N
N

N

HAL

open science

DRAAS: Dynamically Reconfigurable Architecture for

Autonomic Services
Emna Mezghani, Riadh Ben Halima, Khalil Drira

» To cite this version:

Emna Mezghani, Riadh Ben Halima, Khalil Drira. DRAAS: Dynamically Reconfigurable Architec-
ture for Autonomic Services. A. Bouguettaya and Q.Z. Sheng and F. Daniel (Eds). Web Services

Foundations, Springer, pp. 483-505, 2014, 978-1-4614-7517-0. hal-00675439

HAL Id: hal-00675439
https://hal.science/hal-00675439

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00675439
https://hal.archives-ouvertes.fr

DRAAS: Dynamically Reconfigurable
Architecture for Autonomic Services

Emna Mezghani':?:3, Riadh Ben Halima!'?® and Khalil Drira!-?
L ONRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France
3 University of Sfax, ReDCAD, B.P.W, 3038 Sfax, Tunisia
{emna.mezghani,khalil.drira}@laas.fr, riadh.benhalima@enis.rnu.tn

Abstract. The development and the provisioning of autonomic net-
worked services are essential for enterprises and factories of the future.
Endowing services with autonomic properties allows one to maintain at
runtime the Quality of Service (QoS) including different parameters re-
lated to performance, availability and reputation such as response time
and successful execution rate. Handling the autonomic properties re-
quires the ability to deal with permanent requirement evolving and con-
straint changes. For instance, managing QoS degradation requires the
capacity of identifying its possible or actual sources and the capacity
of reconfiguration planning and execution. Dealing with these issues is
especially challenging for web services since the autonomic solution has
to be seamless for the service requesters, ensuring that Web Services are
always usable under the different deployment constraints. To implement
such autonomic systems, the literature provides different approaches,
varying from the design to the full implementation of autonomic primi-
tives. In this chapter, we present DRAAS: a Dynamically Reconfigurable
Architecture for Autonomic Services able to provide autonomic proper-
ties for QoS management in web service-based distributed applications.
DRAAS has been implemented and experimented successfully with dif-
ferent use cases. It covers the whole cycle of autonomic management
including monitoring and analysis of QoS parameters , planning and ex-
ecution.

1 Introduction

The important data flows, the frequent interactivity, the increasing number of
connected devices, and the network unpredictability make critical the manage-
ment of the new distributed software systems. In one hand, although the reform
of verification and validation of software models hasn’t ceased improving, com-
ponents of the systems may still hide design faults resulting in system failures
or come across deadlock that freezes the system. In the other hand, user’s re-
quirements are evolving following the end-user technologies evolution as mobile
phone emergence (Multimedia mobile and group-enabled application). In the
same time, systems constraints are variable as unstable bandwidth and decreas-
ing energy. As a result, autonomic computing paradigm is crucial for current
systems in order to ensure QoS-aware execution.

2 Authors Suppressed Due to Excessive Length

More specifically, self-control systems such as elevator control systems or crit-
ical systems such as spacecraft navigational systems need robustness to detect
anomalies and avoid them by reconfiguring the systems at runtime [1]. For these
reasons, research actors are accelerating the work on autonomic systems. Such
systems are capable to detect the problems and continue to operate by manag-
ing malfunctions without human intervention. Autonomic computing technology
does not only reduce potential catastrophic errors, in critical systems for exam-
ple, but it also minimizes the human intervention. It is applied when reliability
and QoS are required. An autonomic system inspects and changes its own ar-
chitecture and behavior when the evaluation indicates that the intended QoS is
not achieved, or when a better functionality or performance is required.

The autonomic computing architecture is composed of four modules and
a knowledge component that constitute a control loop namely MAPE-K [2].
Monitoring which monitors the data exchanged between the managed elements,
Analysis which detects possible QoS or performance degradations, Planning that
implements algorithms for selecting and scheduling appropriate elementary re-
configuration actions and Ezecution which performs them.

Architecture An abstract
1. Design < White Box »——>representation of
Framework < the system

Black Box

Platform-based
2. Implementation Middleware-based —> Prototype

Model-based

Fig. 1. Autonomic computing scope

This autonomic computing paradigm includes the design and implementa-
tion of computer systems, as shown in Figure 1. The first step focuses on es-
tablishing a detailed design from which results a framework or an architecture.
Frameworks present the skeleton of an application that can be customized by
the developer. We distinguish two types of framework [3, 4]: black box that does
not need a deep understanding of the framework’s implementation in order to
use it and white box that requires the internal understanding of the framework
to use it effectively. Architectures provide high-level abstraction of system com-
ponents, while enabling easier understanding and interpretation. Furthermore,
the architectural approach constraints can be expressed explicitly. The second

Dynamic Reconfigurable Architecture 3

step concentrates on implementing the architecture or the framework through
various techniques. The implementation may be classified into three categories:
model-based, middleware-based and platform-based (see Figure 1). Model-based
solutions [5—7] provide explicit implementation of all necessary actions for moni-
toring, analysis, planning and execution. In this category (model-based), we focus
particularly on architectural approaches. Monitoring and analysis are made by
testing if the running system conforms to a given architectural style or model.
Middlewares, like Bionet [8], AgFlow [9], and OpenORB [10], support dynamic
reconfiguration process by offering primitives (like interception) for all auto-
nomic computing modules. Platforms [11-13] provide developers with already
developed autonomic entities.

In this paper, we evaluate and classify a set of autonomic solutions according
to criteria such as provided functionalities, managed autonomic steps, applied
techniques, programming languages, etc. We aim to provide features which help
and guide users to select a suitable solution for implementing autonomic services.
However, it is usually difficult to select the appropriate approach to implement
an application. We think that this choice depends on the size of the problem
to solve, the architecture type (decentralized or centralized), the programming
language, the application area (Server or Client, etc.), etc. Then, we propose
our DRAAS architecture implementing the autonomic computing to ensure the
dynamic reconfiguration of web service-based applications.

This paper is organized as follows. Section 2 gives an overview of the auto-
nomic computing background. Section 3 details different ways to design auto-
nomic system. Section 4 describes a taxonomy of dynamic reconfiguration imple-
mentation approaches focusing on the "model", "middleware" and "platform"
categories. Section 5 presents our DRAAS architecture illustrated by a use case.
Finally, section 6 concludes this paper and presents our future works.

2 Autonomic Computing Background

Autonomic computing constitutes an active research area in computer systems
[14]. This paradigm, inspired from the human autonomic nervous system [2],
has a mechanism that can trigger changes in the computing system structures
and behaviors in order to bypass or correct them. Furthermore, it is a collection
of autonomic components that the overarching goal is to manage themselves,
so that systems will be dynamically reconfigured at run time, with minimum
human intervention.

2.1 Self-* Capabilities

The principles that govern all autonomic computing systems, according to IBM,
have been summarized in eight aspects [15]:

— Self-Configuring: the ability to dynamically configure components following
high-policies in order to adjust the system. Such configurations could include

Authors Suppressed Due to Excessive Length

the deployment, the installation of new components or the removal of existing
ones [16-18].

Self-Healing: the ability of the system to perceive if it doesn’t work cor-
rectly. It ensures the necessary adjustments to restitute it towards its nor-
mal state without human intervention [19]. By knowing about the system,
it analyzes information, detects system degradations and initiates corrective
actions without disrupting the system execution.

Self-Optimizing: the ability of the system to continually enhance its perfor-
mance. It is a proactive mechanism that detects performance degradation
and acts intelligently such as in reallocating resources with minimal human
intervention [16].

Self-Protecting: the ability of the system to detect and protect its resources
from internal and external attacks and maintain its security [2].
Self-Awareness: the ability of the system to know itself and to be aware of
its state and behaviors [15].

Context Awareness: the ability of the system to know its execution environ-
ment and be able to react to its changes [15].

Open: the ability of the system to work in a heterogeneous world and imple-
ment open standards. It should be portable across multiply hardware and
software architectures [15].

Anticipatory: the ability of the system to anticipate its needs and behaviors
and to manage itself proactively [15].

2.2 Autonomic Computing Techniques

Autonomic computing is based on four main steps [2]: Monitoring, Analysis,

Plan and FEzecution.

Monitoring techniques

Analysis techniques

Plan& Execution tech-

niques

INTERCEPTION [20, 21|

ARCHITECTURAL
ENTIATION [22, 23]

DIFFER-

SUBSTITUTION|[24, 10]

ASSERTION |25, 26]

BEHAVIORAL DIFFERENTIA-
TION|[27]

WRAPPING[28, 29]

AOP [30-32]

QoS-coNTRACT (SLA)[33]

LoAD BALANCING|[34]

REFLECTION [10, 35]

Qo0S-AawARE (QOS HIs-
TORIC)[36, 37|

ROLLBACK [38]

REDUNDANCY & DUPLICA-
TION [39-41]

Table 1. MAPE-k loop techniques.

Monitoring is usually defined as the act of listening, carrying out supervi-
sion on, and/or recording the activity of a software entity for the purpose of
maintaining system reliability and QoS. Monitoring can be ensured using the
following techniques as listed in table 1:

Dynamic Reconfigurable Architecture 5

— Interception which represents a hook into exchanged data between a client
and a server allowing requests/responses supervision.

— Assertion is a set of code lines, introduced in a program, which enables to
control and to constrain a program.

— AOP (Aspect Oriented Programming) which aims to verify system properties
and also to configure scope/constraints of each function and discover even a
tiny abnormal state.

— Reflection which enables to discover and to operate on fields and methods
of an object at runtime.

Analysis is the process of detecting possible degradation of the system through
the evaluation and the examination of monitored data. Analysis compares cur-
rent system behavior and architecture with a reference model. The following
techniques are used by the Analysis (see table 1):

— Architectural Differentiation refers to compare the obtained architectural
model to the architectural style of the system in order to detect non-compliance.

— Behavioral Differentiation refers to map the behavior of an implementation
to model behavior.

— QoS Contract which represents explicitly the system requirements under
contract between clients and providers.

— QoS Aware which is based on the historic of the system state. It compares
the current state with previous system states.

Plané$Ezxecution are complementary. In fact, the plan presents a set of algo-
rithms which refer to concrete reconfiguration actions enforced in the Execution
module. While, the Execution refers to the act/the process of repairing or the
condition of being repaired. Also, it may be defined as changes applied to a soft-
ware entity so that it reaches a desirable state. In distributed systems, several
techniques are used to achieve the repair process (see table 1):

— Substitution which replaces a system component by another.

— Wrapping which substitutes a system component by another enveloped which
presents the same business logic.

— Load Balancing consists on distributing load on available components.

— Rollback allows the system to come back to the last stable state.

— Redundancy which repeats an action more than one time in order to achieve
it.

— Duplication (replication) which involves addition of components representing
similar functionalities.

3 Autonomic Design and Implementation Approaches

Software design is defined in IEEE610.12-90 as both "the process of defining
the architecture, components, interfaces, and other characteristics of a system"
and "the result of that process" [42]. It is the only way allowing an accurate

6 Authors Suppressed Due to Excessive Length

translation of requirements into a finished system. The design of architectures
and frameworks is derived from the system specification.

From the implementation point of view, three main categories of solutions
could be used to implement autonomic systems: the model-based category, the
middleware-based category and the platform-based category. For the model-
based implementations [7,50], developers start from the scratch and should im-
plement all actions related to autonomic computing modules. For the middleware-
based implementations [8, 9, 51], developers build their solutions by adapting ba-
sic primitives to their application context. The provided APIs include primitives
for monitoring, analysis, planning and possible reconfiguration actions. The plat-
form category provides reusable components to implement autonomic computing
strategies [11-13].

In the following, we present in detail the different approaches related to the
design and the three categories implementing the autonomic computing. We also
study the different factors that can guide to choose a specified approach rather
than another.

3.1 Architecture design

The architecture models the structure of the system. It provides the global per-
spectives and a high-level abstraction enabling easier understanding of systems.

The work in [43] defines the architectural design as the high hierarchical
structure of a system. It describes the overall design of the system that includes
global control structure, communication protocol, data access, system compo-
nents and their behaviors.

The authors of [44] define a derivative of the architecture, namely dynamic
architecture. This type of architecture evolves and changes itself during runtime
as the system changes. It aims to design an autonomic system in order to ensure
the dynamic reconfiguration of system.

3.2 Framework design

Work in [45] defines a framework as a reusable design of all or part of a sys-
tem that is represented by a set of abstract classes and the way their instances
interact. The same author describes the framework in [46] as a combination of
components and design pattern. CEYLON [47], SAFDID [48] and Cactus [49] are
examples of frameworks implementing autonomic computing in order to dynam-
ically reconfigure the system. The purpose of frameworks is to ensure reusability
and extensibility, two main types of frameworks are distinguished [3]:

— White Box Framework: In a white box framework, we usually extend
behavior by creating subclasses, taking advantage of inheritance. A white
box framework often comes with source code.

— Black Box Framework: In a black box framework, the behavior is ex-
tended by composing objects together, and delegating behavior between ob-
jects. We have no idea about technical implementation only the functionality
of the component and where components can be plugged into the framework.

Dynamic Reconfigurable Architecture

Table 2 recapitulates the difference between black and white frameworks.

White Box Framework

Black Box Framework

Use subclassing

Use Composition and delegation

Inheritance

Polymorphism

Must know the internal structure

Must know interfaces

Simpler, easier to design

Complex, harder to design

Harder to program

Easier to program

Table 2. Comparison between White and Black Box Frameworks

3.3 Model-based implementation approaches

Model-based solutions implement all actions starting from the scratch. No prim-
itives are offered. In this category, we focus particularly on architectural ap-
proaches in which constraints can be expressed explicitly. Management modules
are generally proposed to ensure the dynamic reconfiguration process. These
entities enable monitoring, implement analysis and planning, and enforce recon-
figuration actions.

The work described in [7] provides "Kinesthetics eXtreme" (KX), which is
a generic framework for self-healing based on lightweight middleware. It is a
decentralized architecture using event-based system. It can be implemented at
the middleware level or at the application level. The analysis is based on spe-
cific rules for error detections. KX approach follows the functional properties
of an application in order (i) to semantically analyze exchanged messages; it
plays the role of proxy for capturing message contents (source address, subject,
message-ID) for detecting SPAM messages (ii) and to monitor the beginning and
the end of method calls in order to detect services which run incorrectly. KX is
scalable and can be applied to a composed system. However, it has limits: First,
the scenarios is implemented with manually-written glue code for attaching the
external autonomic infrastructure to the target system. Second, the probe de-
ployment, the gauge derivation, and the construction of reconfiguration plans
are performed manually.

Rainbow [6,50] is a framework for self-adaptive systems. It is composed of
two layers. First, the system layer, which collects information about the sys-
tem and enforces reconfiguration plans. Second, the architecture layer, which
reflects the current architecture model, checks constraint violations, and de-
termines the required adaptation. The architecture and system layers interact
through a translation infrastructure. However, experimental work [52] has shown
that this externalized approach for self-adaptation causes a significant slowdown
of the system behavior. Also, this approach supposes that the target system con-
tains hooks for monitoring and management. The reconfiguration plan is built
manually and integrated in the code. No evaluation or validation of this plan is
provided.

8 Authors Suppressed Due to Excessive Length

Other model-based approaches use architectural styles designed to enable
autonomic computing. In fact, an architectural style represents a collection of
design decisions that have already been made and can be reused. It consists in
a few key features and rules for combining these features so that architectural
integrity is preserved. From this category, we can mention Prism [22, 53] which
is an autonomic approach based on component oriented architectures. It is com-
posed of two layers. The first is the application layer which includes functional
components and exchanges messages between them. The second represents the
autonomic layer. At this layer, components act as effectors. They facilitate mon-
itoring, enacting changes, planning and deployment. These effectors are aware
of application-layer components and may initiate interactions with them, but
not vice versa. The proposed style, even it is abstract, seems to be complete as
it covers most requirements for autonomic system like adaptability, dynamics,
awareness and robustness. It is one of the few approaches which considers mobil-
ity. However, this framework does not target a solution for specific application
context, but it is a general approach for designing autonomic systems. Specific
functionalities, like coordination and policies are not considered in this approach.
The applicability of the style has been demonstrated.

Taylor and all present an architectural approach for autonomic computing. In
[25], Taylor and Oreizy propose an approach for self-adaptive architecture. This
approach is neither implemented nor applied to a specific application context. It
focuses on system integrity which requires the management of consistency, cor-
rectness and coordination of reconfiguration actions. In [54], Taylor and Dashofy
refine the architecture proposed in [25]. They exhibit a style-based approach for
autonomic systems. They provide an infrastructure able to support the design,
validation and execution of reconfiguration plans. The architecture is described
using xADL 2.0 (XML-based Architecture Description Language). The infras-
tructure is mainly designed for event-based systems. However, this architecture
is centralized for single process systems and no mechanism is considered for error
detections.

3.4 Middleware-based implementation approaches

The middleware-based approaches provide primitives helping developers to im-
plement autonomic computing system. In the following, we present middleware-
based implementations. Details about each middleware are presented in table 3.

OpenORB middleware [10] is built on the basis of reflective technology. Its
reflective architecture uses meta-object protocols to perform integrations that
support dynamic adaptation at runtime. The meta-models allow monitoring
and reconfiguration of misbehaviors in order to preserve the architecture style.
Through the interception meta-model, it analyzes exchanged messages between
components and client requests. The interface meta-model provides access to
the component implementation while the architecture meta-model provides ac-
cess to the object graph. The illustration prototype deals with the continuous
media flows transmission quality while introspecting and reconfiguring available
resources (CPU, network, etc.) in order to maintain QoS [55]. This case study

Dynamic Reconfigurable Architecture 9

demonstrates that OpenORB provides sufficient support for small-scale multi-
media applications. To secure the communication between peers, authors of [10]
said that it may be done while using interceptors.

DynamicTAO [56] is a reflective ORB (an extension of the TAO ORB). It
enables detecting changes in environment and reloading new component imple-
mentations which may be bound to the system at runtime. These features are
achieved by the use of a collection of entities known as component configurators.
These configurators maintain information about the dependencies between the
components they manage. The DynamicConfigurator inspects component imple-
mentations (list_categories, list _components, domain _component, impl _info,
comp _info, etc.) and reconfigures system on the fly while loading or removing
implementations stored in a Repository. The scalability of DynamicTAO is not
improved. However, it is only tested with a simple example (getHello()). The Dy-
namicTAQ infrastructure includes two management security services. The first
is used to crypt/decrypt message contents and the second authenticates commu-
nication peers to control access. The security strategy can be loaded and bound
dynamically to the system at runtime. This allows the use of a large range of
security models.

Eternal [57] is a component-based middleware which provides fault tolerance
to CORBA-based applications by replicating components. The autonomic com-
puting aspect is developed as an external layer underneath the ORB layer. The
monitoring is based on the middleware interception approach which is trans-
parent to all ORB. Eternal intercepts client requests and transfers them to a
replication manger in the case of misbehaviors. A simple test application is done
in order to measure the performance of Eternal when a fail happen. It shows
the recovery time required for reconfiguration while varying the size of the ap-
plication state to transfer across the network. The drawn curve points out that
the recovery time increases while the transferred data size goes up. Eternal uses
CORBA security service (SecIOP) and integrates SSL to secure exchanged mes-
sages. Also, it implements a firewall in order to filter requests and accepts only
authenticated clients.

Middleware DynamicTAO Eternal OpenORB JavaPod CME

Monitoring Event Collector:| DynamicConfigurator: | Interceptor: Uses|Server Container:| Connection ~ Monitor:
Observes behavior|Inspects component|three technics:|No given details Monitors network
of components and|implementations checkpoint, pinging devices (as modem)
generates relevant ("i-am-alive" peri- and controls protocol
QoS events odic message), and entities (as routing

logging table).

Analysis Monitor: Collects| The user: Interrogates|Fault Detector:|No given details Adaptation Trigger:
QoS events and|the database, in order|Communicates the Triggers adaptation
reports abnormal|to inspect QoS values |occurrence of faults based on predefined
behaviors to the Fault Notifier context criteria

Planning Strategy Selectors:| The user: Chooses the|Fault Notifier:|No given details Adaptation Selector:
Selects an appro-|suitable implementa-|Distributes fault Chooses suitable adap-
priate adaptation|tion from each cate-|levent notifications tation approach
strategy based|gory to Replication
on feedback from manager
monitors

Execution Strategy Activators:| DynamicConfigurator: | Replication Man-| Composition: Ex-|Adaptation Ezecutor:
Implements a partic-|Loads and binds new|ager: Transfers|tends component|Executes commands
ular strategy, e.g. by|service implementa-|the system state|with new implemen-|(open and switch chan-
manipulating com-|tions (load, resume,|towards a replica |tations and wraps|nels) and changes entity
ponent graph while|suspend, remove, requests behaviors
preserving the archi-|delete etc.)
tectural style

External /Internal|External or Internal |External External External External

Programming Python C++ / Java C++ ejava (extension of|Java

language Java)

Scalability High Low Medium Medium Low

Security Low High High Medium Medium

Application do-|{Component/Web |Component Component Component/ Mobile|Network devices (PC,

main service Component PDA,...) and protocols

(LAN, GPRS,...)
Reconfiguration |Structural: Modifies|Behavioral: Reloads a|Structural: Connects|Behavioral: Extends|Structural/Behavioral:
Strategy the architecture new component imple-|clients to replica components with|Switching/Adjusting
mentation new implementa-|channels.
tions

Table 3. Middleware features

0T

38U 9A1SS90X,] 09 on(] passerddng sroyiny

Dynamic Reconfigurable Architecture 11

JavaPod [58] is a reflective middleware which focuses on the separation of
functional and nonfunctional properties in a distributed context. The adaptation
is managed using object compositions. It is achieved while dynamically extending
methods with new implementations. Authors developed a java extension to make
easy implementation of this approach. They provide new protocols to manage
connections and handle faults. For the security, JavaPod implements an access
control list, which allows to manage access at the method level for each user.
For the evaluation, an e-learning application, called Baghera, is used as a case
study. The performance evaluation shows that an overhead is considerable due
to the composition mechanism. But, this overhead is negligible compared to the
communication time which is enhanced.

