according to the available resources and end-user's requirements. Ideally the goal of this controller is Inria to maximize the quality of the displayed video stream under constraint of energy consumption. Hence, according to an available computing budget, the video must be decoded with the lower possible quantization step, higher resolution and maximal rate. The allowed computing budget itself depends on the available on-board energy storage and desired operating life. This high level controller works with long term objectives with a time scale slow compared with the time scale of frame processing.

ii) The frame controller software runs in one of the nodes of the considered cluster as a high priority task. Decoding frames has basic deadlines related to video display, typically 40 ms for frames displayed at standard television rate. However the decoding computing load is subject to fluctuations due to the varying content-dependent computation duty of the successive frames. Therefore an on-line adaptation of the decoding parameters (quality layers) can be associated with the frequency scaling capabilities of the cluster to meet the requested video rate. The frame controller works at the picture stream time scale and tightly cooperates with the speed controller integrated in each cluster.

iii) The computing speed controller is integrated in the cluster's silicon, together with the voltage and frequency controllers. It manages the energy-performance trade-off in each cluster.

The design of the QoS control loop is only sketched in this paper, the two lower levels controllers are detailed from bottom to top in the following subsections.

Control of the energy-performance trade-off

The computing speed controller aims at minimizing the energy consumption while ensuring some good computational performance. This is possible by scaling the supply power taking into account some time constraints. In the present case, a closed-loop controller monitors the activity of the processor (its computational speed, shortly denoted speed in the sequel, e.g. in number of instructions per second) and adapts its voltage and frequency levels (afterwards denoted V level and f level respectively) with respect to a needed computational load. The suggested control strategy (see [START_REF] Durand | Fully Discrete Control Scheme of the Energy-Performance Tradeoff in Embedded Electronic Devices[END_REF] for further details) consists in dynamically calculating an energy-efficient speed set-point that the system will have to track in order to satisfy the control objective. This set-point is based on the number of instructions Ω i and the deadline ∆ i (both provided by the frame controller), to process task execution T i which decodes video frame i. Λ i denotes the laxity of T i , i.e the time to deadline of T i .

We consider here a voltage scalable device with two possible voltage values V high and V low . Let ω max and ω max respectively denote the maximal computational speeds when the system is running at V high and V low voltage. It follows that the high voltage level is necessary as soon as the average speed set-point of a task is higher than ω max in order to avoid missing a given deadline. An intuitive method consists in building the average speed set-point of each task (that is the ratio Ω i /∆ i) in such a way that the number of instructions to do has been achieved at the end of the task (as depicted in Figure 3(a)). However, this method needs an infinite number of voltage and/or frequency levels (which is not possible in practice) and, anyway, is not energy-efficient since a whole task execution would be computed with the penalizing high supply voltage, as highlighted in Figure 3(a) by t V high for task execution T 2 .

Nevertheless, a solution consists in splitting the task executions into two parts as represented in Figure 3(b). Firstly, the chip begins to run at high voltage (if required) with the maximal available frequency in order to achieve the maximal possible speed ω max , hence running faster than the average as for T 2 from time t 2 to k. Then, the execution finishes at low voltage at a speed lower than ω max which, consequently, reduces the energy consumption. We propose to use only one possible frequency F high when running at V high whereas several frequency levels are possible at V low (F low 1 and F low 2 in the present study case with F low 1 > F low 2). The degree of freedom on the frequency allows to approach as much as possible the deadline. A key point in the control strategy is that the switching time to go from V high to V low has to be suitably calculated to ensure a good computational performance. However, k is not a priori known and therefore a predictive control law is used to dynamically calculate the switching time. average computational speed setpoint

t V high voltage time Ω 2 ∆ 2 Ω 1 ∆ 1 Ω 3 ∆ 3 T 3 T 2 T 1 ω max ω max t 2 t 3 time t V high V low t 2 t 3 t (a) Intuitive average speed set-point.
energy-efficient computational speed setpoint

time voltage V high V low time t V high t 2 t 3 Ω 2 ∆ 2 Ω 1 ∆ 1 Ω 3 ∆ 3 T 3 T 2 T 1 ω max ω max

Inria

The presence of deadlines and input constraints to compute repetitive tasks naturally leads to a predictive control specification. Predictive control consists in finding a certain control profile over some time horizon to achieve a given control objective. The predictive issue can be formulated as a constrained optimization problem : for each image i to decode, find the computational speed set-point which minimizes the high voltage running time t V high while guaranteeing that the executed instruction number fits the number of instructions to do, that is min t V high s.t.

