
HAL Id: hal-00675439
https://hal.science/hal-00675439

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRAAS: Dynamically Reconfigurable Architecture for
Autonomic Services

Emna Mezghani, Riadh Ben Halima, Khalil Drira

To cite this version:
Emna Mezghani, Riadh Ben Halima, Khalil Drira. DRAAS: Dynamically Reconfigurable Architec-
ture for Autonomic Services. A. Bouguettaya and Q.Z. Sheng and F. Daniel (Eds). Web Services
Foundations, Springer, pp. 483-505, 2014, 978-1-4614-7517-0. �hal-00675439�

https://hal.science/hal-00675439
https://hal.archives-ouvertes.fr

DRAAS: Dynamially Reon�gurableArhiteture for Autonomi ServiesEmna Mezghani1,2,3, Riadh Ben Halima1,2,3 and Khalil Drira1,2
1 CNRS, LAAS, 7 avenue du olonel Rohe, F-31400 Toulouse, Frane

2 Univ de Toulouse, LAAS, F-31400 Toulouse, Frane
3 University of Sfax, ReDCAD, B.P.W, 3038 Sfax, Tunisia{emna.mezghani,khalil.drira}�laas.fr, riadh.benhalima�enis.rnu.tnAbstrat. The development and the provisioning of autonomi net-worked servies are essential for enterprises and fatories of the future.Endowing servies with autonomi properties allows one to maintain atruntime the Quality of Servie (QoS) inluding di�erent parameters re-lated to performane, availability and reputation suh as response timeand suessful exeution rate. Handling the autonomi properties re-quires the ability to deal with permanent requirement evolving and on-straint hanges. For instane, managing QoS degradation requires theapaity of identifying its possible or atual soures and the apaityof reon�guration planning and exeution. Dealing with these issues isespeially hallenging for web servies sine the autonomi solution hasto be seamless for the servie requesters, ensuring that Web Servies arealways usable under the di�erent deployment onstraints. To implementsuh autonomi systems, the literature provides di�erent approahes,varying from the design to the full implementation of autonomi primi-tives. In this hapter, we present DRAAS: a Dynamially Reon�gurableArhiteture for Autonomi Servies able to provide autonomi proper-ties for QoS management in web servie-based distributed appliations.DRAAS has been implemented and experimented suessfully with dif-ferent use ases. It overs the whole yle of autonomi managementinluding monitoring and analysis of QoS parameters , planning and ex-eution.1 IntrodutionThe important data �ows, the frequent interativity, the inreasing number ofonneted devies, and the network unpreditability make ritial the manage-ment of the new distributed software systems. In one hand, although the reformof veri�ation and validation of software models hasn't eased improving, om-ponents of the systems may still hide design faults resulting in system failuresor ome aross deadlok that freezes the system. In the other hand, user′s re-quirements are evolving following the end-user tehnologies evolution as mobilephone emergene (Multimedia mobile and group-enabled appliation). In thesame time, systems onstraints are variable as unstable bandwidth and dereas-ing energy. As a result, autonomi omputing paradigm is ruial for urrentsystems in order to ensure QoS-aware exeution.

2 Authors Suppressed Due to Exessive LengthMore spei�ally, self-ontrol systems suh as elevator ontrol systems or rit-ial systems suh as spaeraft navigational systems need robustness to detetanomalies and avoid them by reon�guring the systems at runtime [1℄. For thesereasons, researh ators are aelerating the work on autonomi systems. Suhsystems are apable to detet the problems and ontinue to operate by manag-ing malfuntions without human intervention. Autonomi omputing tehnologydoes not only redue potential atastrophi errors, in ritial systems for exam-ple, but it also minimizes the human intervention. It is applied when reliabilityand QoS are required. An autonomi system inspets and hanges its own ar-hiteture and behavior when the evaluation indiates that the intended QoS isnot ahieved, or when a better funtionality or performane is required.The autonomi omputing arhiteture is omposed of four modules anda knowledge omponent that onstitute a ontrol loop namely MAPE-K [2℄.Monitoring whih monitors the data exhanged between the managed elements,Analysis whih detets possible QoS or performane degradations, Planning thatimplements algorithms for seleting and sheduling appropriate elementary re-on�guration ations and Exeution whih performs them.
1� D�����

A���	
��
���

F�������

W�	
� B��

B��� B��

2� I�������������

�� a����a �

�r!�r�r��a�"#� #o

�tr �s��r$

M�%�� b&�%

M	%%����� b&�%

P�
'��� b&�%

(�#�#�s!r

Fig. 1. Autonomi omputing sopeThis autonomi omputing paradigm inludes the design and implementa-tion of omputer systems, as shown in Figure 1. The �rst step fouses on es-tablishing a detailed design from whih results a framework or an arhiteture.Frameworks present the skeleton of an appliation that an be ustomized bythe developer. We distinguish two types of framework [3, 4℄: blak box that doesnot need a deep understanding of the framework's implementation in order touse it and white box that requires the internal understanding of the frameworkto use it e�etively. Arhitetures provide high-level abstration of system om-ponents, while enabling easier understanding and interpretation. Furthermore,the arhitetural approah onstraints an be expressed expliitly. The seond

Dynami Reon�gurable Arhiteture 3step onentrates on implementing the arhiteture or the framework throughvarious tehniques. The implementation may be lassi�ed into three ategories:model-based, middleware-based and platform-based (see Figure 1). Model-basedsolutions [5�7℄ provide expliit implementation of all neessary ations for moni-toring, analysis, planning and exeution. In this ategory (model-based), we fouspartiularly on arhitetural approahes. Monitoring and analysis are made bytesting if the running system onforms to a given arhitetural style or model.Middlewares, like Bionet [8℄, AgFlow [9℄, and OpenORB [10℄, support dynamireon�guration proess by o�ering primitives (like intereption) for all auto-nomi omputing modules. Platforms [11�13℄ provide developers with alreadydeveloped autonomi entities.In this paper, we evaluate and lassify a set of autonomi solutions aordingto riteria suh as provided funtionalities, managed autonomi steps, appliedtehniques, programming languages, et. We aim to provide features whih helpand guide users to selet a suitable solution for implementing autonomi servies.However, it is usually di�ult to selet the appropriate approah to implementan appliation. We think that this hoie depends on the size of the problemto solve, the arhiteture type (deentralized or entralized), the programminglanguage, the appliation area (Server or Client, et.), et. Then, we proposeour DRAAS arhiteture implementing the autonomi omputing to ensure thedynami reon�guration of web servie-based appliations.This paper is organized as follows. Setion 2 gives an overview of the auto-nomi omputing bakground. Setion 3 details di�erent ways to design auto-nomi system. Setion 4 desribes a taxonomy of dynami reon�guration imple-mentation approahes fousing on the "model", "middleware" and "platform"ategories. Setion 5 presents our DRAAS arhiteture illustrated by a use ase.Finally, setion 6 onludes this paper and presents our future works.2 Autonomi Computing BakgroundAutonomi omputing onstitutes an ative researh area in omputer systems[14℄. This paradigm, inspired from the human autonomi nervous system [2℄,has a mehanism that an trigger hanges in the omputing system struturesand behaviors in order to bypass or orret them. Furthermore, it is a olletionof autonomi omponents that the overarhing goal is to manage themselves,so that systems will be dynamially reon�gured at run time, with minimumhuman intervention.2.1 Self-* CapabilitiesThe priniples that govern all autonomi omputing systems, aording to IBM,have been summarized in eight aspets [15℄:� Self-Con�guring: the ability to dynamially on�gure omponents followinghigh-poliies in order to adjust the system. Suh on�gurations ould inlude

4 Authors Suppressed Due to Exessive Lengththe deployment, the installation of new omponents or the removal of existingones [16�18℄.� Self-Healing: the ability of the system to pereive if it doesn't work or-retly. It ensures the neessary adjustments to restitute it towards its nor-mal state without human intervention [19℄. By knowing about the system,it analyzes information, detets system degradations and initiates orretiveations without disrupting the system exeution.� Self-Optimizing: the ability of the system to ontinually enhane its perfor-mane. It is a proative mehanism that detets performane degradationand ats intelligently suh as in realloating resoures with minimal humanintervention [16℄.� Self-Proteting: the ability of the system to detet and protet its resouresfrom internal and external attaks and maintain its seurity [2℄.� Self-Awareness: the ability of the system to know itself and to be aware ofits state and behaviors [15℄.� Context Awareness: the ability of the system to know its exeution environ-ment and be able to reat to its hanges [15℄.� Open: the ability of the system to work in a heterogeneous world and imple-ment open standards. It should be portable aross multiply hardware andsoftware arhitetures [15℄.� Antiipatory: the ability of the system to antiipate its needs and behaviorsand to manage itself proatively [15℄.2.2 Autonomi Computing TehniquesAutonomi omputing is based on four main steps [2℄: Monitoring, Analysis,Plan and Exeution.Monitoring tehniques Analysis tehniques Plan&Exeution teh-niquesIntereption [20, 21℄ Arhitetural differ-entiation [22, 23℄ Substitution[24, 10℄Assertion [25, 26℄ Behavioral differentia-tion[27℄ Wrapping[28, 29℄AOP [30�32℄ QoS-ontrat (SLA)[33℄ Load Balaning[34℄Refletion [10, 35℄ QoS-aware (QoS his-tori)[36, 37℄ Rollbak [38℄Redundany & Duplia-tion [39�41℄Table 1. MAPE-k loop tehniques.Monitoring is usually de�ned as the at of listening, arrying out supervi-sion on, and/or reording the ativity of a software entity for the purpose ofmaintaining system reliability and QoS. Monitoring an be ensured using thefollowing tehniques as listed in table 1:

Dynami Reon�gurable Arhiteture 5� Intereption whih represents a hook into exhanged data between a lientand a server allowing requests/responses supervision.� Assertion is a set of ode lines, introdued in a program, whih enables toontrol and to onstrain a program.� AOP (Aspet Oriented Programming) whih aims to verify system propertiesand also to on�gure sope/onstraints of eah funtion and disover even atiny abnormal state.� Re�etion whih enables to disover and to operate on �elds and methodsof an objet at runtime.Analysis is the proess of deteting possible degradation of the system throughthe evaluation and the examination of monitored data. Analysis ompares ur-rent system behavior and arhiteture with a referene model. The followingtehniques are used by the Analysis (see table 1):� Arhitetural Di�erentiation refers to ompare the obtained arhiteturalmodel to the arhitetural style of the system in order to detet non-ompliane.� Behavioral Di�erentiation refers to map the behavior of an implementationto model behavior.� QoS Contrat whih represents expliitly the system requirements underontrat between lients and providers.� QoS Aware whih is based on the histori of the system state. It omparesthe urrent state with previous system states.Plan&Exeution are omplementary. In fat, the plan presents a set of algo-rithms whih refer to onrete reon�guration ations enfored in the Exeutionmodule. While, the Exeution refers to the at/the proess of repairing or theondition of being repaired. Also, it may be de�ned as hanges applied to a soft-ware entity so that it reahes a desirable state. In distributed systems, severaltehniques are used to ahieve the repair proess (see table 1):� Substitution whih replaes a system omponent by another.� Wrapping whih substitutes a system omponent by another enveloped whihpresents the same business logi.� Load Balaning onsists on distributing load on available omponents.� Rollbak allows the system to ome bak to the last stable state.� Redundany whih repeats an ation more than one time in order to ahieveit.� Dupliation (repliation) whih involves addition of omponents representingsimilar funtionalities.3 Autonomi Design and Implementation ApproahesSoftware design is de�ned in IEEE610.12-90 as both "the proess of de�ningthe arhiteture, omponents, interfaes, and other harateristis of a system"and "the result of that proess" [42℄. It is the only way allowing an aurate

6 Authors Suppressed Due to Exessive Lengthtranslation of requirements into a �nished system. The design of arhiteturesand frameworks is derived from the system spei�ation.From the implementation point of view, three main ategories of solutionsould be used to implement autonomi systems: the model-based ategory, themiddleware-based ategory and the platform-based ategory. For the model-based implementations [7, 50℄, developers start from the srath and should im-plement all ations related to autonomi omputing modules. For the middleware-based implementations [8, 9, 51℄, developers build their solutions by adapting ba-si primitives to their appliation ontext. The provided APIs inlude primitivesfor monitoring, analysis, planning and possible reon�guration ations. The plat-form ategory provides reusable omponents to implement autonomi omputingstrategies [11�13℄.In the following, we present in detail the di�erent approahes related to thedesign and the three ategories implementing the autonomi omputing. We alsostudy the di�erent fators that an guide to hoose a spei�ed approah ratherthan another.3.1 Arhiteture designThe arhiteture models the struture of the system. It provides the global per-spetives and a high-level abstration enabling easier understanding of systems.The work in [43℄ de�nes the arhitetural design as the high hierarhialstruture of a system. It desribes the overall design of the system that inludesglobal ontrol struture, ommuniation protool, data aess, system ompo-nents and their behaviors.The authors of [44℄ de�ne a derivative of the arhiteture, namely dynamiarhiteture. This type of arhiteture evolves and hanges itself during runtimeas the system hanges. It aims to design an autonomi system in order to ensurethe dynami reon�guration of system.3.2 Framework designWork in [45℄ de�nes a framework as a reusable design of all or part of a sys-tem that is represented by a set of abstrat lasses and the way their instanesinterat. The same author desribes the framework in [46℄ as a ombination ofomponents and design pattern. CEYLON [47℄, SAFDID [48℄ and Catus [49℄ areexamples of frameworks implementing autonomi omputing in order to dynam-ially reon�gure the system. The purpose of frameworks is to ensure reusabilityand extensibility, two main types of frameworks are distinguished [3℄:� White Box Framework : In a white box framework, we usually extendbehavior by reating sublasses, taking advantage of inheritane. A whitebox framework often omes with soure ode.� Blak Box Framework : In a blak box framework, the behavior is ex-tended by omposing objets together, and delegating behavior between ob-jets. We have no idea about tehnial implementation only the funtionalityof the omponent and where omponents an be plugged into the framework.

Dynami Reon�gurable Arhiteture 7Table 2 reapitulates the di�erene between blak and white frameworks.White Box Framework Blak Box FrameworkUse sublassing Use Composition and delegationInheritane PolymorphismMust know the internal struture Must know interfaesSimpler, easier to design Complex, harder to designHarder to program Easier to programTable 2. Comparison between White and Blak Box Frameworks
3.3 Model-based implementation approahesModel-based solutions implement all ations starting from the srath. No prim-itives are o�ered. In this ategory, we fous partiularly on arhitetural ap-proahes in whih onstraints an be expressed expliitly. Management modulesare generally proposed to ensure the dynami reon�guration proess. Theseentities enable monitoring, implement analysis and planning, and enfore reon-�guration ations.The work desribed in [7℄ provides "Kinesthetis eXtreme" (KX), whih isa generi framework for self-healing based on lightweight middleware. It is adeentralized arhiteture using event-based system. It an be implemented atthe middleware level or at the appliation level. The analysis is based on spe-i� rules for error detetions. KX approah follows the funtional propertiesof an appliation in order (i) to semantially analyze exhanged messages; itplays the role of proxy for apturing message ontents (soure address, subjet,message-ID) for deteting SPAM messages (ii) and to monitor the beginning andthe end of method alls in order to detet servies whih run inorretly. KX issalable and an be applied to a omposed system. However, it has limits: First,the senarios is implemented with manually-written glue ode for attahing theexternal autonomi infrastruture to the target system. Seond, the probe de-ployment, the gauge derivation, and the onstrution of reon�guration plansare performed manually.Rainbow [6, 50℄ is a framework for self-adaptive systems. It is omposed oftwo layers. First, the system layer, whih ollets information about the sys-tem and enfores reon�guration plans. Seond, the arhiteture layer, whihre�ets the urrent arhiteture model, heks onstraint violations, and de-termines the required adaptation. The arhiteture and system layers interatthrough a translation infrastruture. However, experimental work [52℄ has shownthat this externalized approah for self-adaptation auses a signi�ant slowdownof the system behavior. Also, this approah supposes that the target system on-tains hooks for monitoring and management. The reon�guration plan is builtmanually and integrated in the ode. No evaluation or validation of this plan isprovided.