CMFE [59] (Connection Management Engine) is a middleware for network
applications. It manages logical connections (called channels) between two com-
munication peers. It monitors channels to determine which stations communicate
with each other, when connections begin and end, and how much information is
exchanged. CME uses a policy mechanism to facilitate the Network management.
Policies represent adaptation requirements to ensure at runtime. CME enables
monitoring of security privileges by recording which stations communicate with
each other. The scalability is not improved. The middleware is only tested with
a prototype on PDA. CME acts on the network level. Consequently, it is above
the Operating System and it can support many kinds of applications.

DynamicTAO, Eternal, JavaPod and CME are developed as an external layer
to manage autonomic systems at runtime. However, OpenORB can be external
or internal. External, in which the monitoring component is supported by appli-
cations as an external service. Internal, in which the monitoring component is
injected into the application components to provide such service. With Eternal,
the reconfiguration mechanism is limited to the replication. DynamicTAO does
not provide entities for fault detections and analysis. The user has to inquire
about the application health and to choose the suitable reconfiguration plan.
JavaPod does not provide any entities for analyzing and planning. Meanwhile,
all steps are automated with other middlewares.

3.5 Platform-based implementation approaches

In this section, we present the main suggested platforms employed for developing
autonomic applications. The evaluation is based on criteria including provided
self-aware, used components and the architecture types supported by these plat-
forms.

Unity [11, 60]: The Unity project is looking for how component behaviors
and relationships can support self-management of computing systems. The Unity
project implements a prototype of autonomic systems, designed to show the fea-
sibility and to validate the dynamic reconfiguration of the environment. During
runtime it reallocates and reconfigures resources to optimize its behavior ac-
cording to specified policies. In this approach, every component incorporates an
autonomic part in a way that it becomes autonomic. The different components
of Unity are:

12 Authors Suppressed Due to Excessive Length

— "Application environment manager": which is responsible for the manage-
ment, communication between components, and predicting the resource avail-
ability.

— "Resource arbiter": which manages sharing and allocation of resources.

— "Registry": which allows locating components.

— "Policy repository": which represents administration interfaces.

— "Sentinel": which is used by a component to monitor the functioning of
another.

— "Solution manager": which is responsible for the reconfiguration and the
maintenance.

The monitoring is enabled by all components, including defective components
(if they exist) which can cause system damages. They have to be sure about
monitored Data. They should add policies in order to filter gathered data.

PAC-MEN [12]: Personal Autonomic Computing Monitoring ENvironment:
PAC-MEN provides concepts and techniques for a range of platforms including
PCs, mobile laptops, PDA etc. It is based on ’reflez reaction’ in order to respond
to threats, and ’vital signs’ to assess operational health (inspired from human
mechanisms). In this approach, every peer in the system is an element:

— Each peer is responsible for its own internal behavior.

— Each peer may be extended to include shared monitoring of the external
environment to inform group members of events that may require individual
action.

PAC-MEN approach proposes to set up a management server in each peer
called "Autonomic Manager" (AM), which shares data and management deci-
sions between other AMs. This allows collaboration of A Ms. However, this style
is more dynamic and decentralized.

CODA [61]: Complex Organic Distributed Architecture: CODA applies con-
cepts such as self-organization, self-regulation and viability to derive an intel-
ligent architecture. It reacts to operation failures and proactively searches for
successful patterns of behavior. CODA is a layered approach. It contains five
layers:

— "Operations": which represents business operations of a system.

— "Monitor Operations": which performs internal monitoring.

— "Monitor of the Monitors": which performs external monitoring.

— "Control": which learns about faults and predicts reconfiguration actions.
— "Command": which recognizes threats and makes decisions.

Platform names |Unity PAC-MEN CODA Cactus MAIS Jade SAFDIS
Centralized/ Decentralized Decentralized |Centralized Decentralized |Centralized Centralized |Decentralized
Decentralized
Architecture Client /Server peer-to-peer, |Client/Server |Client/Server |Client/Server |Client/Server |Client/Server
type Grid
Human inter-|Minimal No No No Interaction No No
vention
Self-aware Self-configuration, |[Self-healing, |[Self- Self- Self- Self- Self-
self-optimizing, self-awareness, |organization, configuration, |adaptation, adaptation, |adaptation,
self-protecting, self- self-regulation, |self-adaptation |self-optimizing (self- self-
self-healing monitoring self-monitoring optimizing optimizing
External/ Inter-|Internal Internal Internal, exter-|External Internal, exter-|External External
nal nal nal
Programming |Java Java Java C/C++/Java |Java Java Java
language
Presentation GUI No No Monitoring in-|{No Monitoring |No
terface visualizator
Monitoring Sentinel Vital signs Monitor opera-|Event Handlers |Diagnoser and|Monitor Event Man-
tions, Monitor of Inspector ager
the Monitors
Execution Solution manager Reflex reaction|Command Event Handlers |Recovery ac-|Connector Migration of
tions Services
Level Application Application |Application Network Application, Application |Application
and device network and
device
‘Web services Yes No Yes No Yes Yes No

Table 4. Platform features.

9INJDOYYOIY O[qRINSYU0IY drureus (]

€1

14 Authors Suppressed Due to Excessive Length

Cactus [49]: Cactus provides support for dynamic adaptation and offers a
potential solution for building autonomic software in networked systems. A ser-
vice in Cactus is implemented as a "set of handlers" which reacts when an event
occurs in order to manage QoS (reliability, timeliness, performance, and secu-
rity). In the case of CORBA based application, the service is a communication
protocol that resides in the protocol stack on top of a lower level communication
service such as UDP. Handlers react when a message is exchanged between the
client and the server. Cactus proposes several handler kinds. Each handler does
not need to know about other one and we can choose the desired handler for
each service. This may return Cactus more configurable and more adaptable.

MATS [13]: Mobile Adaptive Information Systems: The MAIS project stud-
ies adaptability at all levels in information systems, from application level to
network and device levels (PCs, laptops, palmtops, cellular phones, and so on).
Several levels of adaptability are considered: the upper level (Application level),
the middle level (web service level) and the bottom level (Infrastructure & Mid-
dleware level). MAIS provides an environment to run composite, multi-channel,
mobile, and context-aware web services in an adaptive way. The MAIS architec-
ture implements a runtime service-oriented fault analysis and recovery actions.
It detects faults by inspecting request and response messages and analyzing
them through a diagnoser component. This architecture provides four modules
to handle reconfiguration actions, namely: "reallocation", "substitution", "wrap-
per generator" and "quality modules".

Jade [62]: Jade is an autonomous administration platform for software in-
frastructure. It provides an abstract view of the application and acts when a
failure occurs on a part of the system. It uses duplication to maintain the ser-
vice availability and to handle the resource allocation according to the load
variation in order to manage scalability. Jade is composed of two parts:

— Managed Element: which wraps each software and provides an administra-
tion interface;

— Autonomic Manager: which implements the administration management
policies (repair and optimization). It monitors and acts on system through
the Managed Elements interfaces.

SAFDIS [48]: Self-Adaptation For DIstributed Services, enables the dy-
namic management, of service-based architectures. The implementation is built
for the OSGi platform, using iPOJO to manage the life-cycle. The different com-
ponents are:

— Adaptation Manager: its role concentrates on ensuring the communication
between the different components and services responsible of the adaptation
of the system.

— FEvent Manager: it collects events from monitors, composes them and keeps
a local view of the system. It is the supervisor of the whole system.

— Analyst: it is a distributed and a decentralized process. It identifies, analyzes
the system changes and decides if an adaptation is needed. Then, it makes
an adaptation decision when a need arises. Furthermore, this component is
composed of:

Dynamic Reconfigurable Architecture 15

e Decision Maker: it listens to events coming from the event manager and
sends them to the reasoners for analysis.

e Negotiator: it is composed of a back end and a front end connected to a
remote negotiator of another SAFDIS instance.

e Negotiation Manager: it is responsible of managing the multiple negoti-
ations that can happen at the same time.

— Planner: it is composed of a set of Planning Algorithms and a Manager
component. According to objectives and constraints, the Manager produces
simple orderings of actions to reconfigure system.

— Execution Engine: it is called to perform planned actions. In SAFDIS, the re-
configuration action moves a service from an execution node to another,which
is called the migration of services.

There are other platforms like in [63] and [64]. The work described in [63]
presents a reflexive and dynamically adaptable execution environment which
allows building dynamic, reflexive and flexible application and middleware. Au-
thors of [64] propose a mechanism for adding and adapting services based on an
adaptable reconfiguration language.

In table 4, we present properties of each platform. Most platforms do not
allow any interaction between human or administrator and application except
for Unity and MAIS. The programming language supported by all platforms is
Java. But, there is another Cactus version that supports C and C++. CODA,
Unity and MAIS support web services based dynamic reconfiguration. The others
may investigate to support them. Cactus integrates the dynamic adaptation in
the level of the exchanged data. In order to support web services, it may extend
SOAP protocol to take into consideration new handlers for QoS preservation.

3.6 Concluding Remarks

Internal vs. External autonomic computing All cited implementations
have as goal the dynamic reconfiguration of the system which allows it to evolve
incrementally from one state to another at run-time in order to accommodate to
changes [12]. The dynamic reconfiguration activities, based on autonomic com-
puting, can be carried out either internally or externally to the application. In
internal, codes responsible of the reconfiguration are merged with the application
codes, while in external, they are separated from the application codes [65].

In an Internal autonomic mechanism, it is difficult to add a new code or a
new strategy to a black-box component; we must know about the component
design in order to govern it. The Unity [11] and PAC-MEN [12] projects present
a prototype enabling dynamic reconfiguration, based on internal mechanisms.

Ezxternal mechanism is appropriate when it is so difficult to modify applica-
tion codes. We generally deploy components in heterogeneous context; therefore,
if we use an internal strategy, we have to develop a new component version (with
specific self-healing mechanism) for each context. Also, externalized mechanisms
allow the reuse of autonomic components and make easy their update, since they
are localized [66]. In addition, external mechanism allows us to divide the task

16 Authors Suppressed Due to Excessive Length

of the application implementation between the component developers and man-
agers. Kinesthetics eXtreme [7] and Rainbow [6] built systems based on external
mechanisms.

Each component may include autonomic mechanisms in order to heal itself.
Designed systems have to inquire into problems and ask components to reconfig-
ure their structure or behavior. Furthermore, dynamic reconfiguration strategy
must not cause significant slowdown to the execution process and especially for
the real time application. It must react in order to repair crashes while the vari-
ance of global system response time is kept in limited bounds. In order to reach
a suitable and adaptable system which makes system resilient to faults, we have
to apply autonomic computing techniques which cover all levels: hardware and
software. But this solution may be very expensive and it requires combination
of various mechanisms.

Behavioral vs. Structural autonomic computing We can distinguish two
strategies of the dynamic reconfiguration in the Execution level. In fact, recon-
figuration actions act on the system either behaviorally or structurally.

Following the first strategy , it is related to the behavioral dimension of the
system in general; otherwise, it focuses on its internal behavior. Indeed, we speak
about such approach when components behavior is customizable or modifiable.
So, when degradation is detected, the installed reconfiguration infrastructure
is brought to repair the process at runtime, by applying the reconfiguration
actions to the concerned components. This reconfiguration is considered as a
direct adjustment, because its actions are supposed to modify at once the internal
composition of system components in order to correct it further to a problem.
Eternal [57], CEYLON [47] and JavaPod [58] change the behavior of components
in order to dynamically reconfigure the system.

Following the second one, it is related to the structural dimension of the
system. So that systems components are observed during the execution of this
later. Several symptoms are stored before taking the decision of activating or
not reconfiguration actions. In this case, the reconfiguration is done by applying
basis actions such as adding or removing components or their connections. The
structural adaption referred to as "run-time" when the reconfiguration is sched-
uled during execution. DynamicTAO [56] and OpenORB [10] implement the
structural reconfiguration. While, CME [59] implements both structural recon-
figuration by switching and behavioral reconfiguration by adjusting channels.

4 DRAAS: Dynamically Reconfigurable Architecture for
Autonomic Services

In this section, we present our approach, DRAAS which manages QoS of web
service-base applications at runtime. It is based on monitors, able to extend
SOAP messages exchanged between the service requester and the service provider
(Web Service), and a dynamic connector which is used to redirect requests to
concrete providers offering the same business logic.

Dynamic Reconfigurable Architecture 17

4.1 DRAAS architecture

DRAAS provides the management of QoS by implementing virtualization and
the different components of the autonomic computing architecture reference
(MAPE K-loop): The first step is Monitoring. It corresponds to the supervi-
sion of the application. It observes flows and stores the value of the monitored
data. Second, the Analysis detects the QoS degradation. If detected, an alarm
signal will be sent to the planning module. Third, the Planning identifies the
origin of the QoS degradation and calculates the new reconfiguration. Fourth,
the Execution module executes the reconfiguration actions.

Requester1 Requester2 Provider1| |Provider2

4. Concrete

1. Requests 6. Responses responses

3. Bind requests to
concrete providers

T S S S : \ 4. Dummy Response
_i| Requester1 Requester2 P P Dynamic i i
ti| side Monitor Side Monitor | Monitoring i [T] connector —>| VirtualProvider
; \—> Provider

T 11. Execute the Plan

5. Response QoS Monitoring

‘ ServiceManagement ‘

6'log 2. Request QoS Monitoring Side Monitor| :
. : Execution:
. 2 ! 10. Plan
[i 9. Al .
b Analysis Hﬁrm Planning
DRAAS : : 8. Consult Log
Keys:
Log 7. Notify the Analysis Z———2 Intercepted Requests/Responses

=w——— Concrete Requests/Responses
-------- > Data base access
—> Invocation

Fig. 2. DRAAS architecture

The figure 2 presents an overview of DRAAS deployed between Requesters
and Providers. Software entities composing our architecture are:

— In the Monitoring module:

e RSM: Requester Side Monitor, associated to each requester, is responsi-
ble of intercepting inflow/outflow (Request/Response) in the requester
side.

e PSM: Provider Side Monitor, associated to all providers, is responsible
of intercepting inflow /outflow (Request/Response)in the provider side.

— Analysis for detecting QoS degradation.
Planning for calculating the new reconfiguration.
— In the Execution module:

18 Authors Suppressed Due to Excessive Length

e VirtualProvider, is the initial destination of requester requests.

e Dynamic Connector, redirects/binds requester requests to concrete providers
according to the reconfiguration plan.

e ServiceManagement, executes the new reconfiguration.

According to the comparative study established in the previews sections,
DRAAS is a decentralized architecture thanks to Web Services, based on client /server
communication, implements the structural strategy by redirecting requests. It is
an externalized approach for dynamic reconfiguration.

4.2 Illustration: Data Load Use Case

In this section, we illustrate the DRAAS architecture within the Data Load use
case. It consists in transferring files from the client side to a Load Repository.
Transferring files is provided by providers (Web Services) which offer the Load-
Transfer service and each file is associated to a request.

A prototype of DRAAS is implemented enabling the balance of load among
available providers in order to manage QoS such as response time which cor-
responds to minimizing the transfer time. Balancing requests is the task of the
dynamic connector. According to the DRAAS architecture, presented in figure
2, we distinguish these actors:

— Requester — Client,
— Providerl — LoadTransferWS1
— Provider2 — LoadTransferWS2

VirtualProvider — LoadTransferVirtualWS

Initially, the client sends files to the Load Transfer Virtual WS. Each one is en-
capsulated in a request. Each request is intercepted twice, first by the RSM and
second by the PSM. The Dynamic Connector, associated to the LoadTransfer-
Virtual WS, balance the load (requests) by redirecting them to Load Transfer WS1
or Load Transfer WS2. Each web service provider (LoadTransfer) transfers a file
per request. If the transfer of each file is successfully done, each response is also
intercepted twice as the request but inversely: first by the PSM and second
by the RSM. All monitored data is stored in the log. If the Analysis detects
an increase of the transfer time, it sends an alarm to the Planning in order to
calculate a new reconfiguration. In this case, the Planning decides to activate
an available LoadTransferWS8 to participate in the next transfer. It sends this
decision to the ServiceManagement to perform it. The execution of this decision
will be caught by the Dynamic Connector. It will be taken into account for the
next load transfer.

4.3 Experimentation

To show the feasibility of DRAAS, we have carried out experiments on the Data
Load. We present in the sequel hardware architecture and tools used for these
experiments.

Dynamic Reconfigurable Architecture 19

Hardware Architecture and Tools All test scenarios (to be presented in the
next section) are assessed under this configuration:

— Operating system: Windows 7, 32 bits
— Processor: Intel Core(TM)2 Duo CPU T5800
— RAM: 2Go

Our implementation is built of the Web Service technology. Analysis, Plan-
ning and ServiceManagement are Web Services, while monitors and Dynamic
Connector are based on handlers. In the following, we cite the technical choices
for our implementation:

— Web service container: Axis2 1.5

— Web server: Tomcat 6.0.30
Programming language: Java 1.6

— Monitors & Connectors: Axis2 Handlers
— Communication level: SOAP

— Logging: MySQL DBMS

Assessment To assess DRAAS performance, we have fixed the global size of
the files to be transferred (T=32Mo) and we have prepared six scenarios for
testing. All scenarios focused on varying the number of files while maintaining
the global size. We present in table 5 the different scenarios used to evaluate
DRAAS performance.

Number of files File Size

Scenariol |1 32 Mo}

Scenario2 [2 17Mo; 15Mo}

Scenario3 [3 10Mo; 11Mo; 11Mo}

Scenariod |4 9Mo; 8Mo; 8Mo; 7TMo}

Scenario5 |8 3,7Mo; 4,3Mo; 3Mo; 5Mo; 4Mo; 4Mo; 4,2Mo;
3,8Mo}

Scenario6 |10 {3,2Mo; 2,8Mo; 3Mo; 2,8Mo; 3,2Mo; 3,2Mo;
3,2Mo; 3,2Mo; 3,7Mo; 3,7Mo;}

Table 5. Load transfer scenarios

In order to show the benefits of DRAAS, we have distinguished two cases
for the Data Load use case: First, the transfer of file is accomplished without
load balancing. Second, deploying DRAAS in order to maintain the QoS man-
agement, such transfer time, at runtime. Therefore, without applying DRAAS
to the DataLoad, the client is connected only to the Load TransferWS1 Web Ser-
vice, even if there is another available LoadTransferWS2 Web Service providing
the same business logic, and all files are transferred through it. If the Load Trans-
ferWS1 Web Service shows a QoS degradation, expressed by an increase of the
transfer time, this degradation affects the Data Load application.

However, when we integrate our DRAAS prototype as described in the pre-
views section, the load will be balanced on available Web services offering the
load transfer service.

20 Authors Suppressed Due to Excessive Length

We have carried out each scenario experiments at least 5 times. According
to obtained values, results are shown in table 6, where the average equals to the
sum of values obtained by tests divided by the number of tests.

Response Time (ms)
Single Web Service Two Web Services(DRAAS)

Min Max Avg Min Max Avg
Scenariol 4565 5141 4812,6 3748 5168 4700,6
Scenario2 6210 7669 6717,44 4067 5357 4918
Scenario3 7780 8228 7920 4520 5583 5039,4
Scenario4 8790 9609 9153,6 4090 5362 4600
Scenario5 14592 16326 15451,6 7611 9631 8324,6
Scenario6 18313 25147 20113,8 8123 8500 8510,4

Table 6. Performance measurement

25000
2 20000

T

£

r5 15000

a

&

2 —@—Single WS (Without DRAAS)
2 10000

© =—2 WS (LB enabled DRAAS)
& F

[

Z 5000

1 2 3 4 5 6
Number of Files

Fig. 3. Average response time of DRAAS prototype

Our experiments provided the curves shown in Figure 3. The blue curve (-s-)
describes the average response time related to transferring a variable number of
files with a single Web Service where the global size is maintained constant and
equal to 32Mo. However, the red curve (=) describes the same parameters but
while using two Web services and enabling the load balancing.

It is obvious that transferring files within our DRAAS prototype, using two
Web services, is more efficient in term of transfer time than using a single Web
service. We have noticed that the transfer time (response time) depends on the
number of files. In fact, without DRAAS, increasing the number of files while
maintaining the overall size leads to increase the response time. However, the
DRAAS curve presents a critical point having the following coordinates (4, 4600)
for which the average response time is optimal. Moreover, the deployment of

Dynamic Reconfigurable Architecture 21

DRAAS with a single provider causes the increase of the response time due to
an added delay e, epsilon, caused by the virtualization. This € has no impacts on
response time since both the number of requests and the number of providers
have exceed two. Therefore, the deployment of DRAAS is based on a necessary
and sufficient assumption which is the presence of at least two providers offering
the same business logic. Indeed the presence of a single provider does not allow
the dynamic reconfiguration, which is currently based on load balancing.

5 Conclusion

In this paper, first,we have presented a classification and a comparative study of
existing architectures and frameworks implementing autonomic systems. Differ-
ent implementations are provided. For example, a model-based solution is usually
suitable for a small system. Platform-based solutions are appropriated for sys-
tems in which only generic QoS properties are required. The new objectives are
oriented towards the deployment and the execution of distributed applications
on heterogeneous platforms (PC, smart devices, Smart card, etc).

Second, we have proposed our DRAAS architecture to bring dynamic recon-
figuration capabilities to distributed web service-based applications. A prototype
of DRAAS has been implemented to assess the applicability of the monitoring
and reconfiguration within the designed architecture. The repair enactment is
based on the architectural reconfiguration providing load balancing for web ser-
vices at the origin of the QoS degradation.

We aim to improve our DRAAS architecture’s to support new reconfiguration
actions such as substitution. Moreover, we target to manage dynamically MAPE-
K loop components while enabling flexibility by changing their behaviors at
runtime in order to include new features, such as new monitors or new analysis
algorithms.

