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Abstract—In this paper we compare general unitary beam-
forming to constant modulus unitary beamforming in terms of
achievable sum-rate for MIMO broadcast channels. We give a
complete analysis of both schemes in the 2× 2 multi-user MISO
configuration. Furthermore, we study the regime of asymptoti-
cally high signal-to-noise ratio. For growing number of transmit
antennas the sum-rate gap between both schemes is significantly
increasing. Simulations are carried out that corroborate our
analytical results.

I. INTRODUCTION

In the past years a lot of research has focused on char-

acterizing the sum-rate capacities of the MIMO broadcast

channel under different precoding strategies. It has been shown

that the capacity achieving precoding scheme is based on the

non-linear dirty-paper coding (DPC) technique [1]. But so

far no efficient practical algorithm implementing the optimal

DPC scheme has been found. Therefore, low complexity

linear precoding or beamforming (BF) (e.g. zero-forcing BF)

strategies have gained a lot of attention since they achieve a

large portion of the channel capacity [2]–[4].

In this paper we compare two different types of unitary

beamforming (UBF), general UBF and constant modulus

UBF (CUBF). One advantage of applying UBF lies in the

capability of the users to calculate their exact signal-to-

interference and noise ratios (SINR) without knowledge of the

channels/beamforming vectors of the interfering users. This

is of practical importance since the SINR is an important

feedback metric for the downlink resource allocation. The

problem of the optimal parametrization of a UBF under

perfect CSIT has been considered in [5] where an iterative

optimization method based on successive Givens rotation has

been proposed. However, in this contribution we will consider

the steepest descent algorithm proposed in [6], since its

implementation is straightforward.

The CUBF is motivated by practical constraints in the

radio front-end. It is more efficient to have balanced transmit

powers, since all power-amplifiers can be designed for the

same dynamic range. Different additional amplitude variations

of the transmit signal due to the precoding operation require a

larger linearity region of the power amplifiers which renders

them inefficient and more expensive. This is one of the reasons

why codebooks containing unitary constant modulus matrices

are chosen for single-user MIMO precoding, for instance in

the LTE standard [7].

Usually the per-antenna power constraint (PAPC) is less

stringent at the base-station. One reason is that the require-

ments on power amplifiers are less important at the base-

station than for a mobile device. Furthermore, the base-

station can allocate users, in e.g. frequency domain, that lead

to approximately balanced antenna powers. However, in the

uplink for example the constraint of equal antenna powers still

persists, since in general the mobile device has less freedom

in choosing different receivers for simultaneous transmission.

In the following, under the assumption of perfect CSIT,

we study the achievable sum-rate of UBF and CUBF with

and without power optimization. In particular we analyse and

discuss the asymptotic SNR regime and compare both BF

techniques. The main result is that CUBF with optimal power

allocation outperforms UBF for low SNR but leads to a sum-

rate loss compared to UBF in the high SNR region. On the

other hand the sum-rate of CUBF with equal power allocation

saturates for high SNR.

The remainder of this paper is structured as follows: Section

II introduces the system model. In Section III we briefly

describe the parametrization of UBF and CUBF. Section IV

studies the case of two users and two transmit antennas.

Section V discusses the asymptotic SNR regimes of both UBF

and CUBF. Section VI presents the simulation results. Finally,

in Section VII we draw our conclusions.

Notation: In the following boldface lower-case and upper-

case characters denote vectors and matrices, respectively. The

operators (·)T, (·)H and tr(·) denote transpose, conjugate

transpose and the trace operator, respectively. The expectation

is E[·] and diag(x) is a diagonal matrix with vector x on the

main diagonal. The argument of a complex number z is ∠z.

The N × N identity matrix is IN .

II. SYSTEM MODEL

Consider a multi-user (MU) MISO downlink transmission

scenario where an M -antenna transmitter communicates to

K non-cooperative single-antenna receivers. We denote the

unitary beamforming matrix as V = [v1, . . . ,vK ] ∈ C
M×K ,



VHV=VVH =I. The transmit signal x is formed as

x =

K
∑

k=1

√
pkvksk (1)

where pk and sk (|sk|2 =1) are the power and the information

symbol of user k, respectively. Denote Rx =E[xxH] the trans-

mit signal covariance matrix and W=diag([p1, . . . , pK ]). The

sum-power constraint imposes

tr(Rx) = tr(W) ≤ P (2)

where P is the total available transmit power. We consider

narrow-band transmission. Hence for every channel use the

received symbol vector reads

y = Hx + n (3)

where H = [h1, . . . ,hK ]H ∈ C
K×M is the channel matrix

and hk ∈ C
M×1 (k = 1, 2, . . . ,K) models the channel from

the M -antenna transmitter to user k. The noise vector n is

Gaussian distributed with n ∼ CN (0, σ2IK) and we define

the signal-to-noise ratio (SNR) as SNR=P/σ2. Under unitary

beamforming with equal power (EP) allocation (pk = P/M )

the SINR γk of user k takes the form

γk =
ρ2

k

βk + 1 − ρ2
k

(4)

with βk = Mσ2

P‖hk‖2

2

, ρk = |h̄H

kvk| ∈ [0, 1] and h̄k = hk

‖hk‖
. The

achievable sum-rate Rsum of the system is given by

Rsum(V) =

K
∑

k=1

log (1 + γk) [nats/s/Hz]. (5)