∆ i (t) ω(t) dt = Ω i (1)
where ωdt corresponds to the executed number of instructions for the current image. In this particular case, the horizon is contractive : this means that the time to achieve the objective decreases with the laxity, hence the horizon is updated for each image to decode. However, this optimal criteria is associated to high computational cost, which is not acceptable in embedded systems with limited resources. The strategy adopted here is called fast predictive control and consists in taking advantage of the structure of the dynamical system to fasten the finding of the control profile [START_REF] Alamir | Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes: A Parametrized Approach for Fast Systems[END_REF]. Indeed, the closed-loop solution yields an easier and faster algorithm since only two parameters need to be known, i) the computational load to be processed Ω i and ii) the remaining time to achieve it Λ i .

The speed required to meet the deadline (denoted the predicted speed υ) is dynamically calculated at each sampling instant k (where the sampling interval is much smaller than the decoding duration of an image)

Ω(t k) = Ω(t k-1) + T s ω(t k) υ(t k+1) = Ω i -Ω(t k) Λ i (t k) (2
)
where Ω is the sum of the computational speed ω over past sampling instants, T s is the sampling period and t k , t k+1 and t k-1 are the current, next and previous sampling times respectively. For sake of simplicity, Ω(•), ω(•) and υ(•) are not indexed by the task execution number i. Note that here the processing load needed Ω i for the task execution number i is assumed constant during T i decoding, nevertheless it might be updated at any time during the execution of T i by the frame controller for the case where decoding milestones can be identified and used on the fly. The energy-efficient speed set-point is then directly deduced from the value of the predicted speed and so are the voltage and frequency levels. Indeed, the system has to run at V high and F high when the required speed is higher than the maximal speed at low voltage, otherwise the speed at low voltage is fast enough to finish to decode the image on time. Finally, the control decisions are

V level (t k+1) = V high f level (t k+1) = F high if υ(t k+1) > ω max V level (t k+1) = V low f level (t k+1) = F low n otherwise
A frequency control strategy is needed at low voltage to determine n, but the principle remains the same. Also, a last control decision is possible "deactivating" the clock of the circuit. This is called the clockgating principle [START_REF] Kuzmicz | Static Power Consumption in Nano-CMOS Circuits : Physics and Modelling[END_REF]. In this case, the processor runs with the low voltage and a null frequency, which can be cost-effective when an image is decoded before its deadline. Furthermore, in order to be robust to manufacturing uncertainties, the maximal speeds ω max and ω max which are required in the control decision are estimated using a weighted average of the measured speed, details can be found in [START_REF] Durand | Fully Discrete Control Scheme of the Energy-Performance Tradeoff in Embedded Electronic Devices[END_REF].

The processing time t V high at the highest voltage V high is minimum since the decoding of an image always starts with the penalizing high voltage level (by construction of the predictive control law), ensuring that the low level will not be applied while the remaining computational load is large enough (higher than the maximum possible speed at V low). The result is therefore structurally optimal. Furthermore, even if the voltage/frequency levels discretely vary, the set-point to track is always higher (or equal) than required by construction.

The stability of the control scheme follows the Lyapunov approach stating that, if an energy function of the system continuously decreases near an equilibrium point, then this point is a stable equilibrium for the system. Here we consider the decrease of the amount of instructions to be processed for T i as x(t k) = Ω i -Ω(t k). A classical Lyapunov function candidate would be of the form V = x T x. V is continuously decreasing as the processor's speed can be only positive, therefore ensuring the decoding control system stability.

Frame control

The second control loop feeds the computing speed controller with estimations of the amount of computations to be performed (i.e. Ω i) within an associated deadline (i.e. ∆ i) for each image i to decode, as previously explained in subsection 3.1. This is developed in the sequel whereas a damping buffer is firstly introduced to store un-processed data in case of missed deadlines.

Damping buffer provisioning

Typically, deadlines in video decoding are associated with the video rate, e.g. 40 ms are allocated to fully decode and display one image. However, even if the display video rate must be respected as far as possible, there are no strong synchronous constraints between the video source capture, encoding, decoding and display : latencies equivalent to several frames are allowed, hence there is room for scheduling flexibility at decoding time. Recall that the displayed order is different than the decoding order due to dependencies between images of different types I, P and B, as explained in subsection 2.2. Therefore, the displayed flow is inevitably delayed w.r.t. the incoming bitstream. Following the ideas in [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF], an additional buffer is hence added to the frame decoding queue in such a way that decoding is performed several frames ahead of display. This added buffer is used to give space and accommodate for the varying computing loads between frames. Measurements of decoding execution times were made to evaluate the profile and amplitude of computing load variations along a movie. Execution times measured from a 1000-frame long movie have been sorted according to the frame type (I, P or B) in Figure 4, where the bitstream has a unique layer with 624 × 352 pixel resolution and quantization step Q p = 28. This video sequence contains a mix of quiet and action plans. It can be observed, especially for the reference I frames, that the decoding times are almost constants for quite long intervals, with abrupt changes between flat areas, and isolated high values. The observation of constant intervals enables to estimate the number of cycles with sufficient accuracy. The maximal value for these isolated peaks suggests that a three-frame deep control buffer would be able to damp most of the computing load variations.

Decoding milestones

Additionally, the on-line observation of the decoding progress may help to anticipate for computing overloads and deadline misses. As a result, some tags can be inserted in the decoder to point out remarkable milestones. These tags are inserted at the transition between the structural steps of the video decoder previously described in subsection 2.3. The distribution of decoding steps is very similar for each type of frame. Moreover, according to various experiments, the timing pattern associated to a particular slice position and to a particular type of frame seems to be stable enough to provide a usable on-the-fly estimation of the computing load needed by the frame being decoded and to anticipate for some control actions, such as filtering skips.

Deadline and computing load control

The main goal of the frame controller is to provide the underlying computing speed controller with estimates of the number of cycles Ωi+1 to be processed for the next frame within a requested deadline ∆ r i+1 . According to [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF] and to the measures plotted in Figure 4, an estimate of Ωi+1 can be often taken as the last Ω i reported by the computing speed controller, or by filtered values of the last executions, such that

Ωi+1 = α Ωi + (1 -α)Ω i (3)
where 0 ≤ α ≤ 1 is a weight. Furthermore, considering a fixed ideal schedule {..., τ i-1 , τ i , τ i+1 , ...}, e.g. with equidistant intervals of 40 ms, a first basic feedback loop is aimed to regulate the requested deadlines ∆ r i to their ideal value τ i . However, due to the rough prediction of the computing load Ωi , the actual (measured) deadline deviates from its requested value, which yields

∆ i = ∆ r i + δ i . Assuming that + - ∆ k+1 ∆ k τ k δ k δ k+1 = (1 -β)δ k Ωk+1 Controller
Frame Controller Computing speed the computing load is almost constant, the computing overshoot can then be driven to 0 if δ i+1 = (1 -β)δ i with 0 < β ≤ 1, leading to the elementary deadline controller

∆ i+1 = τ i+1 + (1 -β)δ i (4)
The resulting control loop is depicted in Figure 5. It may accommodate for short term variations of the computing load for each frame. From a stability point of view, system (4) has no dynamics and (for a constant load Ω) the successive values of δ results from a numerical suite which converges to 0 for 0 < β < 2 (in practice β ≤ 1 is chosen to avoid overshoots) : larger is β, faster is the decay of the deadline deviations δ, and larger is the noise. The capabilities of this controller can be exhausted in case of several successive peak loads able to overflow the three-frame ahead buffer. In that case, only the I frames will be fully decoded up-to the requested quality level, while the depending P and B frame decoding can be truncated up-to recovering enough buffer space. Thanks to the signals that are fed back by the decoder and by the computing speed controller, several control decisions can be considered, sorted by their expected increasing impact on the displayed quality : i) Truncation of the decoding process at a quality layer lower than the set-point can be done at any point for B and P frames.

ii) A comparison between a reference decoding timing pattern and actual tags inserted in the decoder may help to anticipate overloads and abort useless steps rather than awaiting a deadline miss. In particular, the final filtering action can be skipped.

iii) In case of accumulated overload peaks running beyond nominal control actions, skipping or aborting a frame decoding may be taken as an emergency action, allowing to reset the decoding stack. This action must be as far as possible avoided especially for I frames.