References

1. Shin, M.E.: Self-healing components in robust software architecture for concurrent
and distributed systems. Journal of Science of Computer Programming 57(1) (July
2005) 27-44

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41-50

3. Ciupa, L.: Study on whitebox frameworks in java. (2003)

4. Conte, A., Anquetil, L.P.: A black box framework for an application protocol stack.
In: Proceedings of the 3rd IEEE Symposium on, Application-Specific Systems and
Software Engineering Technology, 2000, IEEE Computer Society (2000) 96 — 101

5. Gurguis, S.A., Zeid, A.: Towards autonomic web services: achieving self-healing
using web services. In: DEAS ’05: Proceedings of the 2005 workshop on Design
and evolution of autonomic application software, New York, NY, USA, ACM Press
(2005) 1-5

22

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

Authors Suppressed Due to Excessive Length

Cheng, S.W., Garlan, D., Schmerl, B.R.: Making self-adaptation an engineer-
ing reality. In: Self-star Properties in Complex Information Systems, Conceptual
and Practical Foundations [the book is a result from a workshop at Bertinoro,
Italy, Summer 2004]. Volume 3460 of Lecture Notes in Computer Science., Springer
(2005) 158-173

Wile, D.S., Egyed, A.: An externalized infrastructure for self-healing systems. In:
WICSA ’04: Proceedings of the Fourth Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA’04), Washington, DC, USA, IEEE Computer Society
(2004) 285

Suzuki, J., Suda, T.: A middleware platform for a biologically inspired network
architecture supporting autonomous and adaptive applications. In IEEE Journal
on Selected Areas in Communications (JSAC) 23(2) (February 2005) 249-260
Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5)
(2004) 311-327

Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parla-
vantzas, N.: Reflection, self-awareness and self-healing in openorb. In: WOSS ’02:
Proceedings of the first workshop on Self-healing systems, New York, NY, USA,
ACM Press (2002) 9-14

Chess, D.M., Segal, A., Whalley, I., White, S.R.: Unity: Experiences with a proto-
type autonomic computing system. In: 1st International Conference on Autonomic
Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA, IEEE Computer
Society (2004) 140-147

Sterritt, R., Bantz, D.F.: Pac-men: Personal autonomic computing monitoring
environment. In: 15th International Workshop on Database and Expert Systems
Applications (DEXA 2004), Zaragoza, Spain, IEEE Computer Society (2004) 737—
741

Cappiello, C., Missier, P., Pernici, B., Plebani, P., Batini, C.: Qos in multichannel
is: The mais approach. In: Engineering Advanced Web Applications: Proceed-
ings of Workshops in connection with the 4th International Conference on Web
Engineering (ICWE 2004), Munich, Germany, 28-30 July, 2004. (2004) 255—268
Paulson, L.D.: Computer system, heal thyself. Computer 35(8) (2002) 2022
Parashar, M., Hariri, S.: Autonomic computing : An overview. (2005) 247-259
White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An archi-
tectural approach to autonomic computing. In: 1st International Conference on
Autonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA, IEEE
Computer Society (2004) 2-9

P.K., S., S., S.: Secured remote tracking of critical autonomic computing applica-
tions. published in IEEE E-Tech, Karachi, Pakistan (2004)

Charles Gouin-Vallerand, S.G., Abdulrazak, B.: Toward a self-configuration mid-
dleware for smart spaces. In: FGCN ’08: Proceedings of the 2008 Second Interna-
tional Conference on, Future Generation Communication and Networking, 2008.
Volume 2., IEEE Computer Society (2008) 463 — 468

Riadh Ben-Halima, Khalil Drira, M.J.: Survey a qos-oriented reconfigurable mid-
dleware for self-healing web services. In: ICWS ’08: Proceedings of the 2008 IEEE
International Conference on Web Services. Volume 1., IEEE Computer Society
(2008) 104 — 111

Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management applications
of the web service offerings language (wsol). In: Advanced Information Systems En-
gineering, 15th International Conference, CAiSE 2003, Klagenfurt, Austria, June

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Dynamic Reconfigurable Architecture 23

16-18, 2003, Proceedings. Volume 2681 of Lecture Notes in Computer Science.,
Springer (2003) 468-484

Chang, F., Karamcheti, V.: Automatic configuration and run-time adaptation
of distributed applications. In: HPDC ’00: Proceedings of the Ninth IEEE In-
ternational Symposium on High Performance Distributed Computing (HPDC’00),
Washington, DC, USA, IEEE Computer Society (2000) 11

Medvidovic, N., Mikic-Rakic, M.: Programming-in-the-many: A software engineer-
ing paradigm for the 21st century. In: Workshop on New Visions for Software De-
sign and Productivity: Research and Applications, Nashville, Tennessee (December
2001)

Cheng, S.W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitnagel, B., Steenkiste, P.:
Using architectural style as a basis for system self-repair. In: WICAS3: Proceedings
of the IFIP 17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Con-
ference on Software Architecture, Deventer, The Netherlands, The Netherlands,
Kluwer, B.V. (2002) 45-59

Schmidt, H.: Trustworthy components-compositionality and prediction. Journal
of Systems and Software 65(3) (2003) 215-225

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14(3) (1999) 54-62

Guinea, S.: Self-healing web service compositions. In: ICSE ’05: Proceedings of
the 27th international conference on Software engineering, New York, NY, USA,
ACM Press (2005) 655-655

Richters, M., Gogolla, M.: Aspect-oriented monitoring of uml and ocl constraints.
In: In AOSD Modeling With UML Workshop, 6th International Conference on the
Unified Modeling Language (UML. (2003)

Sridhar, N., Pike, S.M., Weide, B.W.: Dynamic module replacement in distributed
protocols. In: Distributed Computing Systems, 2003. Proceedings. 23rd Interna-
tional Conference on, IEEE Computer Society (June 2003) 620 — 627

Bouchenak, S., Boyer, F., Krakowiak, S., Hagimont, D., Mos, A., Jean-Bernard,
S., Palma, N.d., Quema, V.: Architecture-based autonomous repair management:
An application to j2ee clusters. In: SRDS ’05: Proceedings of the 24th IEEE Sym-
posium on Reliable Distributed Systems, Orlando, Florida, USA, IEEE Computer
Society (2005) 13-24

Yoo, G., Lee, E.: Monitoring methodology using aspect oriented programming in
functional based system. In: Advanced Communication Technology (ICACT), 2010
The 12th International Conference on. Volume 1., IEEE Computer Society (April
2010) 783 — 786

seong Lee, K., Lee, C.G.: Model-driven monitoring of time-critical systems based
on aspect-oriented programming. In: Secure Software Integration and Reliability
Improvement (SSIRI), 2011 Fifth International Conference on, IEEE Computer
Society (August 2011) 80 — 87

Mdhaffar, A., Ben-Halima, R., Juhnke, E., Jmaiel, M., Freisleben, B.: AOP4CSM:
An Aspect-Oriented Programming Approach for Cloud Service Monitoring. In:
Proceedings of the 11th IEEE International Conference on Computer and Infor-
mation Technology, IEEE Press (2011) 363 — 370

Mostafaei, F.S., Amani, N., Hajipour, P.: Proposing a new qos/sla management
model by regulatory authority. In: Telecommunications (IST), 2010 5th Interna-
tional Symposium on, IEEE Computer Society (2010) 508 — 512

Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynamic load balancing without
packet reordering. ACM SIGCOMM Computer Communication 37 (April 2007)

24

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Authors Suppressed Due to Excessive Length

Grace, P., Blair, G.S., Samuel, S.: Remmoc: A reflective middleware to support
mobile client interoperability. In: On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE - OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7,
2003. Volume 2888 of Lecture Notes in Computer Science., Springer (2003) 1170-
1187