From the objective function (5) it follows that for any diagonal

unitary matrix D = diag([ejφ1 , . . . , ejφK ]), φi ∈ [0, 2π) we

have

Rsum(V) = Rsum (VD) . (6)

Thus, it is always possible to dephase the first row of V. We

therefore further assume that the first row contains only real

values.

III. PARAMETRIZATION OF UBF AND CUBF

In this section we describe how to parametrize the UBF and

CUBF under sum-rate maximization.

A. Optimization of UBF

The optimization problem can be stated as follows

V⋆ = arg max
V

{Rsum(V)} (7)

s.t. VHV = IK . (8)

This is a nonconvex optimization problem with nonlinear

constraints. In [5] this problem has been approached via an

iterative algorithm based on successive Givens rotations. How-

ever, in this contribution we use the self-tuning Riemannian

steepest descent algorithm given in Table II of [6] to solve the

optimization problem in (7). Define the element (i, j) of the

gradient matrix Γ=∇VRsum as

[Γ]ij =
∂Rsum

∂[V∗]ij
. (9)

The gradient matrix Γ of the cost function in (5) is given by

Γ = [c1h1h
H

1 v1, . . . , cKhKhH

KvK ] (10)

with ck =
(

βk + 1 − ρ2
k

)−1
. (11)

The gradient direction in Riemannian space is defined as [6]

G = ΓVH − VΓH. (12)

Following the gradient G the algorithm guaranties to converge

to a local extremum.

B. Optimization of CUBF

In this section we give a brief summary of the CUBF

parametrization. In general the CUBF belongs to the set of

normalized complex Hadamard matrices of size M denoted

HM and defined as [8]

HM =

{

AHA = IM : A ∈ C
M×M and |aij |2 =

1

M

}

(13)

with i, j ∈ {1, . . . ,M}. To describe the set HM it is

convenient, for our purpose of beamforming under sum-rate

maximization, to divide HM into equivalence classes. The

equivalence relation is defined as follows

Definition 1: [8], The complex Hadamard matrices

{A, Ã} ∈ HM are equivalent, written A ∼= Ã, iff there exist

diagonal unitary matrices Dr,Dc and permutation matrices

Pr,Pc such that1

A = DrPrÃPcDc. (14)

There are M ! row and column permutations. The correspond-

ing equivalence class QM (A) of A ∈ HM is

QM (A) = {B ∈ HM |A ∼= B}. (15)

The set of equivalence classes HM/∼= is denoted GM .

Thus the CUBF can be parametrized using (14) and the

equivalence classes (15). The complete set of equivalence

classes GM is only known for M <6. The equivalence classes

G2 =Q2(F2) and G4 =Q4(Q
o
4(θ)) are particularly relevant in

following for derivations and simulations. We have

F2 =

[

1 1
1 −1

]

(16)

and G4 =Q4(Q
o
4(θ)) with θ∈ [π

2
, 3

2
π)2 where

Qo
4(θ) =









1 1 1 1
1 −1 ejθ −ejθ

1 1 −1 −1
1 −1 −ejθ ejθ









(17)

1In this definition transposition and complex conjugate are excluded since
they are meaningless in the application of beamforming

2Since Qo
4
(θ)∼=Qo

4
(θ + π)



A recent catalog of known equivalence classes can be found

in [8]. Under sum-rate maximization and invariance (6) the

CUBF takes the form

VCUBF =
1√
M

DrPrBlPc (18)

where Dr =diag([1, ejϕ1 , . . . , ejϕM−1 ]) with ϕi∈ [0, 2π), i=
{1, ...,M −1} and Bl is a representative element of the lth
equivalence class.

To maximize the sum-rate (5) under equal power allocation

we have to solve the following optimization problem

{D⋆
r ,B

⋆
l ,P

⋆
c ,P

⋆
r} = arg min

Dr,Bl,Pc,Pr

{

K
∏

k=1

(

1 + βk − ρ2
k

)

}

.

(19)

An iterative approach to solve (19) has been proposed in [9].

The algorithm optimizes the angels ϕi, θ successively until

convergence to a local optimum. The optimal combination of

row and column permutations has to be found exhaustively.