Control of the Quality of Service

The latter controller manages long terms and user's defined goals. Informally, the control objective consists in trading-off the decoded bitstream quality and the energy storage lifetime, with an average energy consumption level in mind. Quality parameters are expressed in terms of display requirements, e.g. high definition or standard mode, display rate and screen resolution. The end-user's may select different weights between these parameters, e.g. by imposing a high definition display whatever the cost, or asking for a mandatory lifetime before refill. Using a rough model between the quality layer and energy costs, this loop aims at setting the current requested quality level to be decoded. The online monitoring of the battery level and voltage decaying rate are fed back for on-line estimation and correction of this quality set-point. Thanks to the computing speed controller, the relations between the cluster's computational speed and the electrical power needed to feed the cluster can be approximated by monotonic functions. In other words, higher is the demanded computation burden higher is the energy consumption. It is expected that such monotonic cost functions lead to a simple control design, even if a formal statement for this control problem remains to be done.

Quality layers and computing costs

After decoding the first frames, the structures of the bitstream (number of quantization/resolution layers, IPB structure, picture rate and slice map) are known and can be used to actually set the decoding parameters. Some of the video parameters are constrained by the incoming bitstream and by the display mode :

i) The display rate constraints the average deadline for each picture (e.g. 40 ms for standard TV rate).

Inria ii) The quantization and resolution layers in the decoded bitstream must be encoded in the source stream.

iii) B and P frames cannot be decoded at a quality higher than the one of their reference I frame.

Switching on-line the display rate should be avoided as far as possible due to the visible effect on the display. Hence the usual choice for the variable decoding parameters, able to handle varying computing capabilities, is the requested quality layer to be decoded. A correct estimation of the quality set-point needs the knowledge of a model (cost function) to link up the quality layers and computing loads (and at least to understand their respective variations). Figure 6(a) plots the average number of cycles required to decode the five quantization layers of a particular bitstream. The quantization steps are here equidistant and set to Q p = 40, 34, 28, 22, and 16 (the quantization step can vary between 0 and 51). The processor frequency scaling ability is locked to work at its maximum frequency (2.535 GHz). From left to right, the plot shows the average cycle number for I, P and B frames. One could note it is assumed that measures taken from a fixed frequency CPU provide a good image of the computing load in terms of statements to be executed. On the other hand, Figure 6(b) shows the number of cycles required for a bitstream made of a mix of resolution and quantization layers. The different parameters used for these experiments were already given in subsection 2.3.

The results show that the choice of the quantization and/or resolution layers has a significant impact on the computational load, and that switching resolution has a rough influence while quantization may provide fine control. Therefore, decoding only the lower quality layers appears to be an effective actuator to reduce the decoding cost and the related energy consumption, and to manage the trade-off between the displayed quality and the energy consumption constraints. Other preliminary experiments, using an elementary controller to skip high quality quantization steps in case of overload, showed that switching between quantization layers has a very moderated impact on the viewer's perception, while efficiently saving execution cycles and avoiding deadline overshoots. Recall that the quality layers contained in the incoming bitstream must be decoded in sequence, with the low quality layers first. Observing the latter experimental results in Figure 6, it appears that increasing the allocated computing load monotonically increases the decoding quality. Once again, this nice property is expected to help the design of the quality controller.

Experimental results

Implementation of the control architecture

In this last section, we implement and test in practice our proposal for decoding a short video.

A prototype of a H.264 decoding controller has been developed under the Linux operating system. It runs on a standard Linux kernel tuned for enhancing its real-time capabilities, i.e. compiled with the tick-less feature, high resolution timers and preemptive kernel options. In particular, these options ensure low latencies during task switching and allow for very precise measurements of execution times (down to the hardware resolution).

The tests have been executed on a standard Dell E6400 laptop, using a DuoCore2 processor. The testbed uses the Symmetric Multi-Processing (SMP) capability of the kernel to allocate specified parts of the software to dedicated CPUs, e.g. the controllers run on one CPU and the decoder run on the other. To emulate the speed controller (which is assumed to be integrated in silicon in a future chip) the frequency scaling capabilities of the chipset have been used. At this end, the predictive controller of subsection 3.1 is implemented as a custom module of the cpufrequtils package, allowing to control the CPU frequency between 800 MHz and 2.535 GHz in several steps. On the other hand, the frame controller and decoder are encoded in Posix pthreads using the features of the Real-Time Posix library. The decoder itself is based This version is far to be optimized (compared with available versions such as the ffmpeg package) but it both implements all the features of the H.264/SVC and is open source, so that the source code can be easily instrumented to integrate the control features described in the previous sections. The counterpart w.r.t. optimized parallel versions is that only low resolution decoding can be achieve in real-time, anyway the set-up is able to demonstrate the efficiency of the approach.