8 Authors Suppressed Due to Exessive LengthOther model-based approahes use arhitetural styles designed to enableautonomi omputing. In fat, an arhitetural style represents a olletion ofdesign deisions that have already been made and an be reused. It onsists ina few key features and rules for ombining these features so that arhiteturalintegrity is preserved. From this ategory, we an mention Prism [22, 53℄ whihis an autonomi approah based on omponent oriented arhitetures. It is om-posed of two layers. The �rst is the appliation layer whih inludes funtionalomponents and exhanges messages between them. The seond represents theautonomi layer. At this layer, omponents at as e�etors. They failitate mon-itoring, enating hanges, planning and deployment. These e�etors are awareof appliation-layer omponents and may initiate interations with them, butnot vie versa. The proposed style, even it is abstrat, seems to be omplete asit overs most requirements for autonomi system like adaptability, dynamis,awareness and robustness. It is one of the few approahes whih onsiders mobil-ity. However, this framework does not target a solution for spei� appliationontext, but it is a general approah for designing autonomi systems. Spei�funtionalities, like oordination and poliies are not onsidered in this approah.The appliability of the style has been demonstrated.Taylor and all present an arhitetural approah for autonomi omputing. In[25℄, Taylor and Oreizy propose an approah for self-adaptive arhiteture. Thisapproah is neither implemented nor applied to a spei� appliation ontext. Itfouses on system integrity whih requires the management of onsisteny, or-retness and oordination of reon�guration ations. In [54℄, Taylor and Dashofyre�ne the arhiteture proposed in [25℄. They exhibit a style-based approah forautonomi systems. They provide an infrastruture able to support the design,validation and exeution of reon�guration plans. The arhiteture is desribedusing xADL 2.0 (XML-based Arhiteture Desription Language). The infras-truture is mainly designed for event-based systems. However, this arhitetureis entralized for single proess systems and no mehanism is onsidered for errordetetions.3.4 Middleware-based implementation approahesThe middleware-based approahes provide primitives helping developers to im-plement autonomi omputing system. In the following, we present middleware-based implementations. Details about eah middleware are presented in table 3.OpenORB middleware [10℄ is built on the basis of re�etive tehnology. Itsre�etive arhiteture uses meta-objet protools to perform integrations thatsupport dynami adaptation at runtime. The meta-models allow monitoringand reon�guration of misbehaviors in order to preserve the arhiteture style.Through the intereption meta-model, it analyzes exhanged messages betweenomponents and lient requests. The interfae meta-model provides aess tothe omponent implementation while the arhiteture meta-model provides a-ess to the objet graph. The illustration prototype deals with the ontinuousmedia �ows transmission quality while introspeting and reon�guring availableresoures (CPU, network, et.) in order to maintain QoS [55℄. This ase study

Dynami Reon�gurable Arhiteture 9demonstrates that OpenORB provides su�ient support for small-sale multi-media appliations. To seure the ommuniation between peers, authors of [10℄said that it may be done while using intereptors.DynamiTAO [56℄ is a re�etive ORB (an extension of the TAO ORB). Itenables deteting hanges in environment and reloading new omponent imple-mentations whih may be bound to the system at runtime. These features areahieved by the use of a olletion of entities known as omponent on�gurators.These on�gurators maintain information about the dependenies between theomponents they manage. The DynamiCon�gurator inspets omponent imple-mentations (list_ategories, list_omponents, domain_omponent, impl_info,omp_info, et.) and reon�gures system on the �y while loading or removingimplementations stored in a Repository. The salability of DynamiTAO is notimproved. However, it is only tested with a simple example (getHello()). The Dy-namiTAO infrastruture inludes two management seurity servies. The �rstis used to rypt/derypt message ontents and the seond authentiates ommu-niation peers to ontrol aess. The seurity strategy an be loaded and bounddynamially to the system at runtime. This allows the use of a large range ofseurity models.Eternal [57℄ is a omponent-based middleware whih provides fault toleraneto CORBA-based appliations by repliating omponents. The autonomi om-puting aspet is developed as an external layer underneath the ORB layer. Themonitoring is based on the middleware intereption approah whih is trans-parent to all ORB. Eternal interepts lient requests and transfers them to arepliation manger in the ase of misbehaviors. A simple test appliation is donein order to measure the performane of Eternal when a fail happen. It showsthe reovery time required for reon�guration while varying the size of the ap-pliation state to transfer aross the network. The drawn urve points out thatthe reovery time inreases while the transferred data size goes up. Eternal usesCORBA seurity servie (SeIOP) and integrates SSL to seure exhanged mes-sages. Also, it implements a �rewall in order to �lter requests and aepts onlyauthentiated lients.