To reduce the computational complexity due to the exhaustive

search we will optimize the BF vectors in a greedy fashion.

That is, we align one BF vector to the user with largest channel

1-norm and then add the remaining users successively, such

that the sum-rate is increasing. If none of the remaining users

leads to an increase in sum-rate, the algorithm is terminated.

If an unequal power allocation is applied, the general

SINR expression for linear precoding has to be used and the

optimization problem takes the more general form

{D⋆
r ,B

⋆
l ,P

⋆
c ,P

⋆
r} =

arg max
Dr,Bl,Pc,Pr







K
∑

k=1

log



1 +
pk|hH

kvk|2
∑K

i=1
i 6=k

pi|hH

kvi|2 + σ2











.

(20)

The solution to the optimization problem (20), is a straight-

forward extension to the one with EP allocation in (19).

Since the joint optimization of BF vectors vk and powers

pk is intractable, we consider the two problems separately.

Thus, with the cost function in (20) the powers are optimized

for fixed BF vectors. Since the cost function is not convex

in the pk, we find an approximate solution using a standard

interior point method [13]. More precisely, we eliminate

the linear constraint (2) [13, Section 4.2.4] and introduce a

logarithmic barrier function
∑K

k=1
log(pk) to satisfy pk∈R+.

Subsequently we apply the barrier-method where we utilize

Newton’s method to compute a local optimum for the uncon-

strained optimization problem.

IV. ANALYSIS OF UBF AND CUBF FOR K = M = 2

In order to gain some insight on the underlying mathemat-

ical structure of the optimization problems we consider the

case of two transmit antennas and two users.

A. UBF

The unitary matrix U ∈ SU(2) of dimension M = 2 has

M2 − 1=3 real independent parameters and takes the form

U(z1, z2) =

[

z1 z2

−z∗2 z∗1

]

s.t. |z1|2 + |z2|2 = 1 (21)

with z1, z2 ∈ C. Based on (6) we can dephase the first row

of U by setting φ1 = −∠z1 and φ2 = −∠z2. Together with

|z1|=cos α and |z2|=sinα, satisfying the linear constraint in

(21), we obtain

VUBF(α, δ) =

[

cos α sin α
sin α ejδ − cos α ejδ

]

(22)

where δ=π− (∠z1 +∠z2)∈(0, 2π] and α∈(0, π]3. Thus, for

the purpose of beamforming there remain 2 real independent

parameters α and δ for the sum-rate optimization.

Finding the optimal parameters α⋆ and δ⋆ has been covered

in [5]. The solution involves finding the real roots of a

polynomial Pα(δ) and Pδ(α) of order 4, for both α and δ,

respectively. Since the roots of both polynomials depend on

either α or δ, the joint local optimum (α⋆, δ⋆) has to be

computed iteratively. That is, by alternating between α⋆
k(δk−1)

and δ⋆
k(αk−1) until convergence.

B. CUBF with Equal Power Allocation

In the case of M = 2 the permutations Pr and Pc have no

impact on the sum-rate optimization, thus from (18) we have

VCUBF(δ) =
1√
2

[

1 1
ejδ −ejδ

]

(23)

where δ ∈ (0, 2π]. Thus there is only one real independent

parameter left for the sum-rate optimization. From (22) we

observe that for α = π
4

the general UBF has uni-modular

entries and thus coincides with the CUBF4, i.e. VCUBF(δ)=
VUBF(π

4
, δ). Hence, the optimization of δ involves finding the

real roots of Pδ(
π
4
). Consequently, for CUBF with equal power

allocation (CUBF-EP), the optimal angle δ⋆ can be computed

exactly leading to the global optimal VCUBF(δ⋆). Note that

in general, i.e. α 6= π
4

, we have δ⋆
UBF 6=δ⋆

CUBF.

From (23), it is clear that perfect alignment, i.e. ρk = 1,

can not be achieved with the CUBF (only when all channel

gains are equal). Consequently, the sum-rate Rsum(VCUBF) is

interference-limited for high SNR. Also, at high SNR it is not

optimal for CUBF-EP to align to the user with largest channel

1-norm.

C. CUBF with Optimal Power Allocation

In addition to the beamforming matrix (23) we can also

optimize the power pk allocated to user k, == 1, 2. This

scheme is called CUBF-OP. The SINR (4) takes the form

γk =
pkρ2

k

β̃k + p3−k(1 − ρ2
k)

(24)

3since ρ2

k
(α) has period π.

