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Abstract: 21 

The effect of mixture on productivity has been widely studied for applications related to 22 

agriculture but results in forestry are scarce due to the difficulty of conducting experiments. 23 

Using a modelling approach, we analysed the effect of mixture on the productivity of forest 24 

stands composed of sessile oak and Scots pine. To determine whether mixture had a positive 25 

effect on productivity and if there was an optimum mixing proportion, we used an 26 

aggregation technique involving a mean-field approximation to analyse a distance-dependent 27 

individual-based model. We conducted a local sensitivity analysis to identify the factors 28 

which influenced the results the most. Our model made it possible to predict the species 29 

proportion where productivity peaks. This indicates that transgressive over-yielding can occur 30 

in these stands and suggests that the two species are complementary. For the studied growth 31 

period, mixture does have a positive effect on the productivity of oak-pine stands. Depending 32 

on the plot, the optimum species proportion ranges from 38% to 74% of oak and the gain in 33 

productivity compared to the current mixture is 2.2% on average. The optimum mixing 34 

proportion mainly depends on parameters concerning intra-specific oak competition and yet, 35 

intra-specific competition higher than inter-specific competition was not sufficient to ensure 36 

over-yielding in these stands. Our work also shows how results obtained for individual tree 37 

growth may provide information on the productivity of the whole stand. This approach could 38 

help us to better understand the link between productivity, stand characteristics and species 39 

growth parameters in mixed forests. 40 

Keywords: Mixed forest - Niche complementarity - Overyielding - Individual-based 41 

model - Model Aggregation 42 



 3 

1 Introduction 43 

It is currently admitted that plant diversity and ecosystem functioning are interrelated, and 44 

that greater plant diversity can lead to greater productivity (Hector et al. 1999; Loreau et al. 45 

2002; Hooper et al. 2005; Thebault and Loreau 2006). One of the mechanisms that has been 46 

put forward to explain the greater productivity at higher diversity is the "niche 47 

complementarity" (Loreau et al. 2001) that may result from inter-specific differences in 48 

resource requirements and uses or from positive interactions between species. 49 

The principle of complementarity has been widely studied for herbaceous species in 50 

applications related to agriculture (de Wit 1960; Vandermeer 1989). However, although 51 

mixed forests are being promoted more and more, results on tree species complementarity are 52 

quite scarce particularly because of the difficulty of conducting long-term experiments (Kelty 53 

and Larson 1992; Piotto 2008; Pretzsch 2009). A classical way to study the effect of mixing 54 

proportion on productivity is to establish "replacement series" experiments (Jolliffe 2000). In 55 

these experiments, rather well-adapted to the study of two-species mixtures, the proportions 56 

of species vary while the overall density is maintained constant. This type of experiment can 57 

also be applied in forestry (Luis and Monteiro 1998; Garber and Maguire 2004) but they are 58 

more difficult to conduct because, for most tree species, results are available only after a 59 

period of many years. The use of large-scale forest inventory data (Vila et al. 2007; del Rio 60 

and Sterba 2009) and studies based on modeling (Pretzsch and Schutze 2009) are two 61 

alternative approaches to fill in the gaps in knowledge of the mixed-forest productivity. 62 

Here we focused on the case of mixed forests with two species which are widely 63 

distributed throughout Europe (MCPFE et al. 2007). For a two-species mixed stand, we can 64 

use replacement diagrams to define and represent three main types of productivity response to 65 

the mixing proportion (Figure 1). 66 
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Figure 1 here 67 

The effect of mixing proportion on productivity clearly depends on the species that are 68 

combined (Kelty 2006). For a given pair of species, the first issue is to know what kind of 69 

response occurs (positive, negative or no influence on productivity). The second challenge is 70 

to determine whether the productivity of the mixture can exceed the productivity of the most 71 

productive species in a pure stand - in other words, whether productivity peaks when an 72 

optimum mixing proportion is reached (right side of Figure 1). This phenomenon is called 73 

"transgressive over-yielding" and reflects mechanisms of facilitation or a strong 74 

complementarity between species for resource use (Hector et al. 2002; Hector 2006; Schmid 75 

et al. 2008). 76 

The answers to these questions should be strongly linked to the relationship between intra-77 

specific and inter-specific competition (Harper 1977). For example, based on the Lokta-78 

Volterra theoretical model of inter-specific competition, Loreau (2004) showed that inter-79 

specific competition for both species must be lower than intra-specific competition for 80 

transgressive over-yielding to occur. Intra- and inter-specific competition can be quantified 81 

empirically using local competition indices in a distance-dependent individual-based model 82 

(Biging and Dobbertin 1992; Canham et al. 2004; Uriarte et al. 2004; Stadt et al. 2007). The 83 

challenge is to link the results obtained at the individual tree level with the results that 84 

concern the whole stand. That is what we did in the present study. 85 

In this article, we investigate whether the mixture of two tree species can improve the 86 

productivity of the stand. To address this question we used a distance-dependent individual-87 

based model developed in a previous study for mixed stands of sessile oak (Quercus petraea 88 

L.) and Scots pine (Pinus sylvestris L.) (Perot et al. 2010). We used an aggregation technique 89 

to analyse this model and to answer the following questions: 1) Does mixture have a positive 90 
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effect on stand productivity? 2) What is the optimum mixing proportion in terms of 91 

productivity? 3) What are the factors that most influence the results for questions 1) and 2)? 92 

2 Materials and methods 93 

2.1 Growth data from mixed oak-pine stands 94 

We collected the growth data in mixed oak-pine stands from the Orléans state forest. This 95 

forest is located in north-central France (47°51'N, 2°25'E) and covers 35 000 ha. Mixed oak-96 

pine stands occupy an important position in French forests for three main reasons: they cover 97 

a relatively large area (Morneau et al. 2008); they have a heritage value for the public; and 98 

they are well-adapted to the sandy, water-logged soils common to central France. 99 

