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Abstract

Current work on assembling a set of local patterns such as rules and class
association rules into a global model for the prediction of a target usually
focuses on the identification of the minimal set of patterns that cover the
training data. In this paper we present a different point of view: the model
of a class has been built with the purpose to emphasise the typical features of
the examples of the class. Typical features are modelled by frequent itemsets
extracted from the examples and constitute a new representation space of the
examples of the class. Prediction of the target class of test examples occurs
by computation of the distance between the vector representing the example
in the space of the itemsets of each class and the vectors representing the
classes.

It is interesting to observe that in the distance computation the critical
contribution to the discrimination between classes is given not only by the
itemsets of the class model that match the example but also by itemsets that
do not match the example. These absent features constitute some pieces of
information on the examples that can be considered for the prediction and
should not be disregarded. Second, absent features are more abundant in the
wrong classes than in the correct ones and their number increases the distance
between the example vector and the negative class vectors. Furthermore,
since absent features are frequent features in their respective classes, they
make the prediction more robust against over-fitting and noise. The usage of
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features absent in the test example is a novel issue in classification: existing
learners usually tend to select the best local pattern that matches the example
- and do not consider the abundance of other patterns that do not match
it. We demonstrate the validity of our observations and the effectiveness of
LODE, our learner, by means of extensive empirical experiments in which we
compare the prediction accuracy of LODE with a consistent set of classifiers
of the state of the art. In this paper we also report the methodology that we
adopted in order to determine automatically the setting of the learner and
of its parameters.

Keywords: Data Mining, Supervised Learning, Concept Learning,
Associative Classifier

1. Introduction

In the last years novel approaches to classification emerged joining two
distinct research trends in data mining and machine learning: from one side
the rich area of itemsets and class association rules algorithms, which studied
in depth efficient algorithms on very large data-sets and on high dimensional
data being able to extract large volumes of patterns from data and to enforce
on them a rich set of evaluation constraints [1-8]. On the other side the even
richer field of machine learning discoveries, whose algorithms and theories
were able to combine in powerful classifiers an ensemble of already powerful
elementary learners built on a wide spectrum of inductive learning techniques
[9-14].

The framework From Local Patterns to Global Models (LEGO) approach
to learning showed how it is possible to join these two worlds trying to com-
bine the benefits of the respective fields: manage an increased volume of
predictive patterns and at the same time evaluate and assemble them into
powerful learners. The resulting model constitutes a general model for learn-
ing [15].

Current work [16] on assembling a set of local patterns such as rules
and class association rules into a global model for the prediction of a target
usually focuses on the identification of the minimal set of patterns that is able
to cover the training data. In this paper we present a new learner named
LODE (Learning On Distance between Ensembles) which takes a different
view point. We are convinced that a good model of a class should emphasise
the typical features of the examples of the class and that for effective results
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Figure 1: Difference between the induction of classification rules by covering and by pos-
sibly overlapping rules, like in LODE

in classification all of them should be used at the same time at prediction
time.

In this approach to induction of classification patterns and global model
construction we abandon the usual learning strategy based on covering. Cov-
ering algorithms often remove the training examples covered by the local
patterns already discovered. The removal of examples is motivated by the
aim of identifying a global model constituted by a minimal set of as much as
possible diverse patterns.

Consider the example shown in Figure 1 in which the examples of the
positive class are denoted by the symbol '+’. By a classical covering al-
gorithm, like Ripper [9] and the rule induction systems from propositional
learning [17], each new learnt classification rule covers the most numerous
set of examples that have not been covered yet by the already learnt rules.
Suppose the first classification rule discovered is ABC = +. After this, all
the positive examples matching ABC' are discarded from further consider-
ations. In Figure 1 these examples are included in the square labelled by
ABC. After the elimination of these examples, another rule like DEF = +
has no possibility to be extracted because without the discarded examples,
it does not cover a sufficiently large set of examples. The unfortunate conse-
quence of this covering strategy is that the algorithm misses some rules that
have a large support in terms of covered examples and represent a distinctive
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set of characteristics of the positive class that would give a more complete
characterization to it. As a conclusion, the examples removal by the covering
strategy introduces a distortion in the training set which prevents the induc-
tion process to learn a sufficient number of characteristics from the removed
examples. In practice, it diverts the learning towards the construction of a
class model composed of a comprehensive set of characteristics that describes
satisfactorily the examples of a class. Instead, by LODE, all the classification
rules that cover a sufficient number of examples are considered. LODE is
characterized by the following distinguishing issues:

1. the model of each class includes those classification patterns that are
frequent w.r.t. the training examples of the class. The frequency con-
straint is a guarantee that the pattern has a high coverage and repre-
sents recurrent features in the class. Though, we do not require that
any two local patterns included in the class model should cover dis-
tinct examples. We believe that we should create a global model that
emphasises the class characteristics and therefore could contain more
patterns that represent the same examples.

2. The selected patterns generate a probabilistic class model that con-
sists of a different representation space of the examples. The model
of each class is a vector whose components are the selected patterns
observed in the training examples of the class. Fach vector component
is represented with a magnitude equal to the probability with which
the corresponding pattern occurs in a random example of the class.

3. We used as classification patterns the frequent set of items (called item-

sets). Itemsets are introduced in Subsection 4.1 [18]. In LODE itemsets
are selected by the innovative criterion of A [19]. A is the departure
of the observed frequency of a pattern w.r.t. an estimated frequency
of that pattern computed on the basis of the observed frequency of its
subsets in the condition of maximum entropy. As a result, a high A
occurs in itemsets whose occurrence could not be determined from the
observation of their subsets. This fact is an indication that the itemset
is not redundant with respect to its subsets in terms of information
quantity.
The adoption of A has the aim to control the volume of patterns in the
class model. In fact, an increase in the volume of patterns could occur,
due to the combinatorial explosion of the items and the combination
of unrelated, independent elements into the itemsets.
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In a related paper [20] we have validated the use of A for itemsets
selection in classification. As in LODE, in [20] the class models are
based on ensemble of itemsets as well. We have compared A with
different alternative measures such as accuracy, KL divergence [21],
strong jumping emerging patterns [7]. Experiments showed that A
allows to identify the itemsets that make effective the classifiers.

4. Prediction of a test instance occurs by distance computation between

the vectors representing the class models and the projection of the test
instance into each class space. In this projection, the role played by the
typical characteristics of class examples is crucial: those characteristics
that are absent in a test instance but are present in the class model
will make the difference between the classes. The predicted class will
be the one in which the typical characteristics of the class are absent
in the instance as little as possible.
Thus, one of the fundamental differences between our learner and ex-
isting prediction techniques based on rules is that our learner uses for
the prediction all the patterns of the class model at the same time -
also the patterns that are absent in the test example. Instead, other
pattern-based classifiers, like Class Based Association Rules (CBA),
RIPPER, decision lists or decision trees, choose a single rule for the
prediction; whereas instance-based classifiers, like k-nn, rely too much
on the single examples, that come from local portions of the data-set
and could be affected by noise or result in over-fitting.

In the new classifier that we present in this paper, LODE, prediction of
a test instance occurs by distance computation between vectors representing
ensembles of local patterns. Our learner is at some extent, similar to ensemble
learners, since both combine by an operation of weighed aggregation the
contributions of a large number of elementary predictions. Though, ensemble
learners like RandomForest or AdaBoost [22] still base the single predictions
on patterns which have been recognized present and not absent from the test
instance.

We do not compare in this paper LODE with ensemble learners but only
with elementary classification techniques since our purpose here is to show
that our learning technique in itself is already ready to be employed as a ba-
sic learning technique. The local patterns employed in LODE, a combination
both of present and absent patterns from test instances, could still be fur-
ther combined into a more sophisticated global model, having performed an
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evaluation and aggregation of local patterns typical of boosting or bagging’s
combination of elementary classifiers. This is a matter for future work.

The contributions of the paper are the following. We describe and for-
malize a new classifier in the context of the LEGO framework. Differently
from many approaches based on local patterns, in LODE the generation of
the class model by local patterns does not occur by a covering strategy but by
frequent pattern search. Frequent patterns produce class descriptive models.
The class models are vectors composed of the itemsets occurring in the train-
ing class examples and are weighed by their probability in the class. By the
experimental results of Section 7, we make evident that a descriptive model
of the classes, after a suitable simplification and evaluation by a wrapper
approach, can be used effectively with a predictive purpose.

The descriptive model is turned into a predictive model by an optimiza-
tion, randomized algorithm (Simulated Annealing) whose working points rep-
resent the possible cuts in the ranking of the class itemsets. Ranking has been
performed by A, proposed in our previous works [19, 20]. A is an uncom-
mon criterion for the determination of the importance of the itemsets and is
related to a non redundancy test between the itemsets and their subsets.

