
HAL Id: hal-00675553
https://hal.science/hal-00675553v1

Preprint submitted on 1 Mar 2012 (v1), last revised 19 Oct 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vapnik-Chervonenkis Dimension of Axis-Parallel Cuts
Servane Gey

To cite this version:

Servane Gey. Vapnik-Chervonenkis Dimension of Axis-Parallel Cuts. 2012. �hal-00675553v1�

https://hal.science/hal-00675553v1
https://hal.archives-ouvertes.fr


Vapnik-Chervonenkis Dimension of Axis-Parallel

Cuts

Servane Gey∗

March 1, 2012

Abstract

The Vapnik-Chervonenkis dimension (VC dimension) of the set of
half-spaces of Rd with frontiers parallel to the axes is computed exactly.
It is shown that this VC dimension is smaller than the intuitive value
of d. An additional approximation using the Stirling’s formula is given.
This result may be used to evaluate the performance of classifiers or
regressors based on dyadic partitioning of Rd for instance. Algorithms
using axis-parallel cuts to partition R

d are often used to reduce the
computational time of such estimators when d is large.
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1 Introduction

The Vapnik-Chervonenkis dimension (denoted by VC dimension) of a set of
subsets, or equivalently of a function space, has been introduced by Vapnik
and Chervonenkis [9, 10] to measure the complexity of the corresponding
set. It plays an important role in many applications. In particular, the VC
dimension appears commonly in the statistical learning area when evaluating
the performance of classifiers or regressors.
For example, Vapnik’s theory in the classification framework is now widely
known (see [3] for instance): let (X,Y ) be a couple of variables taking values
in R

d×{0; 1}, and let L be a sample of n independent replications of (X,Y ).
If f̂ is a classifier minimizing the average misclassification rate of L on a set
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of classifiers having finite VC dimension V , then, if no assumption is made
on the distribution P of (X,Y ), the performance of f̂ is evaluated as follows:

EL

[

P
(

f̂(X) 6= Y
)]

6 C1bias
2(f̂) + C2

√

V

n
, (1)

where EL denotes the expectation with respect to the sample distribution,
bias(f̂) denotes the bias of the classifier f̂ , and C1 and C2 are absolute con-
stants.

Functional estimates defined on partitions of Rd are often used to esti-
mate relationships between two variables X ∈ R

d and Y ∈ {0; 1} or Y ∈ R

(such as histograms, piecewise polynomials, or splines for example). In many
cases, the VC dimension of the set of subsets used to construct the partition
appears inside risk bounds when evaluating the performance of such estima-
tors. For example, if the set used is the set of all half-spaces of Rd, often its
VC dimension d+ 1 has to be taken into account.
When d is large, it is often computationally easier to construct partitions us-
ing axis-parallel cuts. For example, some theoretical developments on dyadic
partitions of R2 are given in [4, 1], and the VC dimension of axis-parallel
cuts appears more particularly in the results obtained on the performance
of classification and regression binary decision trees (CART) introduced by
Breiman et. al [2] in 1984, and theoretically studied in [8, 7, 5, 6].

In the present paper, we compute the VC dimension of axis-parallel cuts
after a slight reminder about VC dimension. A good approximation of the
thus computed VC dimension is also given via the Stirling’s formula.

2 Reminder about VC Dimension

The VC dimension of a set A of subsets of some measurable space X is based
on counting the number of intersects of A with a finite set of fixed points in
X . This count is closely related to the shatter coefficient.

Definition 1 (Shatter Coefficient). Let A be a set of subsets of some

measurable space X . For n > 1, the shatter coefficient of A of order n is

defined as

SA(n) = max
(x1,...,xn)∈Xn

|{{x1, . . . , xn} ∩A ; A ∈ A}| .
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Example : A = {]−∞;x] ; x ∈ R}. Then, for all n > 1, SA(n) = n+ 1.

Hence, the VC dimension is defined as follows.

Definition 2 (Vapnik-Chervonenkis Dimension). Let A be a set of

subsets of some measurable space X . Then (x1, . . . , xn) ∈ X n will be said to

be shattered by A if all subsets of {x1; . . . ;xn} are covered by A, that is if

|{{x1, . . . , xn} ∩A ; A ∈ A}| = 2n.
The Vapnik-Chervonenkis dimension V C(A) of A is then defined as the

maximal integer n such that there exists n points in X shattered by A, i.e.