Between 2006 and 2007, we established 9 plots (ranging in size from 0.5 to 1 ha) to study 100 

the growth of mixed oak-pine stands (Table 1). The nine plots included other broadleaved 101 

species (mainly Carpinus betulus L., Betula pendula R. and Sorbus torminalis L.) but they are 102 

in very small proportion (4% of the total basal area on average) and were not considered in 103 

the present study. These plots had been fully mapped in a previous in-depth study on 104 

horizontal spatial structure (Ngo Bieng et al. 2006). In each plot, we sampled 20 trees per 105 

species to take growth measurements. Sampled trees were cored twice to the pith in 106 

perpendicular directions at a height of 1.3 m. Cores were scanned and ring widths were 107 

measured to the nearest 0.01 mm (see Perot et al. 2010 for details). Because some trees were 108 

impossible to core and some cores were not usable, the growth analyses were based on a final 109 

total of 154 oaks and 179 pines. The mean oak age per plot ranged from 50 to 90 years, and 110 

that of pines from 50 to 120 years. In a plot, all trees of a species had approximately the same 111 

age indicating a single cohort for pines and a single cohort for oaks. Pines occupied the upper 112 

stratum of the stand while oaks occupied both the upper stratum and the understory, excepted 113 

in plot D78 where oaks were more abundant in the understory. Oak and pine populations had 114 
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mainly experienced artificial thinnings but some natural perturbations may also have occured 115 

(i.e. storms, fires, and pest damages). Detailed information on past disturbances (natural or 116 

artificial) was not available in our plots (location and size of suppressed trees) so we chose the 117 

period from 2000 to 2005 to study growth because there were no human or natural 118 

disturbances during that time. 119 

Table 1 here 120 

2.2 The distance-dependent individual-based model 121 

A distance-dependent individual-based model was developed in a previous work from the 122 

growth data presented above (Perot et al. 2010). We briefly recall model equations and refer 123 

to Perot et al. (2010) for details on model fitting and equation selection. Subscripts 1 and 2 are 124 

used in equations and in the following sections to indicate oak and pine species respectively. 125 

The distance-dependent individual-based model uses tree size and local competition indices 126 

calculated inside a circle centred on a focal tree to predict the radial increment of its trunk. 127 

Different competition indices and circle radii were compared for their ability to explain 128 

individual growth (see Perot et al. 2010 for details on competition index selection). A radius 129 

of 10 meters around the focal tree (neighbourhood radius) best explained growth variability. 130 

A plot effect was introduced to take into account the possible effects of factors acting at stand 131 

level such as site effect, total density or stage of development (young or old stand). The model 132 

was fitted separately for oaks and pines using the ordinary least squares method to obtain an 133 

individual growth equation for each species: 134 

for oaks, , ,1 ,1 ,1 , ,1 1,1 ,1,1 1,2 ,1,2 , ,1i k k k i k i i i kr girth N Nα β λ λ ε∆ = + + + +  (1) 135 

for pines, , ,2 2 ,2 , ,2 2,2 ,2,2 , ,2i k k i k i i kr girth Gα β λ ε∆ = + + +  (2) 136 

where ∆ri,k is the radial increment (mm) over a six-year interval (2000-2005) of the ith tree 137 

in plot k, girth is the girth (cm) in 1999 and ε is the residual error. αk and βk are model 138 
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parameters for plot k. For pine, results showed no plot effect on α which we simply denote α2 139 

(see Table 2). λj,1 and λj,2 are the coefficients associated with the competition indices 140 

calculated for oak and pine, respectively. Ni,1,1 is the number of oaks in the neighbourhood 141 

(i.e. at a distance less than 10 meters) of a focal tree i belonging to the oak species. Ni,1,2 is the 142 

number of pines in the neighbourhood of a focal tree i belonging to the oak species. Gi,2,2 is 143 

the basal area of pines in the neighbourhood of a focal tree i belonging to the pine species. For 144 

simplicity, Ni,1,1, Ni,1,2 and Gi,2,2 will be called the local density of oaks, the local density of 145 

pines and the local basal area of pines, respectively. These competition indices account for 146 

both intra- and inter-specific competition. The coefficient λ2,1 associated with the competition 147 

index calculated for the neighbouring oaks of a pine focal tree was not significantly different 148 

from zero and does not appear in equation 2. This result suggests that the growth of pine is 149 

weakly influenced by oak. One may also notice that λi,i < λi,j, which means that intra-specific 150 

competition is higher than inter-specific for both species. 151 

Table 2 here 152 

2.3 Aggregating the individual-based model to obtain analytical results at stand level 153 

The distance-dependent individual-based model mimics the dynamics of each tree, but for 154 

predictions at the stand level, simulations are necessary. To obtain analytical results at the 155 

stand level, we aggregated the individual model. This operation was hindered somewhat by 156 

the presence of local competition indices that introduce a spatial dependence; we therefore 157 

proceeded in two steps. We first applied the mean field approximation to obtain a distance-158 

independent individual-based model (Levin and Pacala 1997; Dieckmann et al. 2000; Picard 159 

and Franc 2001). Secondly, we aggregated this distance-independent model into a model 160 

predicting the basal area increment of the whole stand. We call this aggregated model “the 161 

stand model”. 162 
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The mean field approximation is particularly well suited to simplify the spatial dependence 163 

in distance-dependent individual-based models. To apply this method to the model presented 164 

above (equations 1 and 2), we considered that the spatial pattern of trees was a point process 165 

realization. The mean field approximation assumes that all trees are affected in the same way 166 

by their neighbourhood. We can then replace the specific expression of a competition index 167 

for a given spatial pattern by its expected value across all possible outcomes of the point 168 

process. To calculate this expected value, we assumed that the point process is ergodic, which 169 

implies that the mean across several realizations equals the spatial average over one 170 

realization (Cressie 1993; Illian et al. 2008). Under this assumption, we replaced the average 171 

of a competition index by its spatial average calculated from all the trees in the stand. We thus 172 

obtained equations 3 and 4 which correspond to a distance-independent individual-based 173 

model: 174 

 , ,1 ,1 ,1 , ,1 1,1 ,1,1 1,2 ,1,2i k k k i k i ir girth N Nα β λ λ∆ = + + +  (3) 175 

 , ,2 2 ,2 , ,2 2,2 2,2i k k i kr girth Gα β λ∆ = + +  (4) 176 

where 1,1N  and 1,2N  are the spatial averages of the local density of oaks and pines for an 177 

oak focal tree, and 2,2G  is the spatial average of the local basal area of pines for a pine focal 178 

tree. Under appropriate assumptions on the point process (homogenous and isotropic), the 179 

spatial averages of these indices can be related to Ripley's K function (Ripley 1977) and to the 180 

inter-type K function (Lotwick and Silverman 1982). In this way, we can link the growth to 181 

the spatial structure of the stand. Let us call K1,2 the inter-type function between species 1 and 182 

2. If 1 = 2, K1,1 is known to be the Ripley’s function for species 1. If d2 is the density of 183 

species 2, d2 K1,2(r) is the expectation of the number of trees of species 2 found at a distance 184 

less than or equal to r from a randomly chosen tree of species 1. These functions are often 185 

used to test the null hypothesis of complete spatial randomness. For oak, we directly obtain 186 

the following relationships: 187 
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 ( )1
1,1 1,1 10

N
N K

S
=   188 

 ( )2
1,2 1,2 10

N
N K

S
=   189 

where N1 and N2 are the total number of oaks and the total number of pines in the stand, S 190 

is the plot area, K1,1(10) is the value of the Ripley's function at ten meters for the oak 191 

population, and K1,2(10) is the value of the inter-type function at ten meters for oak and pine 192 

populations. To simplify, we will call these variables K1,1 and K1,2 in the following sections. 193 

Equation 3 can now be written as follows: 194 

 1 2
, ,1 ,1 ,1 , ,1 1,1 1,1 1,2 1,2i k k k i k

N N
r girth K K

S S
α β λ λ∆ = + + +  (5) 195 

In the case of pine, we have to calculate the spatial average of the local basal area which 196 

implies taking into account the correlation between the individual basal area and the location 197 

of the trees. To simplify, we assumed that the individual basal area of a tree was independent 198 

of its location on the plot. We then calculated the average local basal area around a pine tree 199 

by multiplying the average individual basal area of a pine ( 2g ) by the average local density of 200 

pines ( 2,2N ). The average individual basal area of a pine is the ratio between the total basal 201 

area of pines in the stand and the total number of pines. The spatial average of the local basal 202 

area can thus be written as follows: 203 

 ( ) ( )2 2 2
2,2 2 2,2 2,2 2,2

2

10 10
G N G

G g N K K
N S S

= = =   204 

where K2,2(10) is the value of the Ripley's function at ten meters for the pine population, 205 

called K2,2 in the following sections. Equation 4 can now be written as follows: 206 

 2
, ,2 2 ,2 , ,2 2,2 2,2i k k i k

G
r girth K

S
α β λ∆ = + +  (6) 207 

Equations 5 and 6 represent a distance-independent individual-based model resulting from 208 

the mean field approximation of equations 1 and 2. However, this model includes some 209 



 10 

spatial information on the populations through the Ripley functions at ten meters and the 210 

inter-type function at ten meters. These functions were calculated for the 9 plots from the 211 

observed spatial pattern of the trees (Table 3). 212 

Table 3 here 213 

We then proceeded to the second step and aggregated the individual-based model into a 214 

stand model. As all variables now characterize a plot, we can drop the k index without any 215 

risk of confusion. The principle of the aggregation is to sum the individual dynamics defined 216 

by equations 5 and 6. We chose basal area increment, denoted ∆G, to account for stand 217 

productivity. We did not choose volume increment, because volume requires data on tree 218 

height that were not available in our study. Next, we showed (see Appendix) that the stand 219 

model can be written as follows: 220 

 ( ) ( ) ( )
( ) ( ) ( )

1 2

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

,

,

G G G

G A N B N r C G

G A N B N r C G

γ γ β β
γ γ β β

∆ = ∆ + ∆


∆ = + +
∆ = + +

 (7) 221 

where jr  is the mean tree radius for species j, functions A, B and C are defined by: 222 

( )
( ) ( )
( ) ( )

2

, 2 1 2

4 1

A

B

C

µ πµ
µ ν πµ πν
µ πµ πµ

 =


= +
 = +

 223 

and: 224 

1 2
1 1 1,1 1,1 1,2 1,2

2
2 2 2,2 2,2

N N
K K

S S
G

K
S

γ α λ λ

γ α λ

 = + +

 = +


 225 

Here, ∆G corresponds to the basal area increment of all trees alive in 2005. For this 226 

population of trees, no mortality or recruitment occurred during the study period 2000-2005. 227 

Thus, the growth process was sufficient to define the productivity of the population over the 228 

6-year interval. 229 
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To check for consistency, we compared the stand model to the individual-based model. We 230 

simulated the stand basal area increment over the 2000-2005 period for the 9 plots using both 231 

models, starting from the same initial state. We then calculated the mean absolute difference 232 

between the predictions of the two models for each species as follows: 233 

9

, , , ,
1

1

9s k s IBM k s SM
k

E G G
=

= ∆ − ∆∑  234 

where sE  is the mean absolute difference between the two models for species s, , ,k s IBMG∆  is 235 

the stand basal area increment of species s predicted by the individual-based model for plot k 236 

and , ,k s SMG∆  is the stand basal area increment of species s predicted by the stand model for 237 

plot k. We also used a Wilcoxon signed rank test on ,k sG∆  to see if there was a significant 238 

difference between the two models. 239 

2.4 Introducing the mixing proportion into the stand model 240 

To determine the proportion of each species in a mixed stand, we must define a reference 241 

variable that quantifies its abundance in the stand. For example, one can choose the number of 242 

stems, but in this case, the small individuals of a species and the large ones of another species 243 

would have the same weight and this is generally not acceptable in forest ecosystems. To 244 

avoid such problems, it is preferable to choose variables that are related to the volume or 245 

biomass of populations (Pretzsch 2005). In this study, we used basal area which takes into 246 

account both the number and size of individuals. For a forest composed of two tree species, 247 

the proportion of a species j is defined as the ratio between the basal area of the species and 248 

the total basal area: j jx G G= . In addition, we introduced the quadratic mean radius ,G jr  so as 249 

to link the density of a species j to its basal area: 2
,j j G jG N rπ= . We chose the proportion of oak 250 

(x1) to define the mixing proportion of the stand, noted x. The proportion of pine then is 1 – x. 251 

With these new variables included, the stand model has 6 stand state variables: the total 252 

basal area G, the mixing proportion for oak x, the quadratic mean radius for oaks ,1Gr , the 253 
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quadratic mean radius for pines ,2Gr , the mean radius for oaks 1r , and the mean radius for 254 

pines 2r . State variables are the minimum set of variables that are required to know the state 255 

of a forest stand. Every point (G, x, ,1Gr , ,2Gr , 1r , 2r ) in ℝ+6 potentially defines a forest stand. 256 

The mean radius can be seen as the first moment of the diameter distribution, whereas the 257 

quadratic mean radius corresponds to the non-centred second moment of the diameter 258 

distribution. For most statistical distributions, the variance is related to the mean, which 259 

means that ,G jr  and jr  will generally be related. On the contrary, no relationship is a priori 260 

expected between x and the other 5 state variables. To check this, we tested the 9 plots to see 261 

if there was a significant correlation between x and any of the other state variables: all 262 

Pearson’s correlation coefficients turned out to be non significantly different from zero. 263 

The six state variables are complemented by 4 secondary variables that follow from them 264 

directly: the basal area of oaks G1 = xG, the basal area of pines G2 = (1 – x)G, the number of 265 

oaks ( )2
1 ,1 GN xG rπ= , and the number of pines ( ) ( )2

2 ,21 GN x G rπ= − . The model also includes 10 266 

parameters (α1, α2, β1, β2, λ1,1, λ1,2, λ2,2, K1,1, K2,2, K1,2) and 1 constant (the plot area S). 267 

We introduced the mixing proportion x into equation 7 and we used the basal area and the 268 

quadratic mean radius to replace the density. The stand model can then be written as a 269 

function of the mixing proportion, the total basal area and the average dendrometric 270 

characteristics of each species: 271 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1 1 1 1 12 2
,1 ,1

2 2 2 2 2 22 2
,2 ,2

,

1 1
, 1

G G

G G

G G G

Gx Gx
G A B r C Gx

r r

G x G x
G A B r C G x

r r

γ γ β β
π π

γ γ β β
π π




∆ = ∆ + ∆

∆ = + +

 − −
∆ = + + −


 (8) 272 

with: 273 
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( )

( )

1 1 1,1 1,1 1,2 1,22 2
,1 ,2

2 2 2,2 2,2

11 1

1
1

G G

G xGx
K K

S Sr r

K G x
S

γ α λ λ
π π

γ α λ

−
= + +



 = + −

 274 

Since a forest stand is characterized by 6 state variables, 6 dynamics equations are required 275 

to define its change over time. Equation 8 is equivalent to 2 independent equations for G and 276 

x. The dynamics equations for ,1Gr  and ,2Gr  follow from ∆N1 = 0 and ∆N2 = 0, since, as 277 

previously mentioned, the number of trees remained constant (no mortality, no recruitment). 278 

The dynamics equations for 1r  and 2r  can also be derived from the individual-based distance-279 

dependent model (see Appendix) but we did not use them in the calculations described below. 280 

2.5 "Transgressive over-yielding" and optimum mixing proportion 281 

Every value of the vector (G, x, ,1Gr , ,2Gr , 1r , 2r ) defines a state of the forest stand. To 282 

determine the mixing proportion x that maximizes productivity, we considered (G, ,1Gr , ,2Gr , 283 

1r , 2r ) to be known variables, with x the only unknown state variable. This is equivalent to 284 

searching for the optimum in a subspace of the space of states. This approach is similar to 285 

"replacement series" experiments that compare pure and mixed stands while keeping the total 286 

density constant (Jolliffe 2000). With this condition, the basal area increment ∆G defined by 287 

equation 8 can be considered as a function of the mixing proportion x. By definition, there is 288 

"transgressive over-yielding" if x is such that ( ) ( ) ( ){ }max 0 , 1G x G G∆ > ∆ ∆ ; in other words, 289 

( )G x∆  has a maximum value between 0 and 1. The optimum mixing proportion xmax then 290 

becomes the value of x where the derivative of ∆G(x) with respect to x is null, while ensuring 291 

that the derivative is positive for x < xmax and negative for x > xmax. 292 

A local sensitivity analysis was conducted to assess how xmax varied when one of the 293 

parameters was changed. As the different parameters were not expressed in the same units, we 294 
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computed elasticities rather than sensitivities. The elasticity of xmax to that of the parameter p 295 

is defined as ∂ln(xmax) / ∂ln(p). 296 

3 Results 297 

3.1 Difference between the individual-based model and the stand model 298 

The predictions of the individual-based model and those of the stand model were very 299 

similar (Figure 2). The mean absolute difference between the two models for the 2000-2005 300 

period was 0.051 m²/ha for oak (E1) and 0.023 m²/ha for pine (E2). This corresponds to a 301 

difference of 2.4% and 1.7% respectively between the two models. 302 

Figure 2 here 303 

However, the Wilcoxon signed rank test showed significant differences between the two 304 

models (for oak V = 44 and p-value = 0.00781; for pine V = 45 and p-value = 0.00390). The 305 

stand model gives values slightly lower than the individual model. However, despite these 306 

results, we considered that the difference between the two models was small enough to allow 307 

us to use the aggregated model to study the effect of mixing proportions on stand 308 

productivity. 309 

3.2 Optimum mixing proportion formula 310 

Since ( ) ( ) ( )1 2G x G x G x′ ′ ′∆ = ∆ + ∆ , we calculated the derivative of the oak growth function and 311 

the derivative of the pine growth function separately. Let us pose ( )1, 1 12 1 2s sm πβ= + , 312 

( )2, 1 1 14 1s s sm πβ πβ= + , 1, 1 1, 1 1, 1s s s s sn K Sλ= , and 2, 1 1, 2 1, 2s s s s sn K Sλ= , where s1 is one of the species 313 

and s2 the other one. For oaks we then obtained ( ) 2
1 1 1 1G x a x b x c′∆ = + +  with: 314 
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2
3

1,1 2,1
1 2 2 2 2

,1 ,1 ,2

2
1,1 2,1 2,1

1 1 1 1,12 2 2 2
,1 ,1 ,2 ,2

2,1 2,1
1 1 1 1 1,1 2,12 2 2

,1 ,2 ,2

3

22
2

G G G

G G G G

G G G

n nG
a

r r r

n n GnG
b r m

r r r r

Gn GnG
c r m Gm

r r r

π

α
π π

α α
π π

 
= −  

 

  
= − + +    

  

  
= + + + +    

  

 315 

And for pines we obtained ( ) 2
2 2 2 2G x a x b x c′∆ = + +  with: 316 

( )

( ) ( )

2 3
1,2

2 2
,2

2
1,2

2 2 1,2 2 1,22
,2

2

2 2 1,2 1,2 2 1,2 2 1,2 2 1,2 2 2,22
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3

2
2 3

2

G

G

G

n G
a

r

G n
b Gn r m

r

G
c Gn Gn Gn r m r m Gm

r

α

α α α

= −

= + +

 = − + + + + + −  

 317 

We can show (see Appendix) that the mixing proportion xmax corresponding to a maximum 318 

for the function ( )G x∆  is the solution given by: 319 

 
2 4

2max

b b ac
x

a

− − −=  (9) 320 

with 1 2a a a= + , 1 2b b b= +  and 1 2c c c= + . 321 

Thanks to model aggregation, we obtained an explicit expression for the optimum mixing 322 

proportion (xmax) as a function of the parameters of the stand model, the average dendrometric 323 

characteristics of each species, the total basal area and the spatial characteristics of the stand. 324 

3.3  Mixing effect on stand productivity 325 

For each plot, a mixing proportion between 0 and 1 was found that maximized the stand 326 

basal area increment. This mixing proportion varied between 38% and 74% depending on the 327 

plot (Figure 3). 328 

Figure 3 here 329 

The difference between the optimum mixing proportion (xmax) and the mixing proportion 330 

actually observed in the plots (xplot) varied from 0 to 34% (Table 4). The productivity gain 331 
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between these two proportions over the 6-year period was relatively low: 2.2% on average 332 

with a maximum of 9% (Table 4). 333 

Table 4 here 334 

Although the elasticities of xmax to the parameters of the model varied from one plot to 335 

another, a similar pattern was found across plots (Figure 4). The optimum mixing proportion 336 

xmax was the most sensitive to the oak parameters, then to the pine parameters, then to the 337 

inter-specific parameters. The parameters to which xmax was the most sensitive on average 338 

were K1,1 and λ1,1. For K1,1 the elasticity is negative, meaning that an increase in K1,1 brings a 339 

decrease in xmax. For λ1,1 the elasticity is also negative but, as λ1,1 is negative, it means that an 340 

increase in λ1,1 brings an increase in xmax. The parameter to which xmax was the least sensitive 341 

on average was K1,2, with a positive or negative sign that varied depending on the focal plot. 342 

From a quantitative point of view, a 1% increase in K1,1 (or a 1% decrease in λ1,1) led to a 343 

decrease in xmax of between 1 and 1.2% while a 1% increase in K1,2 led to a variation in xmax of 344 

between 0 and 0.2% depending on the plots. 345 

The parameter K1,1 indicates the degree of aggregation of oaks. When K1,1 increases the 346 

oaks are more aggregated and this leads to an increase in intra-specific competition. λ1,1 is the 347 

parameter that directly indicates the intensity of the intra-specific competition of oak because 348 

it is associated to the competition index calculated on oak competitors. Since λ1,1 is negative, 349 

if this parameter decreases, it means that the intensity of the intra-specific competition 350 

increases. We can therefore conclude that the optimum mixing proportion depends mainly on 351 

the characteristics of the oak population and more particularly on parameters involved in the 352 

intra-specific competition of oak (K1,1 and λ1,1). 353 
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4 Discussion 354 

4.1 Complementarity between species 355 

Our results suggest a positive effect of mixture on the productivity of oak-pine stands 356 

(Figure 3). This result is consistent with those of Brown (1992) established for young oak-357 

pine stands in an experimental design. Unlike Brown’s study (1992), we showed that, for 358 

some mixing proportions, stand productivity reached a maximum; this indicates a situation of 359 

"transgressive overyielding" (Figure 3). The gain between optimum productivity and current 360 

productivity of the plots ranged from 0 to 9%. Our individual model was developed for 361 

mixing proportions varying between 28% and 59%. Within this range, we can have 362 

confidence in the stand model predictions. However, outside this range, and particularly for 363 

extreme mixing proportions, the behaviour of the stand model is not guaranteed and may give 364 

unrealistic predictions (see for example, plot D20 on Figure 3). The results obtained here 365 

assume that the relationships fitted on mixed stands can be extrapolated to pure stands. 366 

The effect of mixture on productivity is based on two main assumptions: "niche 367 

complementarity" and "sampling effects" (Tilman et al. 2001). As we worked with only two 368 

species and a variable mixing proportion, the "niche complementarity" hypothesis is more 369 

likely to explain our findings. We studied a conifer-broadleaf forest with species having very 370 

contrasting traits for light interception. Consequently, the complementarity of the two species 371 

for the use of light is a strong hypothesis to explain a productivity increase in our mixed 372 

stands (Ishii et al. 2004; Ishii and Asano 2010). Common oak is able to grow in the different 373 

strata of the stand in contrast to Scots pine because oak is a more shade tolerant species than 374 

Scots pine (Niinemets and Valladares 2006). Moreover, in our model there was a non-375 

significant influence of oaks on pines (equation 2) probably because the pines had a greater 376 

girth than oaks on average (Table 1). These two arguments may explain why a pure stand of 377 
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pine could be less productive than a pine stand where oaks were able to colonize the lower 378 

strata. We also know that the light interception by the pine foliage is lower than the light 379 

interception by the oak foliage (Balandier et al. 2006; Sonohat et al. 2004). This may help to 380 

explain that in our oak model, the inter-specific competition was lower than the intra-specific 381 

competition (equation 1) which contributes to a higher productivity in mixtures than in pure 382 

stands of oak. The two species involved have different light requirements but also different 383 

root distribution patterns (Brown 1992). The complementarity in nutrient and water use could 384 

also contribute to a higher productivity in the mixture. The positive effect of mixture on stand 385 

productivity that we found could thus be explained by spatial segregations in the aerial and 386 

underground compartments. Our results concern the basal area productivity which does not 387 

include differences in wood density of both species (Pretzsch 2005). To go further in the 388 

study of the species complementarity, it would be interesting to estimate the effect of mixture 389 

on biomass productivity. Further research is also necessary to identify the ecological 390 

mechanisms that can explain the complementarity between these two species. 391 

4.2 Over-yielding in mixed forests: a dynamic state 392 

It is important to note that our models were developed from growth data corresponding to a 393 

given time period (2000-2005). It is likely that the parameters of these models change with 394 

time. For example, growth in juvenile Scots pine can be much faster than that of sessile oak 395 

(Brown 1992) and it is possible that the ratio between intra- and inter-specific competition 396 

changes over time for these species. This could explain why a situation of transgressive over-397 

yielding could occur in mature stands and not in young stands. The impact of the temporal 398 

dimension on our results can also be seen through the optimum mixing proportion formula. 399 

