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Abstract

Algorithms in high dimension uses axis-parallel cuts to partition Rd in order
to reduce the computational time of classifiers or regressors. Evaluating the
complexity of such partitions is then crucial to evaluate estimation perfor-
mance.
In this framework, we show that the Vapnik-Chervonenkis dimension (VC
dimension) of the set of half-spaces of Rd with frontiers parallel to the axes
is of the order of log2 d.
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1. Introduction

The VC dimension of a set of subsets has been introduced by Vapnik and
Chervonenkis [9, 10] to measure its complexity. The VC dimension of a real-
valued function space F is then the VC dimension of {{x; f(x) > 0}; f ∈ F}.
In particular, the VC dimension of sets of classifiers or regressors appears
commonly in the statistical learning area when evaluating their performance.
For example, Vapnik’s theory in the classification framework is now widely
known (see [3] for instance): let (X,Y ) be a couple of variables taking values
in Rd×{0; 1}, and let L be a sample of n independent replications of (X,Y ).
If f̂ is a classifier minimizing the average misclassification rate of L on a set
of classifiers having finite VC dimension V , then, without further assump-
tion on the distribution P of (X,Y ), the performance of f̂ is evaluated as
follows:

EL
[
P
(
f̂(X) 6= Y

)]
6 C1bias

2(f̂) + C2

√
V

n
, (1)
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where EL denotes the expectation with respect to the sample distribution,
bias(f̂) denotes the bias of the classifier f̂ , and C1 and C2 are absolute con-
stants.

Functional estimates defined on partitions of Rd are often used to esti-
mate relationships between two variables X ∈ Rd and Y ∈ {0; 1} or Y ∈ R
(such as histograms, piecewise polynomials, or splines for example). In many
cases, the VC dimension of the set of subsets used to construct the partition
appears inside risk bounds when evaluating the performance of such estima-
tors. For example, if the set used is the set of all half-spaces of Rd, often its
VC dimension d+ 1 has to be taken into account.
When d is large, it is often computationally easier to construct partitions us-
ing axis-parallel cuts. For example, some theoretical developments on dyadic
partitions of R2 are given in [4, 1], and the VC dimension of axis-parallel
cuts appears more particularly in the results obtained on the performance
of classification and regression binary decision trees (CART) introduced by
Breiman et. al [2] in 1984, and theoretically studied in [8, 7, 5, 6]. In
particular, it is to be found in the results of [6] that the VC dimension of
axis-parallel cuts is of order log2 d.

2. Reminder about VC Dimension

The VC dimension of a set A of subsets of some measurable space X is
based on counting the number of intersects of A with a finite set of fixed
points in X .

Definition 1 (Vapnik-Chervonenkis Dimension). Let A be a set of
subsets of some measurable space X . Then (x1, . . . , xn) ∈ X n will be said to
be shattered by A if all subsets of {x1; . . . ;xn} are covered by A, that is if
|{{x1, . . . , xn} ∩A ; A ∈ A}| = 2n.
The Vapnik-Chervonenkis dimension V C(A) of A is then defined as the
maximal integer n such that there exists n points in X shattered by A, i.e.

V C(A) = max

{
n ; max

(x1,...,xn)∈Xn
|{{x1, . . . , xn} ∩A ; A ∈ A}| = 2n

}
.

If no such n exists, then V C(A) = +∞.

Thus, it is easily seen that the larger V C(A), the more complex A.

For example, if A = {]−∞;x] ; x ∈ R}, V C(A) = 1; or if A is the set of
all half-spaces in Rd, then V C(A) = d+ 1.
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Since axis-parallel cuts is a subset of the set of all half-spaces in Rd, it could
be natural to think that its VC dimension is of order d. Actually, it is shown
in what follows that it is of order log2 d

3. VC Dimension of axis-parallel cuts

We give a formula to compute the VC dimension of axis-parallel cuts in
Rd. Since the obtained formula is not always easy to handle, an approxima-
tion is also given.