V C(A) = max {n ; SA(n) = 2n} .

If no such n exists, then V C(A) = +∞.

Thus, it is easily seen that the larger V C(A), the more complex A.

Examples

1) A = {]−∞;x] ; x ∈ R}. Since, for all n > 1, SA(n) = n + 1, then
V C(A) = 1.

2) If A is the set of all half-spaces in R
d, then V C(A) = d+ 1.

3 VC Dimension of axis-parallel cuts

We give a formula to compute the VC dimension of axis-parallel cuts in R
d.

Since the obtained formula is not always easy to handle, an approximation
is also given.

Lemma 1. Let

Ad =
{

{x ∈ R
d ; xi 6 a}; i = 1, . . . , d , a ∈ R

}

.

Then

V C(Ad) = max

{

n ;

(

n

⌊n/2⌋

)

6 d

}

,

where ⌊n/2⌋ denotes the integer part of n/2.
Furthermore, the following approximation of V C(Ad) is available for all

d > 3:
log d

log 2
− 1.18 6 V C(Ad) 6 d.
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Intuitively, since Ad is a subset of half-spaces of Rd, it could be natural to
think that its VC dimension is of order d because the VC dimension of all
half-spaces of Rd is equal to d+ 1. Thus, Lemma 1 shows that, for some d,
V C(Ad) is far from d.

Remark: a simple calculation gives V C(A1) = 1 and V C(A2) = 2.

Proof. The idea is that, to have n points (x1, . . . , xn) shattered byAd, all the
subsets of {x1, . . . , xn} should be covered by Ad. But, if there exists p 6 n
such that there is more than d+1 subsets of {x1, . . . , xn} having p elements,
then Ad will miss at least

(n
p

)

− d subsets: let n > 1 and (x1, . . . , xn) be

n points in R
d. Suppose that n is such that

(

n

⌊n/2⌋

)

> d. This means

that there are at least d+ 1 subsets of {x1, . . . , xn} of size ⌊n/2⌋. For each
coordinate i = 1, . . . , d, let us denote by xi(.) the ordered statistic computed

from the ith coordinate of (x1, . . . , xn), that is, for all i = 1, . . . , d,

xii(1) 6 xii(2) 6 . . . 6 xii(n).

Let p = ⌊n/2⌋ and let

Bp =
{

{xi(1); . . . ;xi(p)} ; i = 1, . . . , d and |{xi(1); . . . ;xi(p)}| = p
}

,

Bc
p = {B ⊂ {x1, . . . , xn}; |B| = p and B /∈ Bp} .

Hence Bp is covered by Ad (by simply taking A = {xi 6 (xii(p) + xii(p+1))/2}
for each coordinate), and we have that:

|Bp| 6 d and |Bc
p| >

(

n

p

)

− d > 0.

Let B ∈ Bc
p and A = {xi 6 a} ∈ Ad. If |{x1, . . . , xn} ∩ A| 6= p, then

{x1, . . . , xn}∩A 6= B. Else, since {x1, . . . , xn}∩A = {xj ; xij 6 a}, we have
that xii(j) 6 a for all j = 1, . . . , p, and xii(j) > a for all j = p + 1, . . . , n. So

{x1, . . . , xn} ∩ A = {xi(1); . . . ;xi(p)} and |{xi(1); . . . ;xi(p)}| = p, leading to
{x1, . . . , xn}∩A ∈ Bp, and then to {x1, . . . , xn}∩A 6= B. So, for all B ∈ Bc

p

and all A ∈ Ad, {x1, . . . , xn} ∩A 6= B.

So, if

(

n

⌊n/2⌋

)

> d, (x1, . . . , xn) can not be shattered by Ad. Thus

V C(Ad) 6 max

{

n ;

(

n

⌊n/2⌋

)

6 d

}

.
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Let n > 1 such that

(

n

⌊n/2⌋

)

6 d. Let (x1, . . . , xn) be n points of Rd defined

as follows: for each coordinate i = 1, . . . ,
( n
⌊n/2⌋

)

, let {i1; . . . ; i⌊n/2⌋} be the

ith subset of ⌊n/2⌋ indices in {1; . . . ;n}, where the indices are denoted in
ascending order, i.e.:

1 6 i1 < . . . < i⌊n/2⌋ 6 n.

