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Towards Temporal Mobility Markov Chains

In [START_REF] Gambs | Show me how you move and i will tell you who you are[END_REF], we defined a type of mobility model that we coined as mobility Markov chain (MMC), which can represent in a compact yet precise way the mobility behaviour of an individual. In short, a MMC is a probabilistic automaton in which states represent points of interest (POIs) of an individual and transitions between states corresponds to a movement from one POI to another one. The automaton is probabilistic in the sense that a transition between POIs is non deterministic but rather that there is a probability distribution over the transitions that corresponds to the probability of moving from one POI to another (edges are directed). Note that Markov models are a popular technique that have been used in the past for the study of motion (for instance see [START_REF] Yan | SeMiTri: A Framework for Semantic Annotation of Heterogeneous Trajectories[END_REF] for a recent work using hidden Markov networks to extract POIs from geolocated data).

More formally, a MMC is a transition system composed of:

• A set of states P = {p 1 , . . . , p n }, in which each state p i corresponds to a POI (or a set of POIs). These POIs may have been learned for instance by running a clustering algorithm on the trail of mobility traces from an individual or simply by collecting the locations that he has posted on a geolocated social network such as Foursquare or Gowalla. Each state (i.e. POI) is therefore associated with a physical location.Moreover, it is often possible to attach a semantic label to the states of the mobility Markov chain, such as for instance "home" instead of simply p 1 or "work" instead of p 2 . • A set of transitions, T = {t 1,1 , . . . , t n,n }, where each transition t i,j represents a movement from the state p i to the state p j . Each transition t i,j has a probability assigned to it that corresponds to the probability of moving from state p i to state p j . Sometimes an individual can move from one POI, go somewhere else (but not to one of his usual POIs) and come back later to the same POI. For example, an individual might leave his house to go wash his car in a facility near his home and come back 30 minutes later. This type of behaviour is materialized in the mobility Markov chain by a transition from one state to itself. A MMC can be represented either as a transition matrix or as a directed graph in which nodes correspond to states and there is a directed weighted edge between two nodes if and only if the transition probability between these two nodes is non-null. The sum of all the edges' weights leaving from a state is equal to 1.

For instance, consider for illustration purpose, an individual, that we refer thereafter as "Alice", who has a set of 4 important POIs that she visits often plus some other POIs that are less important to her mobility. In order to represent her mobility behaviour, we could define a MMC composed of 5 states, one for each important POI plus a last one that will contain all the infrequent POIs. Suppose now that we have been able to collect her trail of mobility traces (e.g., by tracking her mobile phone [START_REF] Killijian | Beyond san francisco cabs : Building a *-lity mining dataset[END_REF]), then possibly we could have learnt the following MMC (Figure 1). For more details, about MMC we refer the reader to [START_REF] Gambs | Show me how you move and i will tell you who you are[END_REF]. 

II. INTRODUCING TIME INTO MOBILITY MARKOV CHAINS

In this section, we describe an algorithm for learning Temporal Mobility Markov Chains (TMMC). This algorithm is an extension of the one described in [START_REF] Gambs | Show me how you move and i will tell you who you are[END_REF] to which we add the temporal aspect. Basically, the gist of this algorithm is to decompose time into n different discrete timeslices. For example, with n = 4, we can observe mobility in one of the following timeslices: morning, afternoon, evening and night. Each POI from the original MMC will thus be represented by n different states in the TMMC, one for each timeslice. end if 13: end for 14: Sort the clusters in f reqP OIs by decreasing order according to their densities 15: for each cluster C i in f reqP OIs (for end if 29: end for 30: Squash all the successive mobility traces sharing the same (time and space) label into a single occurrence 31: Compute all the transition probabilities between each pair of states of the Markov chain 32: return the mobility Markov chain computed take Alice's home for example, which is state p 1 on Figure 1., it will be represented by the states P 1morning , P 1af ternoon , P 1evening and P 1night . Remark that the scale of the timeslicing can be tuned to match the required level of detail. For example, the timeslices can also be winter, spring, summer, autumn or even months or years, . . . In a nutshell, Algorithm 1 starts (line 1) by applying a clustering algorithm on a trail of traces of an individual in order to identify clusters of locations that are significant. Then, in order to reduce the number of resulting clusters, the algorithm merges clusters whose medoids are within a predefined distance d of each other (line 2). Each resulting cluster is considered as a POI, and the medoid of the cluster is considered to be the physical location of the POI. For each cluster (lines 4 to 6), we compute the number of mobility traces inside the cluster (which we call the density of the cluster) and the time interval (measured in days) between the earliest and the latest mobility traces of the cluster (line 5). The POIs (i.e. clusters) are then split (lines 7 to 13) into two categories; the frequent POIs that correspond to POIs whose time interval is above or equal to a certain threshold mintime and the infrequent POIs whose time interval is below this threshold mintime. In the set of frequent POIs (line 14), we sort the POIs by decreasing order according to their densities. Therefore, the first POI will be the denser and the last POI the less dense. Now, we can start to build the temporal mobility Markov chain by creating a state for each tuple < P OI, timeslice > within the set of frequent POIs (lines 15 to 19) and also a last state representing the set of infrequent POIs (line 20). Each state is then assigned a weight that is set to its density. Afterwards (line 21), we come back to the trail of traces that have been used to learn the POIs and we remove all the moving points (whose speed is above , for a small predefined value). Then, we traverse the trail of traces in a chronological order (lines 22 to 29) labeling each of the mobility traces either with the tag of closest POI and the appropriate timeslice (line 25) or with the tag "unknown" if the mobility trace is not within d-distance of one of the frequent or infrequent POIs (line 27). From this labeling, we can extract sequences spatio-temporal chunks that have been visited by the individual in which all the successive mobility traces sharing the same label are merged into a single occurrence (line 30). For example, a typical day could be summarized by the following sequence "p home/morning ⇒ p work/morning ⇒ p work/af ternoon ⇒ p sport/af ternoon ⇒ p sport/evening ⇒ "unknown ⇒ p home/evening ". From the set of sequences extracted, we compute the transition probabilities between the different states of the MMC by counting the number of transitions between each pair of states and then normalizing these probabilities (line 31). If we observe a subsequence in the form of "p i/t ⇒ "unknown" ⇒ p i/t " then we increment the count from the state p i/t to itself (which translates in the graph representation by a self-arrow).
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 1 Fig. 1. Alice's Mobility Markov Chain.

If we Algorithm 1

 1 Temporal mobility Markov chain algorithm Require: Trail of (mobility) traces M , merging distance d, speed threshold , time interval threshold mintime, time slices definition timeslices 1: Run a clustering algorithm on M to learn the most significant clusters 2: Merge all the clusters that are within d distance of each other 3: Let listP OIs be the list of all remaining clusters 4: for each cluster C in listP OIs do 5: Compute the time interval and the density of C 6: end for 7: for each cluster C in listP OIs do 8: if C.time interval > mintime then 9: Add C to f reqP OIs (the list of frequent POIs) C to inf reqP OIs (the list of infrequent POIs) 12:

  do Create a state p inf requent representing all the clusters within inf reqP OIs 21: Let M be the trail of traces obtained from M by removing all the traces whose speed is above 22: for each mobility trace in M do 23:if the distance between the trace and the state p i is less than d and the state p i is the closest state then

	16:	for each time slice t in timeslices do
	17:	Create a state p i/t in the mobility Markov chain
	18:	end for
	19: end for
	20: 24:	determine t the appropriate time slice for the trace
	25:	label the trace with "p i/t "
	26:	else
	27:	label the state with the value "unknown"
	28: