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Abstract—In this paper we analyse unitary beamforming in
MIMO broadcast channels where the entries of the beamforming
matrix are of constant modulus (CUBF). We provide a general
formal description for the beamforming matrices. We show that
this description encompasses currently applied constructions such
as those based on the Householder transformation. Among other
properties the CUBF proves to be particularly robust to channel
feedback errors. We propose an iterative construction of the
CUBF which maximizes the sum-rate of the system. Furthermore
we provide numerical results that show significant gains of the
CUBF compared to existing techniques.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have the

potential to significantly increase the achievable capacity of a

radio link to a Single-User (SU) [1], [2]. Although high indi-

vidual data rates are often a compelling marketing argument

in emerging wireless standards, most of the network operators

are interested in increasing their cell throughput or to distribute

data rates more uniformly among the users in a cell. This can

be achieved if the transmitter employs its antennas to commu-

nicate to Multiple non-cooperative Users (MU-MIMO) on the

same time-frequency resource. The resulting MIMO Broadcast

Channel (BC) has been extensively studied in the past years

and many efforts have been made to find transmission schemes

that achieve the capacity of the MIMO-BC. In contrast to

SU-MIMO, accessing the MIMO-BC capacity is a inherently

more difficult problem but it turns out that sharing the MIMO

channel between multiple users utilizes the system resources

more efficiently [3].

To reduce the interference caused by the imperfect spatial

separation of the receivers the transmitter spatially encodes

the signal prior to the transmission. This precoding operation

and consequently the sum-rate are highly dependent on the

Channel State Information available at the Transmitter (CSIT).

The full capacity region of the MIMO-BC is achieved by

Dirty-Paper Coding (DPC) [4]. This optimal technique is still

too complex to be implemented in current wireless systems.

It has been shown that suboptimal linear precoding schemes

of moderate complexity such as Zero-Forcing Beamforming

(ZFBF), Regularized ZFBF (R-ZFBF) [5] or Unitary Beam-

forming (UBF) [6] achieve a large portion of the MIMO-BC

capacity.

In this paper we study UBF where the entries of the beam-

forming matrix are further constrained to be of equal modulus.

This kind of beamformer has several advantages in the case

of uniform user power. As all beamforming vectors are or-

thogonal the receiver can compute the Signal-to-Interference

and Noise Ratio (SINR) solely from its channel estimate and

beamforming vector. Furthermore, the (average) powers on

the different transmit antennas are equal, independent of the

UBF setting. This is advantageous when power amplifier non-

linearities and efficiency are taken into account. Moreover

UBF is more robust to errors in the CSIT [6]. For these reasons

unitary matrices have been adopted in 3GPP LTE [7] for SU-

MIMO precoding and are the current assumption for MU-

MIMO beamforming. To further reduce the parameterization

of the UBF matrices and hence reduce the amount of feedback

required in the uplink, people often further constrain the

UBF matrices to have entries of equal magnitude, leading

to CUBF (Constrained or Constant modulus UBF). In fact,

3GPP LTE defines a finite set of CUBF precoding matrices

referred to as a codebook. Among other results we show

that the quantization represented by this codebook leads to

high suboptimality if applied to MU-MIMO beamforming.

Although CUBF represents further constraining on already

constrained UBF matrices, apart from the parameterization

parsimony, it possesses the advantage of preserving equal

transmit antenna powers even under unequal (e.g. optimized)

user powers.

This work studies UBF where all entries have a constant

modulus. Our analysis is based on complex Hadamard matri-

ces [8], [9] and we study their application to beamforming in

the MIMO-BC. To develop a generic construction of the CUBF

we use an equivalence relation that allows to structure the

problem. One key contribution of this paper is the proposition

of a new CUBF design which is based on CSIT. We show that

the CUBF generated by the Householder transformation, used

in 3GPP LTE, is only one particular subset of the complete

set of CUBF matrices. Therefore this restricted set leads

to a significant performance loss. In order to evaluate the

sum-rate performance we propose an iterative algorithm for

the parametrization of the CUBF. Moreover, the impact of

imperfect CSIT on the sum-rate of the system is investigated.

Notation: In the following boldface lower-case and upper-



case characters denote vectors and matrices, respectively. The

operators (·)T, (·)H and tr(·) denote transpose, conjugate trans-

pose and the trace operator, respectively. The expectation is

E[·] and diag(x) is a diagonal matrix with vector x on the main

diagonal. The N × N identity matrix is IN = [e1, . . . , eN ].

II. SYSTEM MODEL

Consider the scenario where one transmitter with M an-

tennas communicates to N ≥ M single-antenna receivers.