Ben-Halima, R., Drira, K., Guennoun, K., Jmaiel, M.: Non-intrusive qos monitor-
ing and analysis for self-healing web services. In: First IEEE International Confer-
ence on the Applications of Digital Information and Web Technologies(ICADIWT
2008), Ostrava, Czech Republic, IEEE Computer Society (August 4-6 2008)
Truong, H.L., Samborski, R., Fahringer, T.: Towards a framework for monitoring
and analyzing qos metrics of grid services. In: e-Science and Grid Computing, 2006.
e-Science ’06. Second IEEE International Conference on, IEEE Computer Society
(Decembre 2006) 65 — 73

Zhang, H.Y., Urtado, C., Vauttier, S.: Connector-driven process for the gradual
evolution of component-based software. In: Software Engineering Conference, 2009.
ASWEC ’09. Australian, IEEE Computer Society (June 2009) 246 — 255
Diaconescu, A.: A framework for using component redundancy for self-adapting
and self-optimising component-based enterprise systems. In: OOPSLA ’03: Com-
panion of the 18th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, New York, NY, USA, ACM Press
(2003) 390-391

George, S., Evans, D., Marchette, S.: A biological programming model for self-
healing. In: SSRS '03: Proceedings of the 2003 ACM workshop on Survivable and
self-regenerative systems, New York, NY, USA, ACM Press (2003) 7281
MOO-MENA| F., DRIRA, K.: Reconfiguration of web services architectures: A
model-based approach. In: Computers and Communications, 2007. ISCC 2007.
12th IEEE Symposium on, IEEE Computer Society (August 2007) 357 — 362
McBride, Matt: Software architecture and design. Technical report, IEEE EDU-
CATIONAL COURSES,Developed exclusively for IEEE eLearning Library (2011)
Hai-Shan, C.: Survey on the style and description of software architecture. In: Pro-
ceedings of the 8th International Conference on, Computer Supported Cooperative
Work in Design. Volume 1., IEEE Computer Society (2004) 698 — 700

Yang Qun, Y.X.c., wu ;, X.M.: A framework for dynamic software architecture-
based self-healing. In: Systems, Man and Cybernetics, 2005 IEEE International
Conference on. Volume 3., IEEE Computer Society (2006) 2968 — 2972

Johnson, R.E.: Components, frameworks, patterns. ACM SIGSOFT Software
Engineering Notes 22(3) (1997) 10-17

Johnson, R.E.: Frameworks = (components + patterns). Communications of the
ACM 40(10) (1997) 39-42

Yoann Maurel, A.D., Lalanda, P.: Ceylon : A service-oriented framework for build-
ing autonomic managers. In: EASe’10: Proceedings of the 2010 Seventh IEEE
International Conference and Workshops on Engineering of Autonomic and Au-
tonomous Systems, IEEE Computer Society (2010) 3-11

Gauvrit, G., Daubert, E., André, F.: Safdis: A framework to bring self-adaptability
to service-based distributed applications. In: SEAA’10: Proceedings of the 2010
36th EUROMICRO Conference on, Software Engineering and Advanced Applica-
tions, IEEE Computer Society (2010) 211 — 218

Hiltunen, M. A, Schlichting, R.D., Ugarte, C.A., Wong, G.T.: Survivability through
customization and adaptability: the cactus approach. In: DARPA Information
Survivability Conference and Exposition. (1999) 294-306

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Dynamic Reconfigurable Architecture 25

Cheng, S.W., Huang, A.C., Garlan, D., Schmerl, B.R., Steenkiste, P.: An architec-
ture for coordinating multiple self-management systems. In: 4th Working IEEE /
IFIP Conference on Software Architecture (WICSA 2004), 12-15 June 2004, Oslo,
Norway, Washington, DC, USA, IEEE Computer Society (2004) 243-254
Huebscher, M.C., McCann, J.A.: Adaptive middleware for context-aware appli-
cations in smart-homes. In: Proceedings of the 2nd workshop on Middleware for
pervasive and ad-hoc computing, New York, NY, USA, ACM Press (2004) 111-116
Garlan, D., Cheng, S.W., Schmerl, B.R.: Increasing system dependability through
architecture-based self-repair. In: WADS. Volume 2677 of Lecture Notes in Com-
puter Science., Springer (2002) 61-89

Mikic-Rakic, M., Mehta, N., Medvidovic, N.: Architectural style requirements for
self-healing systems. In: WOSS ’02: Proceedings of the first workshop on Self-
healing systems, New York, NY, USA, ACM Press (2002) 49-54

Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-
healing systems. In: WOSS ’02: Proceedings of the first workshop on Self-healing
systems, New York, NY, USA, ACM Press (2002) 21-26

Limon, D.: A Resource Management Framework for Reflective Multimedia Mid-
dleware. PhD thesis, Lancaster University, UK (October 2001)

Kon, F.; Roméan, M., Liu, P., Mao, J., Yamane, T., Magalhdes, L.C.; Campbell,
R.H.: Monitoring, security, and dynamic configuration with the dynamictao reflec-
tive orb. In: Middleware 2000, IFIP /ACM International Conference on Distributed
Systems Platforms, New York, NY, USA, April 4-7, 2000, Proceedings. Volume
1795 of Lecture Notes in Computer Science., Springer (2000) 121-143
Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Eternal: a component-based
framework for transparent fault-tolerant corba. Softw. Pract. Exper. 32(8) (2002)
771-788

Bruneton, E., Riveill, M.: Experiments with javapod, a platform designed for the
adaptation of non-functional properties. In: REFLECTION ’01: Proceedings of
the Third International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, London, UK, Springer-Verlag (2001) 52-72

J., S, J, T, J,S.: Cme: a middleware architecture for network-aware adaptive
applications. In: 14th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications. Volume 1., Beijing, China, IEEE Computer Society
(2003) 839-843

Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,
J.0., White, S.R.: A multi-agent systems approach to autonomic computing. In:
3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), 19-23 August 2004, New York, NY, USA, IEEE Computer Society
(2004) 464471

Ribeiro-Justo, G.R., Karran, T.: Modelling organic adaptable service-oriented en-
terprise architectures. In: On The Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, OTM Confederated International Workshops, HCI-SWWA
IPW, JTRES, WORM, WMS, and WRSM 2003, Catania, Sicily, Italy, Novem-
ber 3-7, 2003, Proceedings. Volume 2889 of Lecture Notes in Computer Science.,
Springer (2003) 123-136

de Palma, N., Bouchenak, S., Hagimont, D., Sicard, S., Taton, C.: Jade : Un
Environnement d’Administration Autonome. Techniques et Sciences Informatiques
27(9-10) (2008) 1225-1252

Ogel, F., Folliot, B., Piumarta, I.: On reflexive and dynamically adaptable envi-
ronments for distributed computing. In: ICDCSW ’03: Proceedings of the 23rd

26

64.

65.

66.

Authors Suppressed Due to Excessive Length

International Conference on Distributed Computing Systems, Washington, DC,
USA, IEEE Computer Society (2003) 112

Hachichi, A., Martin, C., Thomas, G., Patarin, S., Folliot, B.: Reconfigurations dy-
namiques de services dans un intergiciel & composants corbacm. In: 1ére Conférence
Francophone sur le Déploiement et la (Re) Configuration de Logiciels, Grenoble,
France (October 2004)

Qun, Y., Xian-Chun, Y., Man-Wu, X.: A framework for dynamic software
architecture-based self-healing. SIGSOFT Softw. Eng. Notes 30(4) (2005) 1-4
Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:
WOSS ’02: Proceedings of the first workshop on Self-healing systems, New York,
NY, USA, ACM Press (2002) 27-32