Indeed, we calculated the optimum mixing proportion in the subspace of the state space 400 

defined by known values for (G, ,1Gr , ,2Gr , 1r , 2r ). This means that xmax can be considered as a 401 
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function of the state variables: xmax(G, ,1Gr , ,2Gr , 1r , 2r ). As all these quantities, including the 402 

mixing proportion itself, change with time, a pending question is whether  403 

 ( ) ( ) ( ) ( ) ( ) ( )( )max ,1 ,2 1 2, , , ,G Gx t x G t r t r t r t r t=  (10) 404 

at a given time ensures that  405 

( ) ( ) ( ) ( ) ( ) ( )( )max ,1 ,2 1 2, , , ,G Gx t t x G t t r t t r t t r t t r t t+ ∆ = + ∆ + ∆ + ∆ + ∆ + ∆  406 

at the subsequent time. There is actually no reason that this should be the case. This brings 407 

up two questions: (1) Are there any initial values for (G, ,1Gr , ,2Gr , 1r , 2r ) such that equation 10 408 

would be verified at all times? (2) What type of silviculture - that is, an artificial modification 409 

of N1 and N2 - would make it possible to verify equation 10 starting from arbitrary values for 410 

(G, ,1Gr , ,2Gr , 1r , 2r )? The effect of mixture on stand productivity could be different for other 411 

periods not only quantitatively but also qualitatively. Including the time factor in our results 412 

will be the subject of future work. 413 

4.3 Factors that influence the optimum mixing proportion  414 

By simplifying and aggregating a distance-dependent individual-based model, we were 415 

able to express the productivity of the stand as a function of the stand characteristics, the 416 

model parameters and the mixing proportion (equation 8). Moreover, we have shown that it is 417 

possible to explicitly express the optimum mixing proportion as a function of the mean 418 

dendrometric characteristics of each species and the parameters of the individual model 419 

(equation 9). After applying the stand model to the 9 plots in the study, our results showed 420 

that there is some variability in the optimum value (Table 4). The optimum mixing proportion 421 

(xmax) ranged from 38% to 74% of oak depending on the plot. We can explain this variability 422 

among plots by studying the qualitative impact of the different factors on the optimum 423 

provided by the local sensitivity analysis (Figure 4). For example the elasticity of xmax to the 424 

spatial structure of oak (index K1,1) was negative. It means that the less aggregated the oaks 425 
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are, the fewer oaks there are within distance of 10 m on average, and consequently the more 426 

their growth is promoted. The optimum then moves towards a stand where oak is more 427 

represented. The same explanation can be used for pines and for the other factors. Finally, any 428 

change in a factor that promotes the productivity of a species moves the optimum towards a 429 

mixing proportion where the species is more represented. The local sensitivity analysis gave 430 

us also quantitative results. For a given set of dendrometric characteristics, the optimum 431 

mixing proportion was more sensitive to parameters involving oak - especially those 432 

concerning its intra-specific competition (K1,1 et λ1,1) - than to those involving pine (Figure 4). 433 

When the oak intra-specific competition increases, the optimum moves towards a stand with a 434 

higher proportion of pine. In other words, the more intra-specific competition decreases 435 

(decrease in K1,1 or increase in λ1,1), the more the optimum for productivity moves towards a 436 

pure stand of oak. Our plots had different spatial patterns (Table 3) because they probably 437 

experienced different ecological processes and different human actions (Ngo Bieng et al. 438 

2006). As it has been recently shown for coexistence issues (see Hart and Marshall 2009), this 439 

spatial structure has a direct impact on the optimum mixing proportion by changing intra and 440 

inter-specific competition.  441 

The mathematical equations that we developed can also inform us about the conditions 442 

leading to a situation of over-yielding. For oak, the term ( )2 2
1,1 1,1 ,1 1,2 1,2 ,2-G GK r K rλ λ  is a 443 

multiplicative factor for parameters a1 and b1 of the derivative of ( )1G x∆ . Therefore, if 444 

2 2
1,1 1,1 ,1 1,2 1,2 ,2G GK r K rλ λ=  the relationship between oak productivity and the mixing proportion is 445 

a straight line which means that there would be no effect of mixture on oak productivity. In 446 

the special case where we have the same average size for both sub-populations (,1 ,2G Gr r= ), a 447 

random distribution of oaks and no spatial interaction between oak and pine ( 2
1,1 1,2 10K K π= = ), 448 

this condition corresponds to equality between intra-specific competition and inter-specific 449 
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competition ( 1,1 1,2λ λ= ). The same result would have been achieved for pine if the parameter 450 

2,1λ  had been different from zero when the individual model was fitted (section 2.2). This 451 

finding is consistent with a known theoretical result: for two species A and B growing in a 452 

mixture, if the effect of A on B is the same as that of B on B and if the effect of B on A is the 453 

same as that of A on A, then the productivity of a species in a mixture is the product of its 454 

proportion by its productivity in a pure stand (Harper 1977). In this case, the relationships 455 

between the productivity of species and the mixing proportion are straight lines (left side of 456 

Figure 1). However, our results also show that spatial structure and average size of sub-457 

populations play a role in the conditions leading to over-yielding. This complements the 458 

results obtained from the Lokta-Volterra theoretical model of inter-specific competition 459 

(Loreau 2004). This means that, in the case of our two-species mixed forest, the condition 460 

"intra-specific competition greater than inter-specific competition" is not sufficient to ensure 461 

over-yielding. 462 

5 Conclusion 463 

Our results show that mixture has a positive effect on the productivity of oak-pine stands 464 

and that transgressive over-yielding can occur in these stands. These findings indicate good 465 

complementarity between these two species. Our modelling-based approach allowed us to 466 

express the optimum mixing proportion as a function of stand characteristics and parameters 467 

from a distance-dependent individual-based model. We showed that, for a given set of 468 

dendrometric characteristics, the optimum mixing proportion depends mainly on parameters 469 

involving the oak species, and especially those concerning its intra-specific competition. 470 

However, the mathematical equation for the optimum mixing proportion indicated that an 471 

intra-specific competition higher than inter-specific competition was not a sufficient condition 472 

to ensure over-yielding. We also showed how to use results obtained at the individual level to 473 
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obtain results on the behaviour of the whole system. As part of the issue on productivity in 474 

mixed forests, this kind of approach can help us to better understand the link between 475 

productivity, stand characteristics and growth parameters of species. 476 
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Tables 590 