We consider random user scheduling, thus there are always

K = M users selected for transmission. A beamforming

vector vk is assigned to each of the K users. We define the

beamforming matrix as V = [v1, . . . ,vK ] ∈ C
M×K . The

transmit signal is formed as

x =

K
∑

k=1

√
pkvksk (1)

where pk and sk (|sk|2 = 1) are the power and the information

symbol of user k, respectively. Denote Rx = E[xxH] the trans-

mit signal covariance matrix and W = diag([p1, . . . , pK ]) .

Thus the sum-power constraint imposes

tr(Rx) = E[tr(WVHV)] ≤ P (2)

where P is the total available transmit power. We consider

narrow-band transmission. Hence for every channel use the

received symbol vector reads

y = Hx + n (3)

where H is the channel matrix H = [h1, . . . ,hK ]H ∈ C
K×M

and hk ∈ C
M×1 (k = 1, 2, . . . ,K) models the channel

from the transmitter to user k. The noise vector is Gaussian

distributed with n ∼ CN (0, σ2
nI) and thus we define the

signal-to-noise ratio (SNR) as P/σ2
n. In particular the received

signal of user k is given by

yk =
√

pkh
H

kvksk +

K
∑

j=1,j 6=k

√
pjh

H

kvjsj + nk (4)

where the first term on the right-hand side is the useful signal

of user k. The second term is the inter-user interference

resulting from the residual correlation between the users’

beamforming vectors vj and channel hk. The last term is the

additive noise. As a result the SINR for user k is given by

γk =
pk|hH

kvk|2
∑M

j=1
j 6=k

pj |hH

kvj |2 + σ2
n

(5)

The instantaneous sum of the user rates is

R =

K
∑

k=1

log2 (1 + γk) (6)

The long-term average of the instantaneous sum-rate over the

channel realizations of a given distribution.

R̄ = EH[R] (7)

In Section VI we measure the performance in terms of ergodic

sum-rate.

Note that the {γk} in (5) are invariant to the following

transformation

ṽ = ejθv with θ ∈ [0, 2π) (8)

Consequently the sum-rate (6) does not change when multi-

plying each beamforming vector with ejθ. Thus, the optimal

beamforming vectors V are not unique. This implies that the

first row of V can be dephased i.e. the first row contains only

real values.

III. UNITARY BEAMFORMING

Linear beamforming techniques are attractive because they

offer a good trade-off between performance and complexity.

Among them ZFBF and R-ZFBF achieve the full multiplexing

gain [5], [10]. In this Section we briefly introduce unitary

beamforming to lay the basis for the CUBF in Section IV.

Consider the group of unitary matrices U(M). Thus, a

unitary beamforming (UBF) matrix Vu ∈ U(M) satisfies

VuV
H

u = VH

uVu = IM (9)

i.e. all beamforming vectors are mutually orthogonal and of

unit norm. Hence the UBF is never able to cancel all inter-user

interference except if the user channels H form itself a unitary

matrix. Furthermore with equal power allocation pk = P/M ,

(5) simplifies to [11]

γk =
‖hk‖2ρ2

k

‖hk‖2(1 − ρ2
k) +

Mσ2
n

P

(10)

with ρ2
k = |h̄H

kvk|2, h̄k = hk

‖hk‖
. Here, ρ2

k can be interpreted as

the alignment of a users’ beamforming vector with its channel

direction.

Note that γk in (10) solely depends on user k. The optimiza-

tion of the UBF with respect to (6) is a non-convex problem

and to the authors’ knowledge no closed-form solution exists.

As a consequence of (8) there remain M(M−1) free param-

eters for the construction of a UBF.

In [6] an iterative optimization method based on successive

Givens rotations was presented. The idea is that every unitary

matrix can be represented as a product of Givens rotations and

every Givens rotation matrix can be optimized separately. In

case of CUBF matrices this kind of optimization is impossible

since the multiplication of two CUBF matrices does not

maintain the constant modulus property.

IV. UBF WITH CONSTANT MODULUS ELEMENTS

In this section we provide the mathematical framework

for the construction of unitary beamforming matrices with

constant modulus entries Vcu.



A. Description of Hadamard Matrices

We first have to introduce various definitions that we will

use later to parametrize the CUBF.

Definition 1: A square matrix A of size M where the

entries are of equal modulus |aij |2 = 1
M

; i, j = {1, . . . ,M},

is called normalized Hadamard matrix if

AAH = IM (11)

The set of normalized complex Hadamard matrices of size M
is denoted HM . In the unnormalized case: AAH = M IM .