Prediction by local patterns occurs by an ensemble in which all the pat-
terns of the class model are used at the same time. Furthermore, prediction
makes use not only of the patterns present in the example but also of the ab-
sent patterns. We show that the adoption of a multitude of patterns selected
from the original class description models makes the prediction more robust
against noise and the risk of over-fitting. In this paper we have performed
extensive experiments on many data-sets and have conducted a comparison
with a consistent set of classifiers of the state of the art. We show that
LODE is specially suitable to the prediction in noisy environments since its
characteristics and its probabilistic nature make it robust against noise. As
a conclusion we are able to show its excellent performances.

The last contribution is to show the methodology for the tuning of the
parameters in LODE. Tuning exploits the memory resources of the system
and occurs without the intervention of the user. The contributions of this
paper with respect to previous work [20] consist in the formalization of the
overall LODE model, the wrapper approach based on Simulated Annealing,
a more extensive set of experiments that consider both the real and the noisy
data and the tuning strategy of the parameters.

This paper is organized as follows. Section 2 provides an overview of
the related work while Section 3 puts LODE in the context of the research
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works that combine local patterns into a global model for learning. Section 4
presents the details of the inductive learning technique. Section 5 discusses
one of the positive issues of this type of classifier: it has at the same time
descriptive and predictive capabilities. Section 6 presents the methodology
we adopted in order to automatically set the learner parameters. Section 7
presents the experimental results. Finally Section 8 draws the conclusions.

2. Related work

Associative classification is a popular classification technique which com-
bines association mining with classification. CBA [1] is one of the earliest as-
sociative classifier which uses association mining to extract association rules
from the training data-set. It then ranks the rules based on their confidence.
Later it builds a global model from these rules by using a wrapper approach.
HPWR [23] is an associative classifier which uses statistical residual analy-
sis [24] for the selection of the best associative patterns in the data-set and
then uses the weight of evidence [25] in making predictions. IGLUE [26] uses
the concept lattice in order to re-describe each instance of the dataset. In
the new description of instances the attributes are represented by numerical
values according to the number of their occurrences in the concept lattice. It
later uses K-nn for prediction. Classifiers based on Emerging Patterns [6-8]
choose the associative patterns for each class that are able to discriminate
between classes on the basis of their support ratio in different classes. The
patterns with larger support ratio are given priority. L3 [27] is another as-
sociative classifier which uses a compression method for maintaining more
associative rules compared to other associative classifiers. It divides these
rule sets into two parts where the first part contains all the specific rules and
the second part contains spare rules. During prediction if a matching rule is
not found in the first part then the spare rules are used.

Instance based classifiers like K-nn [10, 28, 29] use distance calculation
similar to ours. The main difference between our approach and K-nn is
that K-nn calculates the distance between each test instance and a (possi-
bly large) set of training instances for making prediction. In our approach
we calculate the distance between a test instance and a whole global model
for each class. Decision tree classifiers like J48 [30] use decision trees where
the internal nodes represent tests on attributes and the leaf nodes represent
classes. The best matching single path from root to the leaf node is chosen
for making any prediction. Rule based classifiers are the closest cousins of
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associative classifiers. Typical rule based classifiers like Ripper [30] apply
the i f — then paradigm for building rules and uses the best rule for any pre-
diction. Probabilistic classifiers like Naive Bayes [31] use prior probabilities
for calculating all the class conditional probabilities of each attribute. For
making a prediction they calculate the posterior probability of the attributes
in a test instance. The class with higher posterior probability is chosen as the
predicted class. SVM [32] uses the concept of maximum margin hyperplane
to find a decision boundary which maximizes the distance between the ex-
amples of distinct classes. The decision boundary is the global model which
has been built by giving a special relevancy to some local observations in the
training set (closest observations coming from different classes). In this sense
it is sensitive to the presence of noise in those local portions of the dataset.

Almost all the above mentioned classifiers use local information for mak-
ing a prediction, in the sense that they use only those patterns or attributes
which are present in both of the test instance and the model constructed
from training instances. Differently, in LODE we use the global information
of a prototypical model of the classes for making any prediction, in the sense
that we use all the information contained in each class model as we calculate
the distance between each class model and the test instance. According to
our knowledge this is a new approach.

Our learner is at some extent, similar to ensemble learners because it
combines by an operation of weighted aggregation the contributions of a
set of elementary predictions. Though, ensemble learners that make use of
bagging, like RandomForest, or boosting, like AdaBoost [22] still base the
single predictions on patterns which have been recognized present and not
absent from the test instance. Moreover, the basic mechanism by which
they learn is different to ours: they generate randomly the basic learners and
during the learning adjust their weights. Instead, in LODE we generate first a
descriptive model of the class (that acts as a sort of prototype) and learn how
to simplify the model by elimination of some of the features. [33] shares the
same idea that an ensemble must be composed of millions of patterns but
presents important differences w.r.t. our approach: it randomly generates
patterns which have a uniform (also low) coverage in terms of the number of
examples they match. Patterns are formulated by checking that they do not
cover negative examples and are weighted in a uniform way.
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Figure 2: Work-flow of LODE according to the LEGO approach

3. From Local Patterns To Global Models

LODE is an instantiation of the LEGO approach to classification [15].
LEGO requires an initial extraction of local patterns from the training data,
possibly selected by means of some constraints. Resulting patterns could
still be redundant or loosely correlated to the target. Thus local patterns are
selected by means of some measure of subsets evaluation. Resulting patterns
can be thought as the features on which the classification is based upon.
Final patterns are in turn aggregated into an ensemble that constitutes the
final global model which is used for prediction of test data.

In Figure 2 we present LODE work-flow according to this approach. In
LODE the terms (local) patterns and (frequent) itemsets are meant as inter-
changeable. Furthermore, each itemset is a feature in the new representation
space of the class examples and each of the features corresponds to a vector
component in the class model.

1. From the training examples of source data, frequent itemsets are ex-
tracted as the local patterns and separately from each class. Any al-
gorithm for frequent itemsets extraction would be valid. The step of
frequent itemsets mining can be considered as a black-box from the
viewpoint of the final LODE classifier whose need is to collect the largest
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possible set of frequent itemsets that main memory allows®. Resulting
frequent itemsets generate a lattice. The itemsets with the same cardi-
nality are at the nodes of the same level in the lattice and have edges
to their subsets and their supersets at the closer lattice levels nodes.

2. Then the itemsets in the lattice of each class C; are ranked into ranking
R; according to some evaluation measure. The purpose of this step is to
raise at the top of the ranking the patterns to be included in the model
of class C;. In the case of LODE, as we will see in Section 3.1, the eval-
uation measure is the normalized A. Normalized A allows to compare
itemsets of different cardinality and, as A, allows the identification of
which itemsets are not redundant w.r.t. their subsets.

3. The correct top portion of the ranking must be determined so that
the ensemble can be simplified, the classifier can be made more robust
and efficient and the risk of over-fitting is reduced. As a result of this
simplification, each itemset that is in the top portion of the ranking is
placed in the ensemble.

4. The ensemble model of the class i is a vector (M;). Any vector compo-
nent (p;;) represents an itemset in the ranking R; with a weight equal
to its probability (p;;) to occur in an example of the class i.

5. The global model is composed of all the class vectors.

The prediction of a test instance is made by projection of the instance
in the feature space of each class. The proximity of the projected vector
to any class vector is then evaluated for the different classes: the class
which is closest to the test instance is predicted.

3.1. A as the Measure to Select the Relevant Itemsets for the Characteriza-
tion of the Classes

We use the criterion of A [19] for the selection of local patterns that will
be included in the global model. A is the departure of the observed frequency
of a pattern w.r.t. an estimated frequency of that pattern:

A= Pobserved - Pestimated (1)

Poyserved and Pogimateq are the relative frequencies of a pattern in each
class.

n the context of our implementation we adopted LCM [34], the winner of FIMI-2004,
a competition on Frequent Itemset Mining algorithms on very dense datasets.

10
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The referential estimation is computed in the condition of maximum en-
tropy. It represents the frequency that the itemset would have in the case
it was maximally difficult to predict its presence when the presence of its
subsets was known. In other terms, it is the condition in which the presence
of the itemset gives the maximum information when we know the presence
of its subsets.

Notice that the estimated probability is a generalized version of the con-
dition of independence of the itemset with respect to its subsets: for a pair
of items it corresponds to the product of their individual probabilities. For
a number of itemsets higher than two there is not a closed formula: the so-
lution is found by an iterative, numerical procedure that finds the zero of
the derivative of the itemset entropy function [35]. A is a departure from
a generalized condition of independence between n items. Thus, it is able
to determine a existing dependency between all the items in the n-itemset
and to distinguish when a dependency, though present in the itemset, is
present because it has been “inherited” by dependencies already existing in
the subsets. Summarising, it gives us an indication necessary to distinguish
the intrinsic utility of the itemset w.r.t its subsets.