Experimental results

The following decoding control experiments use a 1000-frame video encoded with a IBBBPBBBI structure. Due to the low performance of the JSVM decoder only low resolution (624 × 352 pixels) is used. Two quality layers were considered, with or without post-processing filter. As the video is decoded on a single CPU, the flow is encoded only using one slice. The CPU frequency is controlled in three steps, with F 1 = 2535 MHz, F 2 = 1600 MHz and F 3 = 800 MHz. For this particular video sequence and CPU, the average decoding time for one frame is around 50 ms at the highest quality (including filter). The decoder has been tested with various requested frame deadline values between 40 and 60 ms. Therefore, the decoding process is stressed for the shorter requested values and it is expected that the control strategy is able to keep a high decoding quality despite the lack of computing resources. Also, for the slower requested decoding rates it is expected that the control strategy allows to save CPU cycles and energy compared with an uncontrolled decoder. Inria

Frame deadline control

The first experimental results show the efficiency of the deadline controller while keeping the CPU frequency constant, using the extra three-frame buffer to damp the decoding overshoots with filtering gain α = 0.1 and damping gain β = 0.3. Figure 7 plots the evolution of the deadline overshoot δ for a requested frame deadline of 50 ms. In Figure 7(a), this is done without any control. The plot exhibits a continuously growing drift in the decoding overshoot, as deadline errors accumulate with time. Conversely, using the deadline controller of subsection 3.

Control over various requested deadlines

The following plots report experiments where the frame decoding deadlines are fixed with requested values ranging from 40 to 65 ms, by steps of 5 ms. The expected frame deadlines are represented in green, the observed deadlines are plotted in red and the CPU frequency is highlighted in blue.

i) In Figure 8, no feedback controller is active and, consequently, the CPU frequency is always at the maximal value. This is clearly neither energy nor computing efficient since the highest frequency as well as decoding quality are always applied even for large requested deadlines.

ii) In Figure 9, the speed controller introduced in subsection 3.1 is active and the deadlines are fixed.

For the shortest requested deadlines, the frequency is always maximal but, anyway, the deadlines cannot be reached due to the performance of the particular system used for these experiments (recall that the average decoding time for one frame is 50 ms). On the other hand, the decoding is finished on time for the larger ones and low frequency levels are used (which means the energy consumption can be reduced, as explained in the sequel) especially when the deadline constraint is weak.

iii) In Figure 10, the speed and frame controllers of section 3.2 are both active. In that case, the requested deadlines are always achieved thanks to the QoS control and damping buffer. Indeed, the final filter is activated only when possible (the filter is activated/deactivated when the plot is respectively 1/0 in Figure 10). As expected, this filter is most often used for weak decoding constraints.

Energy consumption

The energy specifically spent for decoding could not be directly measured with the laptop used for the experiments, as it is not possible to spot out the energy cost of the CPUs from the energy spent by the peripherals (e.g. the GPU). Nevertheless, using the process knowledge given in section 3.1, energy cost estimations can be carried out from the physical models. First, there are two voltage levels with only one frequency level possible when the system is running at the maximal one and two possible levels for the lower voltage. Secondly, the low voltage level is defined as the half of the higher one (for simplicity). As a result, the energy consumption of the previous scenarii can be estimated as follows :

-When running at 2535 MHz, the supply voltage is V.

-When running at 1600 MHz, the supply voltage is V/2.