Lemma 1. Let

Ad =
{
{x ∈ Rd ; xi ≤ a}; i = 1, . . . , d , a ∈ R

}
.

Then

V C(Ad) = max

{
n ;

(
n

bn/2c

)
≤ d
}
,

where bn/2c denotes the integer part of n/2.
Furthermore, the following approximation of V C(Ad) is available for all
d > 3:

log2 d+
log2 π − 1

2
6 V C(Ad) 6

3

2
log2 d+ 0.63.

Remark: A simple calculation gives V C(Ad) = d for d 6 3.

Figure 1 shows that V C(Ad) is a piecewise constant function of the space
dimension d, which increases at a rate of order log2 d. It also shows that the
lower bound of Lemma 1 is conveniently sharp; the upper bound is sharp
for d small, and then grows farther apart from V C(Ad). The bounds are
obtained thanks to the Stirling’s formula, which is really sharp. Actually,
an approximation factor depending on d has to be calibrated, leading to the
observed behavior when d grows.

Proof. Let n > 1 and (x1, . . . , xn) be n points in Rd. The idea is that, if
there exists p ≤ n such that there is more than d+ 1 subsets of {x1, . . . , xn}
having p elements, then Ad will miss at least

(
n
p

)
−d subsets: suppose that n

is such that

(
n

bn/2c

)
> d. This means that there are at least d+1 subsets of

{x1, . . . , xn} of size bn/2c. For each coordinate i = 1, . . . , d, let us denote by
xi(.) the ordered statistic computed from the ith coordinate of (x1, . . . , xn),
that is, for all i = 1, . . . , d,

xii(1) ≤ x
i
i(2) ≤ . . . ≤ x

i
i(n).
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Figure 1: V C(Ad) and Stirling’s bounds with respect to the space dimension d.

Let p = bn/2c and let

Bp =
{
{xi(1); . . . ;xi(p)} ; i = 1, . . . , d and |{xi(1); . . . ;xi(p)}| = p

}
,

Bcp = {B ⊂ {x1, . . . , xn}; |B| = p and B /∈ Bp} .

Hence Bp is covered by Ad (by simply taking A = {xi ≤ (xii(p) + xii(p+1))/2}
for each coordinate), and we have that:

|Bp| ≤ d and |Bcp| >
(
n

p

)
− d > 0.

Let B ∈ Bcp and A = {xi ≤ a} ∈ Ad. If |{x1, . . . , xn} ∩ A| 6= p, then
{x1, . . . , xn}∩A 6= B. Else, since {x1, . . . , xn}∩A = {xj ; xij ≤ a}, we have

that xii(j) ≤ a for all j = 1, . . . , p, and xii(j) > a for all j = p + 1, . . . , n. So

{x1, . . . , xn} ∩ A = {xi(1); . . . ;xi(p)} and |{xi(1); . . . ;xi(p)}| = p, leading to
{x1, . . . , xn}∩A ∈ Bp, and then to {x1, . . . , xn}∩A 6= B. So, for all B ∈ Bcp
and all A ∈ Ad, {x1, . . . , xn} ∩A 6= B.
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So, if

(
n

bn/2c

)
> d, (x1, . . . , xn) can not be shattered by Ad. Thus

V C(Ad) ≤ max

{
n ;

(
n

bn/2c

)
≤ d
}
.

Let n > 1 such that

(
n

bn/2c

)
≤ d. Let (x1, . . . , xn) be n points of Rd defined

as follows: for each coordinate i = 1, . . . ,
(

n
bn/2c

)
, let {i1; . . . ; ibn/2c} be the

ith subset of bn/2c indices in {1; . . . ;n}, where the indices are denoted in
ascending order, i.e.:

1 ≤ i1 < . . . < ibn/2c ≤ n.

Since

(
n

bn/2c

)
≤ d, we obtain

(
n

bn/2c

)
distinct subsets of indices.