Normalised A. In this paper we adopted a normalized version of A as follows:

A o Pobserved - Pestimated (2)
Pobserved Pobserved

This normalisation is necessary in order to compare itemsets with different
cardinality. In fact, it is well-known that itemsets with a higher cardinality
tend to have a lower value of probability. As a consequence, the expected
values of A for higher cardinality itemsets are lower.

Itemsets with an absolute value of A close to zero are considered redun-
dant w.r.t. their subsets. If two independent subsets are merged to form a
new itemset, the contribution of the new itemset to the model would be low
because the new itemset does not add new information w.r.t. the subsets.
In case of independent subsets, the probability of the supersets corresponds
to the estimated probability, obtained in the condition of maximum entropy.
Therefore, a A close to zero identifies an itemset that has been formed merely
by the combinatorial process of union of items in the itemset formation but
do not constitute any specific information, per se. This is an indication that
the itemset can be eliminated. Conversely, a high A occurs in an itemset
if its subsets are dependent. In that case, the superset would be interest-

11
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ing because identifies related pieces of information that combined appear as
non casual. Itemsets that result from the selection based on a high value of
normalized A represent the features of interest.

The resulting class model is probabilistic and consists in a characteriza-
tion of the class based on frequent itemsets composed by non independent
subsets. This is motivated by the need of eliminating irrelevant itemsets from
the multitude of frequent itemsets. Indeed, some frequent itemsets, though
might occur in the class with a high probability, could be constituted by
independent elements; in this case they should not be kept since they do not
convey significant additional information for the class with respect to their
subsets.

3.2. Selection of the abstraction level

In LODE, ranking is used also to determine unknown characteristics of
the local patterns. The main unknown characteristics of the patterns is the
itemset cardinality.

Any lattice level can be considered as an abstraction level at which the
class model can be constructed. It is the purpose of the inductive algorithm
to learn the correct abstraction level at which the itemsets must be selected
in the global model. In fact, itemsets coming from different abstraction levels
should not be kept in the model: there would be a duplication of information
in the two itemsets when a relationship of specialization (or set containment)
exists between them.

In LODE we used ranking by normalized A also to determine the abstrac-
tion level of the itemsets in the lattice. Ranking the itemsets makes emerge
the patterns that are more relevant for the class model. We determined from
the top portion of the itemset ranking which are the most recurrent values of
the itemset cardinality and produced a rank of the cardinality values denoted
by Rjeveis- The best value of the cardinality j will be selected from Rjepers
by a wrapper approach. The wrapper is based on the accuracy obtained by
the classifier LODE with the class models built on the portion of the itemset
rankings with cardinality j. In particular, the portion R;; of the ranking R;
is composed of the itemsets extracted from class ¢ with cardinality j. The
method is an optimization algorithm based on Simulated Annealing that is
responsible also for the ranking reduction (feature selection) and is described
in Section 6.5.

12
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4. The Distance-Based Learner on Ensembles of Itemsets

In this Section we describe how our distance-based learner works.

4.1. Preliminary definitions

Before entering into the details of the prediction, let us introduce some
preliminary definitions. Each test and training example is described by some
attributes whose values characterize the instance itself. The values of each
attribute belong to a certain domain that could be continuous or discrete.
Continuous attribute values are not suitable to be employed in classification
by means of class association rules, since they do not often occur frequently
in the data. The search for recurrent and frequent itemsets usually works on
discrete (categorical or numerical) values in the class examples. Thus contin-
uous values are usually discretized in a preprocessing step, by a supervised
algorithm like [36].

e Any example in the data-set is represented by a set of attribute-value
pairs. We call item an attribute-value pair. For each item a binary
variable is associated. For each example of the data-set the binary
variable associated to an item has a true value if the example contains
that attribute with that value, false otherwise. In this way, the data-set
conceptually can be represented as a binary matrix with a row for any
example and a column for any item. In each cell of the matrix there is
a true or a false value according to the value of the item variable for
that example.

e Similarly, from any example we can generate itemsets, as those sets of
item variables assuming true values for the example.

e Since we are interested only in recurrent characteristics observed in the
examples of a class, we recall only frequent itemsets that occur with a
certain, minimum frequency in the examples of the class.

e Let be C ={C1,Cs,..,Cr} the set of classes.

e M, denotes the model of the class Cy, with k = 1..L. Mj, is represented
as a vector of ng components. M), constitutes a new feature space of
representation of examples. Each component of the feature space of
class Cy is one of the frequent itemsets extracted from the training
examples of class CY.

13
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e py; denotes the probability with which i-th itemset (or i-th component)
of the feature space of the class Cj occurs in a random example of class
Ck.

i Mk = <pk17pk27 7pknk>

4.2. Projection of a test instance in the class space

Each test instance is described by some attributes whose values char-
acterize the instance itself. Similarly, as we represented training instances,
by means of itemsets variables with true or false values, we represent test
instances, adopting the same representation.

e In order to predict the class of a test instance t it must be represented
in the feature space of each class Cj. This is a projection operation.

e The projection works as follows. We check the presence of each com-
ponent (an itemset) of the class model My in the instance ¢. Let us
denote this generic component as the i-th component. If it is present
in ¢ (that is, if every item in the itemset 7 is present in t), we set the
value of the i-th component of ¢ vector to 1; 0 otherwise. In fact, not
all the itemsets observed frequently in the objects of a certain class will
be present in every test instance, even if the instance comes from that
class.

e In the projection we discard those components of ¢ that are not present
in class C}. In fact, not all the itemsets that are present in the instance
t could be present in a certain class, even if that instance comes from
that class.

As a conclusion, the vector of instance ¢ projected into the feature space
My, of class CY is denoted by 7L M, whose i-th component is:

Ind(i,t) (3)

where the itemset 7 is the i-th component of the feature space My, and Ind(i,t)
is the indicator function whose value is 1 if itemset ¢ belongs to test instance
t, 0 otherwise.

Vectors are later used for class prediction in a distance computation.
Since, class vectors could have a different number of components (features in
the feature space) according to the number of frequent itemsets that could
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be extracted from the examples of that class, we do not want to favour
in the distance computation those classes whose feature spaces have a low
number of features since in those spaces data is less sparse and therefore
distances result reduced. To solve the problem we normalized the vectors
such that their length is 1 and as a consequence distances are not influenced
by the number of features in the space. In the following we will use the
normalized version of the vectors, indicated by the u operator. The generic
i-th component of the normalised vectors is:

N Ind(i,t)
u<tl) a \/ZjeMk Ind(j, t) <4>
w(My;) = ——25 (5)

v/ ZjeMk pij
. . —- —
where t; and My, represent respectively the i-th component of ¢" and M.

4.8. Distance computation between the test vector and the class vectors

The proximity between the two vectors ]\7;: and ¥ can be computed in
many ways, either as a measure of distance (like the Euclidean distance), or
as a measure of similarity (like the cosine similarity), Jaccard or extended
Jaccard, etc. Here, we report results obtained by application of the Euclidean
distance and the cosine similarity (the results do not differ significantly). No-
tice, however, that they have an opposite behavior: the former increases with
the dissimilarity of the instance w.r.t. the class, while the latter decreases.

Euclidean distance(u(Mﬁ,tﬁ) = > (u(My) — u(t;))? (6)

cosine similarity(u(My), m) = u(My) = u(TS (7)

Justification of the proximity formulas. It is clear from the formulas 6 and
7 that when a feature (itemset) is present in the class model M; but it is
absent in the test instance ¢, its contribution does not increase the value of
cosine similarity and increases the Euclidean distance. On the other side,
when the total number of features in the class is high, the contribution to
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each of them is lower (because of the normalisation factor). However, in this
normalisation factor even absent features have their weight and contribute
to decrease the weight of all the other features (also the present ones).

4.4. Formalization of the problem with an objective function

LODE framework can be formalized as a problem of learning the compo-
sition of the class models in terms of the frequent itemses extracted from the
training examples. The learning makes use of an objective function 8 that
guides the tuning of the models and can be formalized as follows.

Let C = {C}, Cs, .., Cr} be the set of classes and Tr = UX | Tr; the training
set where Tr; is the subset of the examples of class C;. The goal of the
learning task is to find the set of class models {M;, My, .., My} in which each
M; is composed of frequent itemsets occurring in the examples of Tr;. Each
itemset j describes a set of characteristics occurring in the examples of Tr;
with frequency p;;. Each M, maximizes an objective function:

Z Ind{proxzimity(u(M;),u(t L M;)) > prozimity(u(M;),u(t L M;))}, with j #i
teTr;

(8)
where the proximity function is equation (6) or equation (7), t is an example
of class C; in the training set Tr;. The unary indicator function Ind{-} is 1
if its parameter is true, 0 otherwise. The parameter:

proximity(u(M;), u(t L M,)) > prozvimity(u(M;), u(t L M;)
is the condition for the true class prediction. The proximity is computed
between two vectors: the unit vector representing the class model and the
unit vector representing a single training instance projected in the class space.
The objective function increases for the class model M; when the proximity
between the class model vector and the training instance vector is higher
then for the other class models M;. In other terms, the objective function
represents the number of correct predictions for class C.