4note also that α⋆ = π
4

for equal channel gains i.e. |hij |
2 =c.



where β̃k = σ2

‖hk‖2

2

, p2 = P − p1 and p1 ∈ (0, P ). Calculating

p⋆
1 such that (5) is maximized for a given δ implies finding

the zeros of the rational function f(p1) = r(p1)/q(p1) s.t.

p⋆
1 ∈ (0, P ), where r(p1) and q(p1) are polynomials of order

2 and 4, respectively. Since (24) is in general not convex in

(0, P ) it can not be assured that the zeros of f(p1) lie in

(0, P ). Consequently, if there are no real solutions in (0, P )
the solution must be one of the border points i.e. either p⋆

1 =0
or p⋆

1 =P .

Note that for asymptotically high SNR i.e. βk → 0, (24) is

maximized for either p⋆
1 =0 or p⋆

1 =P .

V. DISCUSSION

In this section we discuss some aspects of UBF, CUBF-EP

and CUBF-OP for the low and high SNR regions.

A. Low SNR Region

It is well known that at low SNR the optimal strategy is

to perform TDMA [10] to the user with largest channel 2-

norm. The behavior of UBF in the low SNR region has been

investigated in [11]. Since UBF can never switch off a user

completely its performance is inferior to TDMA for low SNR.

The same is true for CUBF-EP, but the performance loss is

more significant than for UBF.

Since CUBF can only adapt to the phases of the user

channels it is optimal to align the CUBF to the user n
with largest channel 1-norm. This is identical to equal gain

transmission [12]. Only CUBF-OP is able to perform equal

gain transmission to the user with largest channel 1-norm. Still

its performance is slightly inferior to TDMA since a perfect

alignment cannot be accomplished.

B. High SNR Region

All three schemes are interference limited for high SNR.

Therefore it is optimal for UBF to align one BF vector

perfectly to the channel with the largest 2-norm since this

user experiences no interference and the sum-rate scaling is

equal or superior to that of TDMA, [5].

To avoid sum-rate saturation, the CUBF-OP performs (as

for low SNR) equal gain transmission to the user with largest

channel 1-norm and switches off all remaining users. There-

fore at high SNR the sum-rate of CUBF-OP can be written

as

Rsum = log(SNR) − log(M) + E
[

log(max ‖h‖2
1)

]

. (25)

The multiplexing gain is defined as

m = lim
P→∞

E[Rsum]

log P
. (26)

For CUBF-OP we have

mCUBF−OP = lim
P→∞

E
[

log
(

1 + P
Mσ2 ‖hn‖2

1

)]

log P
= 1 ≤ mUBF

(27)

where hn is the channel with maximum 1-norm. Hence, UBF

as well as CUBF-OP achieve at least a multiplexing gain of

one. But there is a power offset between both schemes. This
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Fig. 2. 4 × 4 MU-MISO, Ergodic Sum-rate vs. SNR

power offset increases with M since UBF offers more degrees

of freedom as CUBF-OP with growing M .

It is also clear that the sum-rate saturates for CUBF-EP,

since neither users can be switched off, nor perfect alignment

can be achieved. Hence, this scheme has no means to combat

inter-user interference effectively.

VI. SIMULATION AND RESULTS

In this section we compare UBF, CUBF-EP and CUBF-

OP in terms of ergodic sum-rate i.e. EH[Rsum(V)], over

independent Rayleigh fading channels.

Figure 1 shows the performance in a 2 × 2 MU-MISO

configuration. As discussed in Section V we observe that in the

low SNR regime, CUBF-OP achieves slightly higher sum-rate

than UBF and CUBF-EP. For high SNR, UBF and CUBF-OP

perform similar although UBF is slightly superior due to the



perfect alignment. As expected, the sum-rate of CUBF-EP is

saturating at high SNR.

Figure 2 depicts the performance of a 4×4 MU-MISO setup.

It can be observed that, except for low SNR, UBF significantly

outperforms CUBF-OP. For high SNR both UBF and CUBF-

OP have the same slope although there is a significant power-

offset between the two schemes.

Moreover, the sum-rate saturation level of CUBF-EP is

lower for M = 4 than for M = 2. This is due to the fact

that the degrees of freedom of CUBF-EP scale significantly

slower with M than the degrees of freedom of the channel.

Thus, the CUBF-EP is increasingly maladjusted to the channel

and consequently the interference level is rising.

VII. CONCLUSION

This contribution compared UBF, CUBF-EP and CUBF-

OP in terms of achievable sum-rate in the MISO broadcast

channel. In particular we analyzed the performance of both

schemes in the 2 × 2 MU-MISO downlink channel. In this

configuration UBF and CUBF-OP perform very similar al-

though CUBF-OP slightly outperforms UBF for low SNR

and UBF is slightly superior in the high SNR region. If

the number of transmit antennas and user increase UBF

is significantly superior to CUBF-OP due to the additional

degrees of freedom in the parametrization. But both schemes

achieve a multiplexing gain of one.
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