Definition 2: [8], The complex Hadamard matrices

{A, Ã} ∈ HM are equivalent, written A ∼= Ã, iff there exist

diagonal unitary matrices Dr,Dc and permutation matrices

Pr,Pc such that1

A = DrPrÃPcDc (12)

There are M ! row and column permutations. The equivalence

class of A ∈ HM is

QM (A) = {B ∈ HM |A ∼= B} (13)

The set of equivalence classes GM is GM = HM/∼=.

B. Equivalence Classes

Interestingly, the complete set of equivalence classes GM is

only known for M <6. The problem of finding all equivalence

classes for dimensions M ≥6 remains unsolved and a catalog

of known equivalence classes can be found in [8]. In the

following we give a short overview of the (unnormalized)

equivalence classes for M = {2, . . . , 5}.

1) M = 2: There is only one equivalence class G2 =
Q2(F2) with

F2 =

[

1 1
1 −1

]

(14)

The real Hadamard matrix coincides with the discrete Fourier

transform (DFT) matrix F2, where FM of size M

FM (m,n) = e−j 2π

M
(m−1)(n−1) ; m,n = {1, . . . ,M} (15)

2) M = 3: There exists only one equivalence class equal

to the DFT matrix G3 = Q3(F3).
3) M =4: Here, there exists a continuous family of equiva-

lence classes with one free parameter G4 = {Q4(Q
o
4(θ)); θ ∈

[π
2 , 3

2π)}.

Qo
4(θ) =









1 1 1 1
1 −1 ejθ −ejθ

1 1 −1 −1
1 −1 −ejθ ejθ









(16)

Note that the real Hadamard matrix Qo
4(π) and the DFT matrix

F4
∼= Qo

4(
π
2 ) are special cases of (16).

4) M =5: All complex Hadamard matrices are equivalent

to the DFT matrix G5 = Q5(F5).

1In this definition transposition and complex conjugate are excluded since
they are meaningless in the application of beamforming

C. Parametrization of CUBF in MIMO BC

In general, the set of CUBF matrices is equal to the set of

normalized complex Hadamard matrices HM . The description

of HM is solely given by the equivalence relation (12) and the

equivalence classes (13) and can be used to parametrize the

CUBF. However, depending on the objective function, some

parameters in the general description become obsolete. If the

beamforming matrix Vcu is intended to modify the SINR of

each user (and hence the sum-rate) the diagonal unitary matrix

Dc in (12) can be omitted due to the invariance to the trans-

formation in (8). Consequently the diagonal unitary matrix Dr

in (12) takes the form Dr = diag([1, ejϕ1 , . . . , ejϕM−1 ]) with

ϕi ∈ [0, 2π), i = {1, ...,M−1}.

One may remark that the equivalence relations in (12)

involve continuous parameters (phases in the diagonals) and

discrete parameters (permutations). One may think of counting

the number of continuous parameters by subtracting from

the 2M2 real entries the number of real constraints imposed

by CUBF: M2 due to unitarity, (M − 1)2 for the constant

element magnitudes (suffices to apply to a (M −1)× (M −1)
submatrix), and M (for a first row of all 1’s). One ends up

with M − 1, which correspond to the Dr just mentioned. The

mystery is then the appearance of θ in Qo
4(θ). The explanation

is that counting the obvious constraints must lead to redun-

dancies. The appearance of the additional free parameters can

be explained as follows. (Unnormalized) complex Hadamard

matrices can in fact be constructed recursively as follows: [9]

V(A,B) =

[

A B

A −B

]

where A and B are itself complex

Hadamard and hence allow equivalence transformations as in

(12). Now, for A they do not need to be applied since they

can equivalently be applied to V. However, since B appears

both as B and −B, not all equivalences on B show up in

V. At M = 4, we can take A = B = F2, but the one such

equivalence that needs to be allowed at the level of B is DB

with D = diag([1 ejθ]). So we get for M = 4: V(F2,DF2).
If M = 4 another construction of CUBF matrices via the

Householder transformation exists which is used in current

practical systems [7]. The set of all CUBF matrices generated

by the Householder transformation is

V =

{

V = IM − 2
uuH

uHu

∣

∣

∣

∣

u ∈ C
M×1; |ui| = 1; u1 = 1

}

.

(17)

The construction of a CUBF via the Householder transfor-

mation describes only a subset of all possible CUBF i.e.