The tuning step of LODE for the determination of the composition of
M; selects the itemsets from a ranking R;. The itemsets in R; have been
ranked by an evaluation measure (that in our case is the normalised A). Let
denote by R; the set of itemsets in R; of cardinality [. The selection of the
itemsets in M; is made by determination of the itemset cardinality value [
(abstraction level) and of a cut of the ranking Ry, such that the top portion
of the ranking is retained in M; and the portion below the cut is discarded.
The cut has been formalised by the determination of a percentage r; of the
itemsets to be retained in M;.

16



Author-produced version of the article published in Pattern Recognition, 2012, 45(4), 1409-1425.
The original publication is available at http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.patcog.2011.10.015

4.5. LODE on a toy example

In Figure 3 we show a toy sample from the Play Tennis data-set, a well-
known example of a prediction problem of the suitable weather conditions for
playing tennis. From the examples of the two classes (Yes and No) separately,
LODE extracts the frequent itemsets. The two diamonds represent the item-
sets search space that has the form of a lattice. LODE ranks the itemsets
according to the value of the normalized A (NDelta). Then, the itemsets
cardinality equal to a value of three is selected (see the method described
in Subsection 3.2). For each itemset, the value of the relative frequency in
the class is reported. In the picture, due to lack of space, only the first six
itemsets are shown in the ranking, out of the total of eleven extracted item-
sets. These ensembles constitute a descriptive representation of the classes
in which the order of the features is informative of its importance in the
description.

In Figure 4 we show instead the test phase of LODE. On the left, the
vector model of class Yes is composed by the eleven itemsets that were in
the corresponding ensemble. Each itemset is represented in the vector by its
relative frequency in class Yes. Analogously for the other class whose vector
is shown on the right. Below, we show both the vector models with numerical
values, after normalization.

In the center of the picture a test example is taken. At the bottom, the
picture reports the vectors representing the test example under the viewpoint
of the classes. They have been obtained by means of projection of the origi-
nal test vector in the feature space of each class and normalized. Finally, the
distance between the unit test projected vector and the class vector is com-
puted. In this example, class No is predicted. In fact, class Yes has only one
present feature (which in addition occurs in the class with a low frequency)
while class No has four features (and the first one is very frequent). In this
example, both the number and the frequency of the present features make
the difference in the computation of the two distances which depend also on
the number of absent features in the test vector projected in the class space.

5. Descriptive and predictive capabilities of LODE

The distinctive issue in LODE is the adoption of a descriptive model for
a final predictive goal. The question that we want to answer with this work
is: does a descriptive model support a predictive task? We will ask with the
empirical evidence of the extensive experiments performed at Section 7.
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Play Tennis dataset

OutLook | Tempe- | Humidity | Wind Play
(0) rature (H) (W) Tennis

(T) (P)

Rain Mild Normal Weak Yes
Sunny Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal | Strong No
Sunny Hot High Strong No
Rain Mild Normal | Strong No

Frequent itemsets (minsup=33%)

v v

Triplets in class P=Yes Triplets in class P=No
ranked by Normalized Delta ranked by Normalized Delta
A . .
T e oo EYGS;fg-gg O=Rain, H=Normal, W=Strong NDelta=... pno1=0.66
O_—Rair; H_—Higl',l W_—Weak NDeIta:m pYQSSZOISS O=Rain, T=Cool, W=Strong  NDelta=... pno2=0.33
O:Rain‘ H:High, W:Mild NDeIta—_m pYes4_—0 '33 T=Cool, H=Normal, W=Strong NDelta=... pno3=0.33
T—_H " H—Ijl g W—\?V K NDelt — YESSZOISS O=Rain, T=Cool, H=Normal NDelta=... pno4=0.33
=riol, H=High, W=ivea elas... . Preso=". O=Sunny, T=Hot, W=Strong NDelta=... pno5=0.33
O=Sunny, T=H0t, H=H|gh NDelta=... pYe56=o.33 O=Sunny, T=H0t, H=H|gh NDelta=... pN06=0-33

[}
:
Figure 3: Example on Play tennis data-set by LODE

The benefit is that it is possible to obtain both a descriptive model of
the classes and a predictive model, at the same time. Furthermore, the
test instance vector projected onto the class models constitutes a descriptive
representation of the test instance itself. This model is interpretable: it
is composed by an ensemble of itemsets where each itemset is in practice
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Vector Model Myes for class P=Yes

< PYes1, Pres2, ... Pres11>

v

Unit vector U[Mves] for class P=Yes

< PYes1/lIMyesll, ..., pres11/IMyesl| >

Vector Model Mno for class P=No

<DNoT, PNo2, ... PNo11>

v

Unit vector U[Mno] for class P=No

<pNo1/lIMINol, ..., pNoT1/IIMNoll >

<0.53, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26> < 0-53, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26>

A

test example ti:

A

OutLook | Tempe- | Humidity | Wind | Play -
d(Ults L Mves], U[Mves])= ©) | rature | (H) (W) | Tennis g‘;’ ,P; A Mnol, UlMncl)
1.199 (M (P) ’

Rain Mild Normal | Strong No

A

test example t1 projected in
class Yes feature space
(unit vector): U[t1 L Myes]

<0,0,0,0,0,0,0,0,1,0,0>

A

test example t1 projected in
class No feature space
(unit vector): U[t1 L Mno]

<05,0,0,0,0,0,0,0,05,0.5,0.5>

Figure 4: Test example on Play tennis data-set by LODE

a sentence composed by a conjunction of predicates that are true for the
instance and are frequent in the class. Furthermore, each predicate sentence
is equipped with a weight equal to the probability of its occurrence in the
class examples. This weight is then reduced by the total number of sentences

(if many sentences are applicable each of them weighs less).

The number of class features that apply to the test instance tells us how
much that instance is similar to the class. Finally, the evaluation measure
of the proximity between the test vector and the class vector quantifies the

similarity between the test instance and the class.

As regards the descriptive capability, we believe that using A - this novel
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concept, unfortunately rarely adopted in data mining - it is possible to dis-
tinguish which of the itemsets are really relevant to determine a complete,
but non redundant, set of characteristics describing a class of examples.

Certainly related to this concept are the concepts of miki, maximally
informative k-itemsets [37] and pattern teams [38]. Both make use of the
concept of maximum entropy but they do not make use of the departure
with respect to it. Indeed, their aim is orthogonal to ours. Miki’s aim is
to identify the minimal set of items that is able to distinguish between the
examples in the data and search for the set of items that are distributed in
the most uniform way in the data-set. Similarly pattern teams’ aim is to
select from a set of local patterns the minimal set that is non redundant and
that allows a maximal covering in terms of the number of the examples they
represent. Instead, our aim is descriptive: in the class model we want to
identify the most complete set of patterns that catch all the class features
observed in the training set. This ensemble of patterns collectively provides
a probabilistic description of the class. It is composed of itemsets that have
a good coverage each (because each of them is frequent) and such that each
of them is not redundant.

Related to our goal is the field of subgroup discovery [39, 40]. In subgroup
discovery, the set of patterns selected for the representation of a subgroup of
the population does not need to provide a complete description of the target
but needs to represent a set of interesting characteristics. The difference of
our approach w.r.t. subgroup discovery is that our model aims to provide a
complete description of the class while subgroup discovery accepts to describe
only a portion of the target but it achieves a statistically sound description of
a subgroup of examples. It would be possible to adopt a subgroup discovery
model and adapt it to a predictive goal by means of the distance-based ap-
proach on positive and negative descriptions as described in this paper. This
will be the theme of a future research work. Currently, the authors of [40]
make the reverse: they adapt a rule induction algorithm with a predictive
goal to the subgroup discovery task.

On itemset redundancy. Itemsets redundancy is tested in our model by A
with respect to the itemsets subsets and not with respect to their peer-
itemsets. This operation by A is simpler than other standard statistical
methods like the test of independence by x? or on correlation by Pearson
coefficient. Both these tests work on pairs of patterns. Instead, A does not
involve the peer-itemsets but their subsets (whose number is much lower than
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Figure 5: Percentages of redundant itemsets by Chi-square at different cardinality levels.

the number of peer-itemsets). Furthermore, the results of the experiment we
are describing in the following do not justify the search of redundancies be-
tween the peer-itemsets. We checked the number of dependent peer-itemsets
by x? test. The test is done at different cardinality levels of the itemsets. In
Figure 5 we report the percentages of redundant itemsets at the cardinality
level 2 and 3 detected by x? in a few UCI data-sets. We observe that the
percentage of redundant itemsets reduces dramatically as soon as the item-
sets cardinality increases. This is due to the following fact: as a consequence
of the construction of itemsets, the space gets more sparse and the number
of redundancies between itemsets results reduced.