 591 

Table 1. Dendrometric characteristics of the plots. S = plot area; ,1Gr  = quadratic mean radius for oak; ,2Gr  = 592 

quadratic mean radius for pine; 1r  = mean radius for oak; 2r  = mean radius for pine; (sd) = standart deviation; N1 593 

= number of oaks per hectare; N2 = number of pines per hectare; G1 = oak basal area per hectare; G2 = pine basal 594 

area per hectare. 595 

Plot 
S 

(ha) 
,1Gr  

(cm) 
,2Gr  

(cm) 
1r  (sd) 
(cm) 

2r  (sd) 
(cm) 

N1 

(trees.ha-1) 
N2 

(trees.ha-1) 
G1 

(m².ha-1) 
G2 

(m².ha-1) 

D02 0.951 11.1 17.7 10.0 (4.9) 17.3 (3.5) 354.3 96.7 13.8 9.5 
D108 0.800 8.5 16.9 8.0 (3.0) 16.7 (2.6) 353.8 231.3 8.1 20.8 
D20 1.015 8.1 16.2 7.5 (3.0) 15.9 (3.1) 481.7 162.5 9.9 13.4 
D27 0.625 8.2 17.7 7.3 (3.6) 17.3 (3.8) 396.8 128.0 8.3 12.6 
D42 0.500 8.2 12.5 7.7 (2.8) 12.0 (3.5) 472.0 280.0 9.8 13.6 
D49 0.994 8.7 15.2 8.0 (3.5) 14.8 (3.1) 493.0 237.4 11.8 17.2 
D534 0.500 8.2 18.1 7.6 (3.0) 17.9 (3.1) 488.0 170.0 10.2 17.6 
D563 0.500 12.3 16.2 11.4 (4.6) 16.1 (2.2) 242.0 212.0 11.4 17.4 
D78 0.700 9.7 20.9 9.1 (3.2) 20.5 (4.1) 407.1 112.9 12.0 15.6 

 596 
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Table 2. Parameter estimates for the distance-dependent individual-based model (equations 1 and 2). 597 

   Oak     Pine  

Plot  ααααk,1 

(mm) 
ββββk,1 

(mm.cm-1) 
λλλλ1,1 

(mm) 
λλλλ1,2 

(mm) 
 αααα2 

(mm) 
ββββk,2 

(mm.cm-1) 
λλλλ2,2 

(mm.cm-2) 
          
D02  5.99 0.1026 -0.354 -0.242  4.60 0.0566 -0.000361 
D108  12.08 0.0896 -0.354 -0.242  4.60 0.0620 -0.000361 
D20  12.45 0.0427 -0.354 -0.242  4.60 0.0633 -0.000361 
D27  12.73 0.0361 -0.354 -0.242  4.60 0.0512 -0.000361 
D42  9.62 0.1633 -0.354 -0.242  4.60 0.0813 -0.000361 
D49  13.01 0.0600 -0.354 -0.242  4.60 0.0511 -0.000361 
D534  7.73 0.1357 -0.354 -0.242  4.60 0.0476 -0.000361 
D563  6.00 0.1066 -0.354 -0.242  4.60 0.0491 -0.000361 
D78  4.00 0.1766 -0.354 -0.242  4.60 0.0337 -0.000361 

 598 

 599 

 600 
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Table 3. Values of the Ripley's function for oak (K1,1) and for pine (K2,2), and values of the inter-type function 601 

(K1,2) at a distance of 10 m in each plot. The 99% confidence limits under the null hypothesis are also given 602 

(upper and lower bounds). For the Ripley’s function, the null hypothesis corresponds to complete spatial 603 

randomness. For the inter-type function, the null hypothesis corresponds to population independence. 604 

  Plot 
K 

(m²) 
 D02 D108 D20 D27 D42 D49 D534 D563 D78 

K1,1 Observed 349.4 330.8 350.7 346.0 346.0 328.4 312.9 304.9 333.8 
 Upper 338.4 337.4 327.4 338.1 336.8 328.9 336.1 359.3 336.3 
 Lower 293.1 293.5 298.6 293.5 293.8 300.4 293.6 277.3 292.3 
           
K2,2 Observed 444.3 321.4 404.0 504.8 323.3 381.5 364.9 321.0 378.2 
 Upper 392.2 349.5 356.2 389.5 352.9 349.3 386.7 364.7 391.7 
 Lower 245.0 283.6 277.0 250.8 280.9 287.7 259.6 269.7 248.9 
           
K1,2 Observed 281.9 294.3 291.1 308.0 316.2 311.7 343.9 308.8 304.7 
 Upper 376.4 342.4 349.9 449.2 341.1 331.0 342.2 339.1 365.1 
 Lower 255.7 289.3 275.3 206.9 291.8 287.6 286.7 296.1 278.8 

 605 
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Table 4. Optimum mixing proportion (xmax) and observed mixing proportion (xplot) for each plot; ∆G(xmax) = 606 

stand basal area increment for x = xmax; ∆G(xplot) = stand basal area increment for x = xplot; Gain = relative 607 

difference between ∆G(xmax) and ∆G(xplot). 608 

Plot  xmax 

(%) 
∆∆∆∆G(xmax) 

(m²/ha/an) 
 xplot. 

(%) 
∆∆∆∆G(xplot) 

(m²/ha/an) 
 Gain 

(%) 
D02  59.3 0.477  59.2 0.477  0.00 

D108  43.1 0.591  28.0 0.561  4.91 

D20  37.5 0.555  42.6 0.552  0.61 

D27  46.5 0.295  39.8 0.292  0.96 

D42  45.7 0.374  41.9 0.373  0.21 

D49  46.2 0.647  40.8 0.642  0.64 

D534  40.8 0.291  36.7 0.290  0.40 

D563  73.6 0.320  39.6 0.291  9.05 

D78  57.3 0.401  43.6 0.387  3.41 

 609 
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Figure captions 610 

 611 

Figure 1. The three main types of productivity response for a mixed stand composed of two species A and B 612 

according to the mixing proportion (adapted from Harper, 1977). Total density is assumed to be constant for the 613 

different mixing proportions. On the left, mixture has no effect on stand productivity: productivity of mixed 614 

stands is equivalent to the juxtaposition of pure stands. In the middle, mixture has a negative effect on stand 615 

productivity: productivity of mixed stands is lower than the productivity expected in juxtaposed pure stands. On 616 

the right, mixture has a positive effect on stand productivity: productivity of mixed stands is higher than the 617 

productivity expected in juxtaposed pure stands. 618 

 619 

Figure 2. Comparison between the distance-dependent individual-based model and the stand model for oak (a) 620 

and pine (b) and for the 9 plots. Basal Area Increment = stand basal area increment predicted by the models over 621 

the 2000-2005 period. Individual model: distance-dependent individual-based model (equations 1 and 2). Stand 622 

model: stand model obtained by aggregation of the individual model (equation 7). 623 