Hence we take for each such coordinate

xiik = k.

Then the remaining values of (x1, . . . , xn) are taken as follows:

• Since

(
n

bn/2c+ 1

)
≤ d, for each subset {i1; . . . ; ibn/2c+1} of {1; . . . ;n}

with bn/2c + 1 elements, there exists i′ ∈ {1; . . . ;
(

n
bn/2c

)
} such that

{i1; . . . ; ibn/2c} = {i′1; . . . ; i′bn/2c}. Then take xi
′
ibn/2c+1

= bn/2c+1. Let

us note that, if n is odd, there is a bijection between i and i′.

• Let {j1; . . . ; jm} = {j /∈ {i1; . . . ; ibn/2c+1}}, with j1 < . . . < jm, and

let j0 = ibn/2c+1. Then take xi
′
jk

= xi
′
jk−1

+ 1.

If not filled, the last coordinates are set to be equal to n.
Hence, we obtain that, for all j /∈ {i1; . . . ; ibn/2c}, xij > bn/2c+ 1.
Then (x1, . . . , xn) is shattered byAd: for p ∈ {0; . . . ;n}, letB = {xi1 ; . . . ;xip} ⊂
{x1, . . . , xn}, with 1 ≤ i1 < i2 < . . . < ip ≤ n as soon as p 6= 0.
If p = 0, let

i0 = argmin1≤i≤d min
j
xij ,

and take A = {xi0 ≤ minj x
i0
j − 1}. Then B = {x1, . . . , xn} ∩A = ∅.

If p = n, let
in = argmax1≤i≤d max

j
xij ,
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and take A = {xin ≤ maxj x
in
j + 1}. Then B = {x1, . . . , xn} ∩ A =

{x1, . . . , xn}.
If 0 < p ≤ bn/2c, let A ∈ Ad be the subset defined by A = {xi ≤ p+ 1/2},
with i the coordinate corresponding to a subset of indices {i1; . . . ; ibn/2c} con-
taining {i1; . . . ; ip}. Then, by definition of (xi1, . . . , x

i
n), B = {x1, . . . , xn} ∩

A.
If bn/2c + 1 ≤ p < n, let i′ be the coordinate corresponding to the config-
uration {i1; . . . ; ibn/2c+1} (as defined by (x1, . . . , xn)). Let A ∈ Ad be the

subset defined by A = {xi′ ≤ p+ 1/2}. Then, by definition of (xi
′
1 , . . . , x

i′
n),

B = {x1, . . . , xn} ∩A.
Thus

V C(Ad) > max

{
n ;

(
n

bn/2c

)
6 d

}
.

The bounds are computed thanks to the Stirling’s formula: for all n > 1,

e
1

12n+1

√
2πn

(n
e

)n
≤ n! ≤ e

1
12n

√
2πn

(n
e

)n
.

It follows by a simple computation that, for all n > 1,

(
n

bn/2c

)
6

2n+1/2

√
π

,

leading to the lower bound of V C(Ad).
Since V C(Ad) 6 d is increasing with d, we have V C(Ad) > 3 for all d > 3.
So we will focus only on integers 3 6 n 6 d to compute the upper bound.
We obtain from the Stirling’s formula:

• if n is even (
n

n/2

)
> e

− 9n+1
6n(12n+1

2n+1/2

√
πn

> e−
14
333

2n+1/2

√
πd

,

• if n is odd(
n

bn/2c

)
>

(
1− 1

n2

)−n+1
2
√
n− 1

n+ 1
e
− 2n

6(n2−1)
+ 1

12n+1
2n+1/2

√
πn

>
81

64
√

2
e−

29
396

2n+1/2

√
πd

.

Thus, it follows that, for all n > 3 such that

(
n

bn/2c

)
≤ d,

81

64
√

2
e−

29
396

2n+1/2

√
π
≤ d

3
2 ,

leading to the upper bound.
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