In agreement to these observations, many algorithms of rule learning try
to reduce redundancies between the rules. Very often they work on redun-
dancies between the original features (in our case, the items). One example
is [41] which learns class association rules by an Apriori-style algorithm [18].
During rule generation Apriori-C checks that for each rule there is not al-
ready one of its generalisations that has a better coverage. This test aims to
reduce the number of rules and is based (as A) on the comparison between an
itemset and its subsets. Rules are ordered according to their quality measure
but, in contrast to LODE, one single rule is applied to each test example.

6. Methodology of Learner Setting

In this Section we present the methodology we adopted to generate the
local patterns, and later tune the model: select a subset of the local patterns
for the creation of a global model.
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6.1. Motivations for the ensemble reduction

In Figure 6 we present a study on the effect of the dimension of the ranking
of local patterns R on the misclassification rate. As we explained, we ranked
the local patterns by the evaluation measure (normalized A). We reduced
the dimension of the class models by elimination of the bottom part of the
rankings. Figure 6 shows an initial gradual improvement of the classification
accuracy which is due to a simplification of the models that leads to a better
generalization capability and a reduction of over-fitting. After the optimum
point, the model worsens because too many itemsets have been eliminated
from the model and the error rate starts to increase.

Misclassification rate (%)
Misclassification rate (%)
oo

0 . . . . . . . . . .
100 95 90 85 80 75 70 65 60 0 0.05 0.1 0.15

Percentage of features selected Minimum support threshold

Figure 6: Error rate on Wisconsin-Breast- Figure 7: Misclassification on Wisconsin-
cancer with class models built on different Breast-cancer by class models on frequent
number of itemsets itemsets at different minimum support

6.2. Effect of the minimum support threshold on classification

In Figure 7 we observe the relationship between the minimum support
threshold that governs the algorithms of frequent itemsets mining and the
misclassification rate of the ensemble of local patterns. We notice an im-
provement in classification accuracy by decreasing the support threshold.
This tells us that even itemsets with a not very high frequency could be
useful for the classification since their normalized A value could be high.

6.3. Determination of the value of minimum support threshold

How many itemsets do we have to collect? We believe that we could try
to collect the highest possible number of itemsets that our computing system
can allow: it will be responsibility of the normalized A their final selection
in the global model. Thus in Figure 8 we plot the total number of itemsets
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Figure 8: Histogram on the number of itemsets in class malignant of Breast.

having a frequency in the interval indicated at the x axis. Knowing this
histogram we can decide a suitable value of the minsup parameter (i.e., the
minimum itemsets frequency allowed) given the total amount of memory in
our system: it is sufficient to sum up the total number of itemsets taken from
the histogram starting from the highest support value and going towards the
left until the maximum memory size is reached or the support reached is 0.
(In other words we consider the histogram as a probability density function
of the itemsets, and compute the area under it from the right).

The construction of the exact histogram is of high computational cost if
it is constructed by running an algorithm of frequent itemset mining on a
large data-set. Thus we suggest the following strategy.

1. We simply count the frequency of singletons (items) in the data.

2. We compute the frequency of other itemsets under the hypothesis of
statistical independence of items and generate the histogram of the
number of itemsets with a frequency equal to a certain value determined
by the interval indicated at z axis (see Figure 8). You can notice
that the real and the estimated histograms differ only at low frequency
thresholds.

3. We select the support threshold directly on the estimated histogram
and this choice is conservative.

If we wished to establish instead the correct number of itemsets at
lower support values, we could collect a sample of the data and test
in the sample the total number of itemsets without the hypothesis of
statistical independence. In Figure 9 we show that this approach is
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practical since the total number of itemsets collected does not differ
significantly with the dimension of the sample (the percentages of the
sampled examples are indicated at the z axis). Thus this strategy is
computationally feasible, since it requires to collect only a little portion
of the data-set. In this initial sample we lower the minimum support
threshold and observe the total number of itemsets extracted. The
right threshold is the one that gives the maximum number of itemsets
that the system memory allows.

2500

2000

1500 |

1000

Number of itemsets

10 20 30 40 50 60 70 80 90 100
Percentage of sampled dataset

Figure 9: Total number of itemsets from Breast data-set with progressive sampling

6.4. Initialisation of LODE

Figure 10 shows the diagram of the initialization of LODE. After the first
step of determination of minimum support threshold (according to the algo-
rithm described in Section 6.3) the algorithm of frequent itemsets mining is
launched on the training-set and produces a set of frequent itemsets that are
ranked according to their normalized A value (ranking R,;). This initial,
unique ranking tells us some things regarding some unknown but charac-
teristic parameters of the itemsets, as already explained in Subsection 3.2.
First of all the most recurrent value of cardinality of the itemsets at the top
portion of the ranking (top portion is set to 2/3). The most recurrent value
of itemsets cardinality at the top of the ranking is the first value that will
be tested in the following tuning process of LODE in order to select itemsets
for the class models (see Section 6.5). Then, the other cardinality levels are
ordered in a rank (Rje,e;s) according to the frequency of the cardinality value
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Figure 10: Initialisation of parameters and of tuning of LODE

of the itemsets at the top portion of the ranking R,;. This is done because it
is necessary to determine a unique value of cardinality for the itemsets in the
class models. Indeed, it makes no sense to include itemsets with a different
cardinality value as components of the class vectors since some dependencies
exist between itemsets and their subsets.

6.5. Tuning step of LODE

The pseudo-code of the algorithm that performs the tuning process of
the class models is Algorithm 1. This tuning process has been performed
in all the experiments that will be described in Section 7 within a 10-fold
cross-validation (from line 6 to 37): we repeated this process 10 times on
different training sets and with a different validation set and test set. For
each training set there is a separate validation set. On each training set the
learning algorithm produces a model (lines 14-19) with parameters which are
optimised by the tuning algorithm on the validation set (lines 22-33). As can
be observed from Algorithm 1, since the discretization performed by Fayyad
and Irani’s method [36] is a supervised step, we have to guarantee that no
information on the class outcomes towards the test sets in an hidden way
through the information on the discretization. Thus, the discretization has
been applied ten times as a pre-processing step to each different training-set
(see lines 10-11) and re-applied ten times to the corresponding test set (line
34). Each test-set is then used to evaluate the classification accuracy of the
generated models (lines 35-36) and gives in output the average of the values
of misclassification for the ten test folds (line 38).

1. At lines 7-11 the cross-validation procedure is prepared; discretization
is applied as a pre-processing step to each different training-set of the
cross-validation loop.
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Algorithm 1 Feature Reduction Tuning Process of LODE within Cross-
Validation

1: Input: D data-set

: Input: MaxMemorySize

: Output: TotErr LODE classification error

2

3

4: - - set small and big perturbation (percentage reduction) in rankings - -
5: s = 0.0002, b = 0.05, TotErr = 0, Nfolds = 10
6
7
8

: for testFolds = 1 to Nfolds - - 10-folds cross-validation - -
divide D into disjoint portions: training-set Tr, validation-set V, test-set T
. - - apply Fayyad Irani supervised discretization on training-set and validation-set - -
9: set of attribute value intervals S = FindSupDiscr(Tr U V)
10:  discTr= applyDiscretization(Tr, S)
11:  discV = applyDiscretization(V, S)

12: - - Initialisation of minsup and ranking of cardinality levels by Algo. in Fig. 9
13:  initialise(discTr, MaxMemorySize, minsup, Rieyers)

14: - - extract itemsets from discretised training-set and rank them by Norm. Delta
15: Ry =generate-itemsets-and-rankings(discTr, minsup)

16: - - R;; 1is the portion of Rqy with freq. itemsets at cardinality j for class i

17:  iteration it = 1

18: 1 = first cardinality level from Rjeyers

19:  OptimalR; = Ry; - - initialisation step - -

20: BestErr = HIGHEST ERR VALUE - - initialise with worst possible error
21: stop = FALSE

22: repeat

23: - - Tune class models by Simulated Annealing on LODE classification error - -
24: CurrentErr = SA (discV, Ry, s, b) - - call Algo. 2
25: AErr = BestError-CurrentErr

26: IF (AErr < 0)

27: BestErr = CurrentErr

28: OptimalR; = R

29: END IF .