V ⊂ H4. To prove V ⊂ H4 observe that V ∼= Qo
4(π)

as Qo
4(π) = 2PrD1D

HVDD1Pc with D = diag(u),
D1 = diag([1,−1,−1,−1]), Pc = [e1, e2, e4, e3] and Pr =
[e1, e3, e2, e4]. Hence V is the subset of H4 that stems from

the unique real equivalence class Qo
4(π). Thus restricting

Vcu ∈ V leads to a significant performance loss as we show

by simulation in Section VI.

V. OPTIMIZATION OF THE CUBF

We choose to maximize the sum-rate in (6). In general the

beamforming vectors {vk} and the user powers {pk} have to



d0(k, m) = |akm|2 + |bkm|2

d1(k, m) = 2|akm| · |bkm|
δkm = ∠bkm − ∠akm

d2(k, m) = d1(k, m) cos δkm

d3(k, m) = d1(k, m) sin δkm

TABLE I
AUXILIARY VARIABLES

be computed according to the following optimization problem

{v⋆
k, p⋆

k} = arg max
{vk},{pk}

{

K
∑

k=1

log (1 + γk)

}

(18)

s.t. : tr(Rx) ≤ P ; VHV = IM ; |vij |2 = 1/M ∀i, j

where γk is defined in (5). The problem above is non-convex in

{vk} and {pk} and difficult to solve. However, the description

of the CUBF introduced earlier allows us to tackle the problem

in (18).

In the following we will assume equal power allocation i.e.

pk = P/M . Some aspects of the optimal power allocation

strategy are discussed in Section VII.

A. Optimal Parametrization of the CUBF

Under the assumption that there are always K = M users

available for transmission and that the transmit power is

equally divided among them we can formulate the optimiza-

tion criterion as follows

{D⋆
r ,G⋆

M ,P⋆
c ,P

⋆
r} = arg max

Dr,GM ,Pc,Pr

{

K
∑

k=1

log (1 + γk)

}

(19)

where γk is defined in (10). The diagonal unitary matrix

Dr contains M −1 angles. The optimal permutation matri-

ces Pr,Pc have to be found by exhaustive search. Denote

A = {ϕ1, . . . , ϕM−1, θ} the set of angles to be optimized.

Note that only for M = 4 the set A contains the additional

angle θ. After some algebraic manipulation (19) takes the form

{D⋆
r ,G⋆

M ,P⋆
c ,P

⋆
r} = arg min

Dr,GM ,Pc,Pr

{

K
∏

k=1

(

1 + βk − ρ2
k

)

}

(20)

where βk =
σ2

n
M

‖hk‖2P
. This is still a non-convex optimization

and the global optimum can only be found by exhaustive

search. Subsequently we present an iterative algorithm to

calculate the optimal set of angles A. However, this algorithm

can not be guaranteed to converge to the global optimum.

B. Iterative Optimization Algorithm

A joint optimization of the angles in A is too involved,

therefore we optimize the angles one by one while the others

are fixed. We can write

Mρ2
k(ϕm) = |akm + bkmejϕm |2 (21)

where ϕm ∈ A and akm, bkm are constants. With the substi-

tution

sm = tan
ϕm

2
(22)
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Fig. 1. 2 × 2 MIMO, sensitivity to errors in CSIT, SNR = 15 dB

and with the auxiliary variables in Table I, we obtain from

(21)

Mρ2
k(sm) = d0(k, m) − d2(k, m) − 2

d3(k, m)s − d2(k, m)

1 + s2

(23)

From (20) we have the objective function

Fm(sm) =

M
∏

k=1

(

1 + βk − ρ2
k(sm)

)

(24)

By setting
dFm(sm)

dsm

= 0 we have

dFm(sm)

dsm

= −2MsmGm + (1 + s2
m)

dGm

dsm

= 0 (25)

where Gm =
∏M

k=1

(

c2(k, m)s2
m + c1(k, m)sm + c0(k, m)

)

with

c2(k, m) = d2(k, m) − d0(k, m) + βkM (26)

c1(k, m) = 2d3(k, m) (27)

c0(k, m) = −d0(k, m) − d2(k, m) + βkM (28)

To solve (25) we have to find the real roots of a polynomial

of degree 2M . Once the roots have been found we undo the

substitution in (22) and evaluate (20) to obtain the optimal

solution ϕ⋆
m. The same approach is used to find θ⋆.