Since

(

n

⌊n/2⌋

)

6 d, we obtain

(

n

⌊n/2⌋

)

distinct subsets of indices.

Hence we take for each such coordinate

xiik = k.

Then the remaining values of (x1, . . . , xn) are taken as follows:

• Since

(

n

⌊n/2⌋ + 1

)

6 d, for each subset {i1; . . . ; i⌊n/2⌋+1} of {1; . . . ;n}
with ⌊n/2⌋ + 1 elements, there exists i′ ∈ {1; . . . ;

( n
⌊n/2⌋

)

} such that

{i1; . . . ; i⌊n/2⌋} = {i′1; . . . ; i′⌊n/2⌋}. Then take xi
′

i⌊n/2⌋+1
= ⌊n/2⌋+1. Let

us note that, if n is odd, there is a bijection between i and i′.

• Let {j1; . . . ; jm} = {j /∈ {i1; . . . ; i⌊n/2⌋+1}}, with j1 < . . . < jm, and

let j0 = i⌊n/2⌋+1. Then take xi
′

jk
= xi

′

jk−1
+ 1.

If not filled, the last coordinates are set to be equal to n.
Hence, we obtain that, for all j /∈ {i1; . . . ; i⌊n/2⌋}, xij > ⌊n/2⌋ + 1.
Then (x1, . . . , xn) is shattered byAd: for p ∈ {0; . . . ;n}, let B = {xi1 ; . . . ;xip} ⊂
{x1, . . . , xn}, with 1 6 i1 < i2 < . . . < ip 6 n as soon as p 6= 0.
If p = 0, let

i0 = argmin16i6d min
j

xij ,

and take A = {xi0 6 minj x
i0
j − 1}. Then B = {x1, . . . , xn} ∩A = ∅.

If p = n, let
in = argmax16i6dmax

j
xij,

and take A = {xin 6 maxj x
in
j + 1}. Then B = {x1, . . . , xn} ∩ A =

{x1, . . . , xn}.
If 0 < p 6 ⌊n/2⌋, let A ∈ Ad be the subset defined by A = {xi 6 p+ 1/2},
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with i the coordinate corresponding to a subset of indices {i1; . . . ; i⌊n/2⌋} con-
taining {i1; . . . ; ip}. Then, by definition of (xi1, . . . , x

i
n), B = {x1, . . . , xn} ∩

A.
If ⌊n/2⌋ + 1 6 p < n, let i′ be the coordinate corresponding to the config-
uration {i1; . . . ; i⌊n/2⌋+1} (as defined by (x1, . . . , xn)). Let A ∈ Ad be the

subset defined by A = {xi′ 6 p + 1/2}. Then, by definition of (xi
′

1 , . . . , x
i′
n),

B = {x1, . . . , xn} ∩A.
Thus

V C(Ad) > max

{

n ;

(

n

⌊n/2⌋

)

6 d

}

.

Hence, since

V C(Ad) = max

{

n ;

(

n

⌊n/2⌋

)

6 d

}

,

we have V C(Ad) 6 d.

Then, the lower bound of V C(Ad) is computed by using the Stirling’s for-
mula: for all n > 1 we have

√
2πe−(n+1)(n+ 1)n+

1
2 6 n! 6

√
2πe−(n+1)e

1
12(n+1) (n+ 1)n+

1
2 .

If n is even, we obtain that

(

n

n/2

)

6 e
1

12(n+1)
e√
2π

2n+1 (n + 1)n+1/2

(n+ 2)n+1
6

e1+
1
24√

2π
2n+1.

If n is odd, we obtain that

(

n

⌊n/2⌋

)

6 e
1

12(n+1)
e√
2π

2n+1 (n + 1)(n+1)/2

(n+ 3)n/2+1
6

e1+
1
24√

2π
2n+1.

So, if

e1+
1
24√

2π
2n+1

6 d,

then

(

n

⌊n/2⌋

)

6 d. Taking the logarithm leads to the lower bound.
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