30: IF (eAErm/it < 1and(0,1)) stop = TRUE

31: it++

32: 1 = next cardinality level in Rjcyers

33: until stop

34: discT = applyDiscretization(T, S)

35:  errorOnTestFold = LODE(discT,OptimalR;)
36: TotErr = TotErr + errorOnTestFold

37: end for

38: return TotErr/Nfolds

2. At line 13 the initialization phase determines the minimum support
value (by algorithm described at Figure 10) and generates the rank of
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itemsets cardinality levels (Rjepers)-

3. At the lines 16-20, during the first iteration (it=1), the sets of frequent
itemsets are extracted separately from the classes of the training set
(with the same minimum support proposed by the initialisation step);
the itemsets for class ¢ are ranked in ranking R;. They are given in
input to the phase of itemset cardinality selection (lines 22-33) for the
construction of the class vectors. The level is taken from the rank of
levels (Rjevers) Obtained at initialisation.

4. From the collections of itemsets at the selected level of cardinality [
separate rankings are obtained for the various classes (R;;). We denote
by R; the different portions of the ranking R;, where [ represents the
cardinality level of the itemsets.

5. This is the phase of feature reduction on the rankings R;; (at line 24).
Since from Figure 6 we saw that the feature selection on the rankings
(ranking reduction from the bottom) is beneficial for classification, but
we do not know how many minima of the classification error are present,
we adopt an algorithm of global optimization (Simulated Annealing,
SA) in order to search for the optimum reduction. The pseudo-code
of the algorithm of SA is shown in Algorithm 2. We note that SA is
executed on the validation set on the rankings obtained on the training
set.

6. After SA algorithm stops, a minimum of classification error is obtained
in correspondence to the rankings of itemsets at the cardinality level
[. Delta error (AErr) is obtained w.r.t. the best error obtained at
previous iterations (which worked on rankings of itemsets with a dif-
ferent value of cardinality ). Stop condition (line 33) is probabilistic.
It is set to true when e®F/i) <= rand(0,1). It is similar to the
condition seen for entering into a big perturbation in SA: it depends
on the reduction in error computed in the current iteration w.r.t. the
best error obtained so far, the number of iterations already computed
and by a random value. According to this exponential formula, stop
is encouraged if the number of iterations is high and if the error is not
improving (AErr is negative).

The approach to feature selection operated by SA in Algorithm 2 is a
wrapper approach. The rankings are progressively reduced and the decrease
in classification error on validation data by the classification algorithm LODE
is monitored so that an optimum is found. If we are in search for the next
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local minimum (line 12 of Algorithm 2) small perturbations are sufficient
(small ranking reduction). Otherwise, if we need to escape from a local
minimum (line 17), in order to find a global minimum in the error, we have
the chance to escape if we adopt a big perturbation (percent big reduction of
the rankings). In the experiments we set the big reduction to 5% while the
small reduction consists in 0.0002 (corresponding to a single itemset with
a ranking of 5 thousands itemsets). Our implementation of SA has been
adjusted by us to the particular contest: the direction of movement on the
ranking is unique (bottom-up) when a small reduction is involved. Instead,
when a big reduction takes place, it searches the closer minimum in both the
directions (top-down and bottom-up).

The condition for the adoption of a big perturbation is again probabilis-
tic: it is governed by a random function (rand), decreases with the number
of iterations computed (parameter I) and increases with the obtained im-
provement in the error (AETT).

Algorithm 2 Itemsets Selection Algorithm by Simulated Annealing

1: Input: V validation-set
2: Input: R; ranking of frequent itemsets.
3: Input: s small ranking reduction (perturbation)
4: Input: b big ranking reduction (perturbation)
5: Output: Optimal reduction of R; based on classification error.
6: — Tune class models by calling LODE algorithm —
7:  InitialError = LODE (V, R; )
8: CurrentError = InitialError
9:  MinError = InitialError

10: I=1

11: repeat

12: perturb (R, s)

13: CurrentError = LODE(V, R;)

14: AError = CurrentError - MinError

15: IF ( AError < 0)

16: MinError = CurrentError

17: OptimalR; = R;

18: ELSE IF ( AError >=0)

19: IF (e(AE”OT)/I > rand(0, 1))

20: perturb (R, b)

21: I++

22: until I > upper limit of I
23: return MinError
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7. Experimental Results

We have implemented LODE in C++. A computation and ranking gen-
eration is instead in java. We implemented some scripts in python and perl
for the automatising of the whole procedure. In future work we are going
to implement all the modules in a unique programming language and equip
the system with a web-based graphical user interface. Current version of the
software can be down-loaded from:
http : / Jwww.di.unito.it/”meo/Algo/ LODE.zip.

We have performed classification experiments with LODE on several datasets
from the Machine Learning Repository, maintained by UCI as a service to
the machine learning community (http://archive.ics.uci.edu/ml/). Table 1
reports the various characteristics of the datasets, chosen for their wide vari-
ability in terms of the type of data, number of classes, number of examples,
number of attributes, total number of instances per class (indicated in table
separated by commas), availability in competitive algorithms, etc. Experi-
ments were run on a Pentium Intel core Duo processor (P9500), running at
2.53Ghz with a RAM of 1.95 GB.

We compared the classification performances of our classifier with many
well known classification algorithms: Knn [10], J48 [30] (an implementa-
tion of Decision Trees), Naive Bayes [42], Support Vector Machines [43] and
decision table [44], CBA [1] and RIPPER [9] as representative learners for
conjunctive rules-based classifiers. We included also L3 [27] as a representa-
tive learner from the set of classifiers that learn by a multitude of rules. We
used the implemented version of these classifiers that is available in Weka
(http://www.cs.waikato.ac.nz/ml/weka/), a collection of machine learning
algorithms for data mining tasks.

Notice that some datasets contain only categorical attributes, while others
contain also continuous ones. Itemsets are usually extracted from categorical
attributes: in fact, from continuous attributes itemsets would have hardly a
sufficient frequency. In order to be able to run experiments with LODE and
the associative classifiers, we performed a preprocessing step consisting in
a supervised discretization of continuous attributes by means of a method
based on entropy [36] that minimizes the entropy of the class given the inter-
val of discretization. We used a unique data-set discretization method (by
Fayyad and Irani) for all the classifiers that require a discretized data-set and
that do not perform discretization by themselves. Instead, for those methods
that have their own discretization embedded in the learning algorithm (like
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Table 1: Description of datasets

Data-set Number of | Number of Number of instances
Name attributes classes per class
Analcatdata-Bankruptcy 7 2 25,25
Analdata-cyyoung8092 11 2 24,200
Analcatdata-Creditscore 7 2 27,73
Analcatdata-Lawsuit 5 2 245,19
BioMed 9 2 75,134
Bupa 7 2 145,200
Credit-a 16 2 307,383
Diabetes 9 2 500,268
Haberman 4 2 225,81
Horse 28 2 99,201
HD 14 2 165,138
Hepatitis 20 2 32,123
Heartstatlog 14 2 150,120
Monks1 5 2 62,62
Prnsynth 3 2 125,125
Titanic 4 2 711,1490
Wisconsin-Breast-Cancer 10 2 458,241
Cars 9 3 73,79,254
Cmce 10 3 629,333,511
Iris 5 3 50,50,50
Tae 6 3 49,50,52
Grubdamage 9 4 49,41,46,19
Vehicle 19 4 212,217,218,199
Analdata-Dmft 5 6 127,132,124,155,136,123
Glassp 10 6 70,76,17,13,9,29
Ecoli 8 8 143,77,52,35,20,5,2,2
Yeast 9 10 463,429,244,163,51,44,35,30,20,5

decision trees) or that do not require a discretized data-set (like K-nn, SVM,
etc) we let them the original data-set.

We did discretization and parameters tuning within a 10-fold cross-vali-
dation. The division in folds is the same for all the learning algorithms. We
performed cross-validation with (disjoint) training set, validation set and test
set. Validation-set and test-set are folds from the 10-fold-cross-validation.
Training set instead is made by the remaining part of the data-set. We never
used the test folds for parameter tuning or discretization: we used test folds
only for accuracy testing of the algorithms. For each training-set in the cross-
validation, we performed learning of the model and used the validation set
to estimate the suitability of the parameters values.

We carefully tuned the parameters values of the competitors as Figure 2
shows. We tested all the combinations of values of their parameters taken
from a wide spectrum of possible values with the reported variation step.

In Figure 3 we report the results (mean values and standard deviation)
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Table 2: Parameters and their range of values used in the tuning process of learning

competitors
learner parameter range of values step
J48 pruning confidence 0.05 - 0.5 0.05
J48 instances per leaf 2-10 1
DTABLE n. folds cross-valid. 1-10 1
DTABLE perf. eval. measure [acc,rmse,mae,auc] | 1
NB no parameters needed - -
SVM (SMO) complexity C -3-3 0.25
SVM (SMO) polyKernel exp. 1-3 0.5
RIPPER n. folds for REP 1-10 1
(1-fold as pruning set)
RIPPER min inst. weight in split 0.5-5 0.5
RIPPER n. optimiz. runs 1-10 1
KNN k 1-10
CBA minsup 1% —
CBA minconf 50%

of the optimal parameter values that we obtained by the parameter tuning
process of LODE. In particular, for LODE, we applied the tuning process
described by Algorithm 1.

The overall results of our experiments in comparison with other classifiers
are presented in the series of tables Figure 11-Figure 5. Each Figure shows
the results obtained for the comparison of LODE with the other competitors
on many viewpoints: classification accuracy, training time, test time. In
order to compare the statistical significance of the observed difference we
adopted the approach overviewed in [45]. It presents the statistical test
proposed by Friedman on average rankings applied to classifiers performance
results. We briefly summarize the test here.

1. The performance of each classifier on a certain issue (accuracy, training
times, etc) is determined on each data-set.

2. The classifiers are ranked on each data-set according to the results.

3. For each classifier, its position in the various rankings is recorded and its
average position w.r.t. the data-sets is computed. This is the resulting
value that we give in output in the tables. The advantage is that it
allows to present a comparison of multiple classifiers on multiple data-
sets.

4. The observed differences between the average rankings are compared
with the critical difference CD which establishes whether the differences
are statistically significant: C'D = g,/ % where N is the number of
datasets, k is the total number of classifiers, « is the significance level
and ¢, is the critical value for ﬁ based on the Studentized range

statistic.
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Table 3: Optimal parameters values resulting from tuning process in LODE

Percentage of Standard
Data-set Cardinality | Minimum features retained deviation of
name level support (mean of ten folds) | retained features
threshold (ten folds)
Analcatdata-Bankruptcy 3 0.01 100 0
Analdata-cyyoung8092 3 0.05 89.36 1.7
Analcatdata-Creditscore 4 0.01 100 0
Analcatdata-Lawsuit 3 0.01 100 0
German 4 0.3 75.37 2.36
BioMed 5 0.01 76.89 3.7
Bupa 3 0.05 87.47 1.73
Australia 3 0.3 84.3 1.9
Labor 4 0.1 96.9 1.13
Sonar 4 0.3 73.23 6.7
Wave 4 0.2 70.39 2.33
Lymph 4 0.3 89.9 7.81
Diabetes 3 0.05 78.37 1.3
Haberman 2 0.01 93.13 2.37
Horse 2 0.15 90.71 1.29
HD 3 0.2 86.43 5.18
Hepatitis 4 0.2 89.5 1.3
Heartstatlog 3 0.1 81.13 3.39
Monks1 5 0.01 85.16 4.33
Prnsynth 2 0.01 87.31 1.36
Titanic 2 0.01 85.3 2.19
Wisconsin-Breast-Cancer 4 0.01 92.27 1.39
Cars 5 0.01 93.14 2.79
Cmc 4 0.05 90.12 1.36
Iris 4 0.05 97.1 1.7
Tae 2 0.05 94.13 3.69
Grubdamage 4 0.05 95.1 4.1
Vehicle 4 0.2 93.24 1.3
Analdata-Dmft 3 0.1 97.4 1.2
Glassp 3 0.01 91.39 2.1
Ecoli 5 0.05 96.27 1.7
Yeast 3 0.1 98.1 1.3
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In our tests we used the value of a equal to 0.05 and the corresponding
value of ¢, equal to 2.394.

The first important observation that comes out from the Table in Fig-
ure 11 is that LODE outperforms the other learners as regards the classi-
fication accuracy (on test set, with 10-folds cross-validation). LODE mean
ranking is equal to 1.46875 and since the second ranked classifier is SMO
with a mean rank of 4.15625 and the value of C'D is equal to 1.864995 the
observed differences are statistically significant. The graphical representation
of the Friedman test on the differences in classification accuracy is presented
in Figure 12.

Classifier Name | Mean Rank
threshold (CD) 1.864995
LODE 1.46875
SMO 4.15625
CBA 4.203125 —
KNN 503125 SVM KNN J48 L3 Dtable
NB 5.515625
J48 5.578125 1 2 3 4 % % 7 8
L3 6.078125 | | | | | | )
RIPPER 6.171875
DTABLE 6.796875

LODE CBA NI Ripper

Figure 11: Mean ranking on clas-
sification accuracy of classifiers on Figure 12: Graphical representation of Friedman test
original datasets (test set) on differences in classification accuracy

In Figure 13 we show the analogous statistical test on the difference be-
tween the accuracy on training-set and the accuracy on test-set. This ex-
periment aims at putting in evidence the capability of a classifier to escape
from over-fitting. We can see that NB is ranked first, CBA second and LODE
third but these differences are not statistically significant.

In Table 4 we report the details of the classification error (and of the
difference between the error on the training-set and on the test-set) of LODE
and of SMO, which is among the learners the one whose performance gets
closer to LODE. We reported also the details regarding the kind of datasets
(number of classes, balanced classes, number of features) in order to ascertain
if the obtained good results could be also related to the typology of data or
not. From the results it is clear that good results could be obtained both in
binary and in multi-class data, balanced or unbalanced, high-dimensional or
not.

In Figure 15 and in Figure 17 we show the results on execution times. NB
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Table 4: Comparison with SVM (SMO)

Dataset N. High Balan- LODE SMO
Name classes | dimens. ced Test Train- | Test | Train-
(N. fea- err Test err Test
tures) err err
Anal.-Bank. 2 N (7) Y 6 0 8 8
Anal.-young8092 2 Y (11) N 13.36 0.66 14.43 13.4
Anal.-Credit. 2 N (7) N 1 0 1 0
Anal.-Lawsuit 2 N (5) N 1.05 0.05 1.13 0
BioMed 2 N (9) N 2.89 119 | 717 | 147
Bupa 2 N (7) Y 31.05 | 096 | 3681 0
Credit-a 2 Y (16) Y 12 1.1 13.91 4.93
Diabetes 2 N (9) N 17.66 | 1.36 | 21.74 | 0.77
Haberman 2 N (4) N 22.7 2.23 25.81 0
Horse 2 Y (28) N 17.7 2 20.66 20
HD 2 Y (14) Y 12.43 2.05 12.55 3.31
Hepatitis 2 Y (20) N 11.35 1.05 9.67 1.93
Heartstatlog 2 Y (14) Y 12.37 0.98 14.81 5.93
Monks1 2 N (5) Y 44.67 0 46.77 14.52
Prnsynth 2 N (3) Y 12.4 0.71 12.4 0
Titanic 2 N (4) N 20.1 0.04 | 20.94 0
Wiscon.-B. 2 Y (10) N 2.27 0.88 3 0.43
Cars 3 N (9) N 20.3 1.2 15.51 15.51
Cmc 3 Y (10) N 40.3 27 | 4528 | 4.28
Tris 3 N (5) Y 4 995 | 4.66 | 0.66
Tae 3 N (6) Y 42.3 161 | 5231 | -0.66
Grubdamage 4 N (9) N 48.19 3.49 48.38 16.77
Vehicle 4 Y (19) Y 22.97 3.27 23.52 19.15
Anal-Dmft 6 N (5) Y 74.2 71 | 7744 | 12.97
Glassp 6 Y (10) N 23.6 1.6 20.56 5.61
Ecoli 8 N (3) N 12.3 0.6 | 13.39 | 0.89
Yeast 10 N (9) N 40.96 3.8 39.48 1.41
Mean 21.1133 22.6442
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Classifier Name | Mean Rank
threshold (CD) 1.864995
NB 2.78125
CBA 2.8125
LODE 3.0
RIPPER 5.28125 CBA Ripper J48 KNN L3
DTABLE 5.640625 3 4 5 6 7
J48 5.734375 | | | | |
SMO 5.75
KNN 6.671875
L3 7.328125 ™ oo Duije

Figure 13: Mean ranking on the difference
between training accuracy and test accuracy Figure 14: Graphical representation of Fried-
on original data man test on results of Figure 13

is first, KNN is second and Ripper is third. LODE ranks only 7th. However,
we must say that the results of these experiments favour those learners (like
NB and KNN) which do not have parameters or have a few parameters only.
In these cases, the parameter tuning time is totally eliminated or strongly
reduced. In fact, tuning time depends both on the number of parameters
and on the range of values tested for each of them. In Section 7.1 we report
also more studies on the family of LODE classifiers with alternative feature
selection methods. Further experiments are conducted in order to test also
if the Simulated Annealing approach to tuning allows to get significant im-
provements in accuracy and training times. Our answers will be positive.