 624 

Figure 3. Stand productivity according to the mixing proportion for the 9 plots and for each species. The solid 625 

curve represents total stand productivity. The curve with black dots represents pine productivity. The curve with 626 

white dots represents oak productivity. The dashed vertical line represents the mixing proportion observed in the 627 

plot (xplot). The solid vertical line represents the optimum mixing proportion (xmax). 628 

 629 

Figure 4. Elasticiticies of xmax to the 10 parameters of the stand model for each plot. The bars show the absolute 630 

values of the elasticities, the sign of the elasticities being written on top of each bar. 631 

 632 
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Appendix 653 

Aggregating the distance-independent individual-based model 654 

Given a distance-independent individual-based model: 655 

 , ,i j j j i jr girthγ β∆ = +  (11) 656 

where ∆ri,j is the radial increment of a tree i belonging to a species j between time t and 657 

time t+∆t, girthi,j is the girth at time t for a tree i. Starting from equation 11, we can develop a 658 

stand model for species j using an aggregation approach. The stand can be defined with three 659 

aggregated variables for each species: the number of trees Nj, the mean radius jr  and the basal 660 

area Gj. The dynamic equations of these variables must be defined using equation 11. Since 661 

we assume that there is neither mortality nor recruitment between t and t+∆t, we have 662 

0jN∆ = . The mean radius is defined as follows: 663 

( ) ,
1

1 jN

j i j
ij

r t r
N =

= ∑  664 

where ( )jr t  is the mean radius at time t. The mean radius increment can thus be written as 665 

a function of the individual radial increments:  666 

( ) ( ) ( ) ( ), , ,
1 1 1

1 1 1j j jN N N

j j j i j i j i j
i i ij j j

r r t t r t r t t r t r
N N N= = =

∆ = + ∆ − = + ∆ − = ∆∑ ∑ ∑  667 

It follows from equation 11 that: 668 

,
1

2
jN

i j j j j j j
i

r N N rγ πβ
=

∆ = +∑  669 

And the mean radius increment is given by: 670 

2j j j jr rγ πβ∆ = +  671 

Similarly, ∆Gj can be written as a function of the individual basal area increments ( ,i jg∆ ): 672 

( ) ( ) ( ) ( ), , ,
1 1 1

j j ji N i N i N

j i j i j i j
i i i

G G t t G t g t t g t g
= = =

= = =

∆ = + ∆ − = + ∆ − = ∆∑ ∑ ∑  673 
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where gi,j is the basal area of a tree i and ( ) ( ), , ,i j i j i jg g t t g t∆ = + ∆ − . Since ( ) ( )( )2

, ,i j i jg t r tπ=  674 

we can write ( ),i jg t t+ ∆  as a function of ( ),i jr t , ( ),i jr t t+ ∆  and ,i jr∆ : 675 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )2 2 2 2

, , , , , , , ,2i j i j i j i j i j i j i j i jg t t r t t r t r r t r t r rπ π π+ ∆ = + ∆ = + ∆ = + ∆ + ∆  676 

Therefore: 677 

( ) ( )2

, , , ,2i j i j i j i jg r t r rπ π∆ = ∆ + ∆  678 

It follows from equation 11 that: 679 

 ( ) ( ) ( )( ) ( ) ( )2

, , , , , ,2 2i j i j j i j j i j j i j j i jr t r r t r t r t g tγ β π γ β∆ = + = +  680 

and 681 

 ( ) ( ) ( )( ) ( ) ( )2 22 2 2 2 2
, , , , ,4 4 4 4i j j j j i j j i j j j j i j j i jr r t r t r t g tγ γ β π β π γ γ β π β π∆ = + + = + +  682 

We can now express the individual basal area increment as a function of ( ),i jr t , ( ),i jg t  and 683 

the parameters of equation 11: 684 

( ) ( ) ( ) ( )2
, , ,2 1 2 4 1i j j j j i j j j i jg r t g tπγ πγ πβ πβ πβ∆ = + + + +  685 

Since 
1

1
jN

j
i

N
=

=∑ , ( ),
1

jN

i j j j
i

r N r t
=

=∑  and ( ),
1

jN

i j j
i

g G t
=

=∑ , we can sum the individual basal area 686 

increments to obtain the stand basal area increment: 687 

( ) ( )2 2 1 2 4 1j j j j j j j j j jG N N r Gπγ πγ πβ πβ πβ∆ = + + + +  688 

Therefore, the system of equations for the stand model is: 689 

( ) ( )2 2 1 2 4 1

2

0

j j j j j j j j j j

j j j j

j

G N N r G

r r

N

πγ πγ πβ πβ πβ

γ πβ

∆ = + + + +
∆ = +
∆ =

 690 

 691 

 692 

 693 

 694 
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Optimum mixing proportion 695 

Since ( )G x′∆  is a polynomial equation of the second degree, its roots are:  696 

2

1

4

2

b b ac
x

a

− − −=  and 
2

2

4

2

b b ac
x

a

− + −=  697 

The table below shows that for the nine plots, a is always positive so the function ( )G x′∆  is 698 

convex. It is negative between x1 and x2 and positive for x < x1 et x > x2. x1 is thus a maximum 699 

for the function ( )G x∆ . 700 

Coefficients and roots of ( )G x′∆  for the 9 plots. 701 

Plot a b c x1 x2 

D02 1493 -64785 37871 0.593 43 

D108 14688 -168693 69966 0.431 11 

D20 15403 -172769 62590 0.375 11 

D27 6466 -83284 37311 0.465 12 

D42 5225 -74980 33143 0.457 14 

D49 13152 -185208 82799 0.462 14 

D534 9357 -102027 40109 0.408 10 

D563 268 -31239 22837 0.736 116 

D78 5457 -95660 52986 0.573 17 

 702 