-When running at 800 MHz, the supply voltage is V/2. Moreover, it is assumed that the energy used for decoding is proportional to f clk × V 2 dd , as explained in the introduction. Thus, the estimated energy consumption for a video sequence where the average frame decoding time (with the highest quality) is 50 ms can be summarized in Table 1 (normalized for each requested deadline with the consumption obtained without any control). These results call for several remarks : i) For deadlines shorter than the average, the two controllers should be active. In particular, the frame deadline controller is able to toggle the quality level and avoids using permanently the highest frequency level, thus saving energy.

ii) For requested deadlines larger than the average, it is unlikely that a deadline can be missed and the speed controller alone is most often enough to decode on time the incoming frames. In that case, the frame deadline controller uselessly anticipates future overshoots and induces useless costly CPU cycles at high speed. Finally, a penalty criterion (based on video expertise and borrowed from [START_REF] Wurst | QoS Control Strategies for High-Quality Video Processing[END_REF]) has been applied to assess for the decoding quality degradation due to stressed decoding conditions. The following penalties are applied and accumulated along the decoding process of the test sequence :

- The results are plot in Figure 11 only for the stressing deadlines (40, 45 and 50 ms), since longer deadlines are always achieved with no quality loss. They show that using simple and cheap feedback controllers allows to increase the decoding quality while highly decreasing the computing and energetic costs. Indeed, with the uncontrolled case, the decoding overshoots accumulate and finally induce quality level switches and even frame skips.

Conclusion

In this paper a survey of problems related with very small scale integrated chips, running high computations demanding process on mobile devices was first given. It appears that feedback control may provide solutions to fight against the silicon process variability, and to optimize a trade-off between the computation load and related energy cost in one hand and the application quality in the other hand.

To support this statement a control architecture was proposed to target the particular case of an embedded video decoder. Several controllers are nested to meet the end-user's requirements in terms of quality of service and energy saving. The whole system finally runs minimizing the energy consumption induced by computations while ensuring specified performances, which means that the video is decoded with a required resolution and rate while minimizing the CPU consumption. An experimental validation of the proposal was set-up on a system using a single processor with different power modes for decoding. The results clearly show that up to 25 % energy saving can be achieved while keeping a specified video Inria quality. As for other examples of integrated feedback control and computing systems (e.g. as in [START_REF] Lu | Feedback Control Real-Time Scheduling: Framework, Modeling and Algorithms[END_REF] and [START_REF] Hellerstein | Feedback Control of Computing Systems[END_REF]), it is shown again that feedback loops can easily enhance the performance and robustness of a computing system for very moderate programming efforts and execution overheads.

RESEARCH CENTRE GRENOBLE -RHÔNE-ALPES

Figure 1 :

 1 Figure 1: Bitstream with spatial, temporal and quality layers.

Figure 2 :

 2 Figure 2: Proposed control architecture of an embedded video decoder.

 Energy-efficient speed set-point.

Figure 3 :

 3 Figure 3: Different computational speed set-point buildings.

Inria

Figure 4 :

 4 Figure 4: Decoding times for I, P and B frames.

Figure 5 :

 5 Figure 5: Frame controller basics.

 Computation load for quantization layers.

 Computation load for combined resolution-quantization layers.

Figure 6 :

 6 Figure 6: Variation of the computation load w.r.t. quantization and/or resolution layers.

 2.3 allows to quickly absorb the deadline overshoots due to peaks in decoding time and to keep the real decoding schedule close to the theoretic one, as shown in Figure 7(b).

 (a) Without any control. (b) With deadline control.

Figure 7 :

 7 Figure 7: Deadline errors when keeping the CPU frequency constant.

Figure 8 :

 8 Figure 8: Control over various requested deadlines without any feedback controller.

Figure 9 :Figure 10 :

 910 Figure 9: Control over various requested deadlines with only speed control (the deadlines are constant).

10 -

 10 Skipping a frame : -10000 -Deadline achieved without filter : +5 -Deadline achieved with filter : +10 -Increasing quality level : -Decreasing quality level : -50

Figure 11 :

 11 Figure 11: Decoding quality.

 Inovallée 655 avenue de l'Europe Montbonnot 38334 Saint Ismier Cedex Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria.fr ISSN 0249-6399

Table 1 :

 1 Energy consumption estimation.

	Deadline	Normalized energy consumption speed control only speed and frame control
	40	1	0.76
	45	1	0.81
	50	1	0.86
	55	0.92	1.01
	60	0.78	0.91
	65	0.65	0.77
	4.2.4 Decoding quality degradation	

RR n°8122

http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm Inria

Acknowledgments

This research has been supported by ARAVIS, a Minalogic project gathering STMicroelectronics with academic partners, namely TIMA and CEA-LETI for micro-electronics, INRIA/LIG for operating system and INRIA/Gipsa-lab for control. The aim of the project is to overcome the barrier of sub-scale technologies (45nm and smaller).