Classifier Name | Mean Rank
threshold (CD) 1.864995 s
NB 1.0 -
KNN 2.0625 KNN Ripper CBA Dtable
RIPPER 4.46875
Ji8 5.0625 | | ' 1
SMO 6.09375
CBA 6.203125
LODE 6.578125 s R
DTABLE 6.6875 LODE
L3 6.84375 SVM

Figure 16: Graphical representation of Friedman test
on differences between training times

Figure 15: Mean ranking on train-
ing time

In Figure 17 we report results on Friedman test on the mean execution
time needed by each classifier to predict a single test instance. In this ex-
periment LODE ranks 6th. We can notice that all the classifiers that have
a class model composed by a multitude of patterns, like L3, DTABLE and
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LODE, are slow in testing, while decision trees, NB and RIPPER, that have
mechanisms of strong pruning of rules, are faster.

Classifier Name | Mean Rank
threshold (CD) 1.864995
J48 2.109375 CcD
NB 2.21875
RIPPER 3.734375 a8 Ripper KN LODE Ls
KNN 4.796875 1 2 3 1 4 5 6 7 8 9
CBA 5.5625 1 | | | | | 1 |
LODE 5.578125
DTABLE 5.96875
SMO 6.5625 NB CBA SVM
L3 8.46875 Drable

Figure 17: Mean ranking on unit Figure 18: Graphical representation of Friedman test
test time on original datasets on differences between unit test times

Experiments on noisy datasets. One of the believed benefits of our model-
based classifier is that it is supposed to be more robust to the presence of
noise in data. This occurs in virtue of the prototypical class models of LODE
that represent the frequent characteristics of examples on which noise super-
imposition should not have many effects. In order to establish concretely this
claim we experimented with the datasets with a variable amount of noise.
We added noise to the datasets in the form of a random change of the class.
We varied the percentage of noise from 5% until 20% of the instances.

Figure 19 and Figure 21 show classification results on the datasets af-
fected by noise at the extreme values of this range (5% and 20%). These
experiments clearly show that LODE outperforms the other classifiers, and
the improvement increases especially with an increasing amount of noise.
When comparing the results in Figure 19 with Figure 21, some algorithms
such as NB or J48 appear to improve their classification accuracy. This is due
to the fact that NB and J48 predictive mechanisms rely on a global model
that is able to generalize better and results more robust w.r.t. a marked pres-
ence of noise. The other learners (like KNN, SMO, RIPPER, CBA) instead,
can sustain only lower levels of noise because they make predictions that are
based on a restricted number of local patterns. With a marked level of noise
they lost at a greater extent their accuracy, due to the noisy modification of
the data values that results detrimental for their final prediction.

As regards the effect of over-fitting, we monitored the differences between
accuracy in training and test set. In Figure 23 we can notice that LODE is
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Classifier Name | Mean Rank
threshold (CD) 1.864995
LODE 1.515625
SMO 3.546875 e
CBA 4.640625 SVM KNN 148 L3
KNN 4.921875 F %
NB 5.234375 1 2 3 4 8
718 6.0625 L1 ! 1 l 1 1 )
RIPPER 6.171875 J
L3 6.4375
DTABLE 6.46875 HOPE CBA  NB Ripper

Dtable
Figure 19: Mean ranking on clas-
sification accuracy with 5% level of Figure 20: Graphical representation of Friedman test

noise on results of Figure 19
Classifier Name | Mean Rank
threshold (CD) 1.864995
LODE 1.53125
SMO 4.046875 —_—
NB 4.046875 SVM  J48 KNN L3
J48 4.71875
KNN 5.125 1 2 3 4 5 6 7 8
DTABLE 5546875 | E— ! | | 1 1 J
RIPPER 5.953125
L3 6.78125
CBA 795 LODE NB Diable CBA

Ripper
Figure 21: Mean ranking on classi-
fication accuracy with 20% level of Figure 22: Graphical representation of Friedman test
noise on results of Figure 21

ranked second when the level of noise in the datasets is set to the level of 5%;
LODE improved its position w.r.t. the analogous experiment on the original
datasets (it was third). Furthermore, when the level of noise is increased to
20% LODE reaches the first position in the ranking (see Figure 25).

7.1. Impact on LODE of Feature Selection and Composite Features

In this new set of experiments we want to determine the relative impact
that the different settings have to the performance of LODE. In other terms,
we want to establish if the positive results observed in terms of classification
accuracy and execution times are due to the feature selection results and
the corresponding wrapper (in particular, to the quite sophisticated tuning
process based on Simulated Annealing) or to the fact that composite features
(itemsets) are adopted instead of simple ones (items). We therefore carry out
a performance study on a family of learners based on LODE, in which these
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Classifier Name | Mean Rank
threshold (CD) 1.864995
CBA 2.796875
LODE 3.171875
NB 321875 —_—
SMO 5.125 CBANB Ripper 148 KNN
RIPPER 5.25
DTABLE 5.46875 1 2 3 4 5 6 7 8
748 6.125 L1 l 1 l )
KNN 6.6875
L3 7.15625
LODE Dtable L3
Figure 23: Mean ranking on the dif- SVM

ference between training and test
accuracy with 5% of level of noise Figure 24: Graphical representation of Friedman test
on the results of Figure 23

Classifier Name | Mean Rank
threshold (CD) 1.864995
LODE 2.81375 - e
NB 2.90625 ___NB
DTABLE 4.5625 Diablp CBA KNN
RIPPER 4.734375 ] 5 5 . 5 5 . o
=
Sﬁ% 45;85990367250 — | L l | | )
CBA 5.78125
L3 6.84375
KNN 6.84375 LODE " =

SVM
Figure 25: Mean ranking on the
difference between training and test Figure 26: Graphical representation of Friedman test
accuracy with 20% of level of noise  on results of Figure 25

issues are taken one by one or in combinations. We furthermore consider two
types of wrappers: a Simple Backward Elimination (SBE) in which itemsets
are eliminated from the bottom of the rankings - one by one - until the
first minimum is found and a Backward Elimination by Simulated Annealing
(SA). In this experiment, we wish to establish if SA is relevant or not.

Results on classification error are reported in Figure 27 while results on
execution times for the classification model generation are reported in Fig-
ure 5.

We can notice two issues. First, adopting composite features (itemsets)
is extremely beneficial. All the results of LODE with composite features
are significantly improved with respect to the experiments in which simple
features (items) are adopted. Second, using a feature reduction method
is always beneficial, both when composite features (itemsets) are used and
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CD

Classifier Name Mean Rank -
threshold (CD) 1.20481 ltemset With SBE Item With SA
itemset_With SA 1.234375
itemset_With SBE 1.890625 ] f ? ‘l‘ 5 6
itemset_-Without_Wrapper 2.96875
item_With_SA 4.390625
item_With_SBE 4.8125 Homset Wit SA emset Without W _
item_Without_Wrapper 5.703125 cmeet THithout Tapper ltem Without Wrapper

Item With SBE
Figure 27: Average ranking on clas-
sification accuracy of LODE with Figure 28: Graphical representation of Friedman test
different settings on results of Figure 27

Table 5: Average ranking on training time of LODE with different feature reduction
methods

Classifier Name | Mean Rank
threshold (CD) 0.34648

Itemsets_With_ SA 1.03125

Itemsets_With_SBE 1.96875

when simple features (items only) are adopted. Furthermore, the observed
differences are statistically significant when the feature reduction method is
based on SA.

From Figure 5, in which results on training times are reported, we can
notice another main benefit of SA: not only it improves accuracy results but
also it is useful to speed-up training execution times. This result is due to
its faster achievement of the optimal working point because of the “jumps”
it performs based on the big reduction rate.

8. Conclusions

In this paper we have proposed LODE, a new classifier whose class mod-
els are composed of frequent itemsets extracted from the instances of each
class in the training set. Class models have been generated originally for a
descriptive purpose but can be employed for prediction if we the number of
the itemsets is reduced by a wrapper approach. Prediction occurs by com-
putation of the distances between two vectors that represent respectively a
class model and a test example.

The adoption of a model-based distance is an advantage w.r.t. learners
based on local patterns that apply the best single local pattern for each
example. Indeed, using an ensemble of local patterns for prediction reduces
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the chance of model overfitting and is more robust w.r.t. the presence of
noise in the data.

We have validated this new approach to classification by several exper-
iments on many available UCI datasets, with and without noise. We have
shown that LODE outperforms traditional IBL such as Knn and other classi-
fiers in the state of the art, like decision trees, SVM, NB and rule-based clas-
sifiers. In a related paper [20] we have experimented with different techniques
of itemsets ranking employed in order to simplify class models: accuracy, KL
divergence, strong jumping emerging patterns and an entropy based measure
(normalized A). Experiments showed that the observed good performances
of our classifier are due not only to the mechanism of model-based distance
computation - that works on itemsets features and considers both the present
and the absent features from the test instances - but also to the effectiveness
of A.

In future work, we plan to investigate on learning the features weights
in the ensembles and in employing further mechanisms of feature generation
and selection based on principles of subgroup discovery and on predictive
and discriminative capabilities.
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