VI. SIMULATION AND RESULTS

In this section we compare the CUBF with the codebooks

of CUBF matrices (CB-CUBF) defined in 3GPP LTE [7]. In

case of M = 2 the codebook contains the identity matrix

and two rotations of the DFT matrix according to (12) with

ϕ1 = {0, π
2 } and Pr =Pc = I2. The codebook for 4 transmit

antennas is a subset of V defined in (17) generated by 16

vectors u where the elements of u are taken from a 8-PSK

constellation and u1 =1. The optimal CB-CUBF is computed

at the transmitter by exhaustive search based on the available

CSIT. The performance metric is the achievable ergodic sum-

rate (7). Throughout this section we average our results over

10.000 independent Rayleigh fading channel realizations.
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Figure 1 shows the sensitivity of CUBF, CB-CUBF and

ZFBF to erroneous CSIT He which is modeled as He =
√

1 − σ2
eH + σeN where the entries of H and N are i.i.d.

Gaussian with zero mean and unit variance. From Figure 1 it

can be observed that CUBF and CB-CUBF outperform ZFBF

starting from σ2
e = 0.22 and σ2

e = 0.5, respectively. ZFBF,

that achieves high sum-rates under the assumption of perfect

CSIT, experiences a severe performance loss as soon as the

CSIT is erroneous. In practical systems such a scheme is not

attractive since it requires highly accurate CSIT which entails

an enormous feedback overhead.

Figures 2 and 3 present the sum-rate performance for a

2× 2 and 4× 4 MIMO system, respectively. We observe that

the CUBF significantly outperforms the CB-CUBF in both

MIMO configurations. At an SNR of 20 dB the gain is about

40 % and 30 %, respectively.

VII. DISCUSSION

Though joint CUBF and power allocation optimization is a

subject of ongoing research, it has two simple limiting cases,

the low and the high SNR regimes.

For BC at low SNR it has been shown in [12] that TDMA

is optimal, i.e. TDMA achieves asymptotically the same sum-

rate as DPC. Therefore, it is not surprising that optimized

CUBF with power allocation assigns all available power to

the strongest user (single stream transmission is optimal at low

SNR) and that this achieves a rate close to the sum-capacity.

The optimal constant modulus beamforming vector is given

by Equal Gain Transmission (EGT) [13] to the user whose

channel h = [h1, . . . , hM ]T has the largest 1-norm. Thus

v = 1/
√

M [1, e−j(∠h2−∠h1), . . . , e−j(∠hM−1−∠h1)]H where

∠x denotes the phase of x.

In the high SNR regime CUBF is interference limited. The

optimization problem in (20) becomes min
∏K

k=1(1−ρ2
k). The

optimal solution is clearly again to put all power on one user,

since in this case the inter-user interference is zero and rate

saturation is avoided, and the optimal CUBF corresponds again

to EGT to the user with largest 1-norm.

VIII. CONCLUSION

In this paper we present the unitary beamformer with

constant modulus elements and relate its construction to the

problem of parametrizing complex Hadamard matrices. We

show that the construction by the Householder transformation

covers only a small subset of all possible CUBF matrices and

therefore leads to a performance loss. Furthermore we show

that CUBF is superior to ZFBF beamforming techniques under

imperfect CSIT.

REFERENCES

[1] G. Foschini and M. Gans, “On Limits of Wireless Communications in a
Fading Environment when Using Multiple Antennas,” Wireless Personal

Communications, vol. 6, no. 3, pp. 311–335, 1998.
[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European

transactions on telecommunications, vol. 10, no. 6, pp. 585–595, 1999.
[3] D. Gesbert, M. Kountouris, R. Heath, C. Chae, and T. Salzer, “Shifting

the MIMO Paradigm,” Signal Processing Magazine, IEEE, vol. 24, no. 5,
pp. 36–46, 2007.

[4] H. Weingarten, Y. Steinberg, and S. Shamai, “Capacty region of the
degraded MIMO broadcast channel,” Information Theory, IEEE Trans-

actions on, vol. 52, no. 9, pp. 3936–3964, 2006.
[5] C. Peel, B. Hochwald, and A. Swindlehurst, “A Vector-Perturbation

Technique for Near-Capacity Multiantenna Multiuser Communication–
Part I: Channel Inversion and Regularization,” Communications, IEEE

Transactions on, vol. 53, no. 1, pp. 195–202, 2005.
[6] R. de Francisco and D. T. Slock, “An iterative Optimization Method

for Unitary Beamforming in MIMO Broadcast Channels,” Proc. of

45th Allerton Conf. on Commun., Control and Comput., pp. 360–367,
September 2007.

[7] S. Sesia, I. Toufik, and B. Matthew, Eds., LTE, The UMTS Long Term

Evolution: From Theory to Practice. Wiley & Sons, February, 2009.
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