10AuthorsSuppressedDuetoExessiveLength

Middleware DynamiTAO Eternal OpenORB JavaPod CMEMonitoring Event Colletor :Observes behaviorof omponents andgenerates relevantQoS events DynamiCon�gurator :Inspets omponentimplementations Intereptor : Usesthree tehnis:hekpoint, pinging("i-am-alive" peri-odi message), andlogging Server Container :No given details Connetion Monitor :Monitors networkdevies (as modem)and ontrols protoolentities (as routingtable).Analysis Monitor : ColletsQoS events andreports abnormalbehaviors The user : Interrogatesthe database, in orderto inspet QoS values Fault Detetor :Communiates theourrene of faultsto the Fault Noti�er No given details Adaptation Trigger :Triggers adaptationbased on prede�nedontext riteriaPlanning Strategy Seletors:Selets an appro-priate adaptationstrategy basedon feedbak frommonitors The user : Chooses thesuitable implementa-tion from eah ate-gory Fault Noti�er :Distributes faultevent noti�ationsto Repliationmanager No given details Adaptation Seletor :Chooses suitable adap-tation approahExeution Strategy Ativators:Implements a parti-ular strategy, e.g. bymanipulating om-ponent graph whilepreserving the arhi-tetural style
DynamiCon�gurator :Loads and binds newservie implementa-tions (load, resume,suspend, remove,delete et.) Repliation Man-ager : Transfersthe system statetowards a replia Composition: Ex-tends omponentwith new implemen-tations and wrapsrequests Adaptation Exeutor :Exeutes ommands(open and swith han-nels) and hanges entitybehaviorsExternal/Internal External or Internal External External External ExternalProgramminglanguage Python C++ / Java C++ ejava (extension ofJava) JavaSalability High Low Medium Medium LowSeurity Low High High Medium MediumAppliation do-main Component/Webservie Component Component Component/ MobileComponent Network devies (PC,PDA,...) and protools(LAN, GPRS,...)Reon�gurationStrategy Strutural : Modi�esthe arhiteture Behavioral : Reloads anew omponent imple-mentation Strutural : Connetslients to replia Behavioral : Extendsomponents withnew implementa-tions Strutural/Behavioral :Swithing/Adjustinghannels.Table 3. Middleware features

Dynami Reon�gurable Arhiteture 11JavaPod [58℄ is a re�etive middleware whih fouses on the separation offuntional and nonfuntional properties in a distributed ontext. The adaptationis managed using objet ompositions. It is ahieved while dynamially extendingmethods with new implementations. Authors developed a java extension to makeeasy implementation of this approah. They provide new protools to manageonnetions and handle faults. For the seurity, JavaPod implements an aessontrol list, whih allows to manage aess at the method level for eah user.For the evaluation, an e-learning appliation, alled Baghera, is used as a asestudy. The performane evaluation shows that an overhead is onsiderable dueto the omposition mehanism. But, this overhead is negligible ompared to theommuniation time whih is enhaned.CME [59℄ (Connetion Management Engine) is a middleware for networkappliations. It manages logial onnetions (alled hannels) between two om-muniation peers. It monitors hannels to determine whih stations ommuniatewith eah other, when onnetions begin and end, and how muh information isexhanged. CME uses a poliy mehanism to failitate the Network management.Poliies represent adaptation requirements to ensure at runtime. CME enablesmonitoring of seurity privileges by reording whih stations ommuniate witheah other. The salability is not improved. The middleware is only tested witha prototype on PDA. CME ats on the network level. Consequently, it is abovethe Operating System and it an support many kinds of appliations.DynamiTAO, Eternal, JavaPod and CME are developed as an external layerto manage autonomi systems at runtime. However, OpenORB an be externalor internal. External, in whih the monitoring omponent is supported by appli-ations as an external servie. Internal, in whih the monitoring omponent isinjeted into the appliation omponents to provide suh servie. With Eternal,the reon�guration mehanism is limited to the repliation. DynamiTAO doesnot provide entities for fault detetions and analysis. The user has to inquireabout the appliation health and to hoose the suitable reon�guration plan.JavaPod does not provide any entities for analyzing and planning. Meanwhile,all steps are automated with other middlewares.3.5 Platform-based implementation approahesIn this setion, we present the main suggested platforms employed for developingautonomi appliations. The evaluation is based on riteria inluding providedself-aware, used omponents and the arhiteture types supported by these plat-forms.Unity [11, 60℄ : The Unity projet is looking for how omponent behaviorsand relationships an support self-management of omputing systems. The Unityprojet implements a prototype of autonomi systems, designed to show the fea-sibility and to validate the dynami reon�guration of the environment. Duringruntime it realloates and reon�gures resoures to optimize its behavior a-ording to spei�ed poliies. In this approah, every omponent inorporates anautonomi part in a way that it beomes autonomi. The di�erent omponentsof Unity are:

12 Authors Suppressed Due to Exessive Length� "Appliation environment manager": whih is responsible for the manage-ment, ommuniation between omponents, and prediting the resoure avail-ability.� "Resoure arbiter": whih manages sharing and alloation of resoures.� "Registry": whih allows loating omponents.� "Poliy repository": whih represents administration interfaes.� "Sentinel": whih is used by a omponent to monitor the funtioning ofanother.� "Solution manager": whih is responsible for the reon�guration and themaintenane.The monitoring is enabled by all omponents, inluding defetive omponents(if they exist) whih an ause system damages. They have to be sure aboutmonitored Data. They should add poliies in order to �lter gathered data.PAC-MEN [12℄: Personal Autonomi ComputingMonitoring ENvironment:PAC-MEN provides onepts and tehniques for a range of platforms inludingPCs, mobile laptops, PDA et. It is based on 're�ex reation' in order to respondto threats, and 'vital signs ' to assess operational health (inspired from humanmehanisms). In this approah, every peer in the system is an element:� Eah peer is responsible for its own internal behavior.� Eah peer may be extended to inlude shared monitoring of the externalenvironment to inform group members of events that may require individualation.PAC-MEN approah proposes to set up a management server in eah peeralled "Autonomi Manager" (AM), whih shares data and management dei-sions between other AMs. This allows ollaboration of AMs. However, this styleis more dynami and deentralized.CODA [61℄: Complex Organi Distributed Arhiteture: CODA applies on-epts suh as self-organization, self-regulation and viability to derive an intel-ligent arhiteture. It reats to operation failures and proatively searhes forsuessful patterns of behavior. CODA is a layered approah. It ontains �velayers:� "Operations": whih represents business operations of a system.� "Monitor Operations": whih performs internal monitoring.� "Monitor of the Monitors": whih performs external monitoring.� "Control": whih learns about faults and predits reon�guration ations.� "Command": whih reognizes threats and makes deisions.

DynamiReon�gurableArhiteture13

Platform names Unity PAC-MEN CODA Catus MAIS Jade SAFDISCentralized/Deentralized Deentralized Deentralized Centralized Deentralized Centralized Centralized DeentralizedArhiteturetype Client/Server peer-to-peer,Grid Client/Server Client/Server Client/Server Client/Server Client/ServerHuman inter-vention Minimal No No No Interation No NoSelf-aware Self-on�guration,self-optimizing,self-proteting,self-healing Self-healing,self-awareness,self-monitoring Self-organization,self-regulation,self-monitoring Self-on�guration,self-adaptation Self-adaptation,self-optimizing Self-adaptation,self-optimizing Self-adaptation,self-optimizingExternal/ Inter-nal Internal Internal Internal, exter-nal External Internal, exter-nal External ExternalProgramminglanguage Java Java Java C/C++/Java Java Java JavaPresentation GUI No No Monitoring in-terfae No Monitoringvisualizator NoMonitoring Sentinel Vital signs Monitor opera-tions, Monitor ofthe Monitors Event Handlers Diagnoser andInspetor Monitor Event Man-agerExeution Solution manager Re�ex reation Command Event Handlers Reovery a-tions Connetor Migration ofServiesLevel Appliation Appliationand devie Appliation Network Appliation,network anddevie Appliation AppliationWeb servies Yes No Yes No Yes Yes NoTable 4. Platform features.

14 Authors Suppressed Due to Exessive LengthCatus [49℄ : Catus provides support for dynami adaptation and o�ers apotential solution for building autonomi software in networked systems. A ser-vie in Catus is implemented as a "set of handlers" whih reats when an eventours in order to manage QoS (reliability, timeliness, performane, and seu-rity). In the ase of CORBA based appliation, the servie is a ommuniationprotool that resides in the protool stak on top of a lower level ommuniationservie suh as UDP. Handlers reat when a message is exhanged between thelient and the server. Catus proposes several handler kinds. Eah handler doesnot need to know about other one and we an hoose the desired handler foreah servie. This may return Catus more on�gurable and more adaptable.MAIS [13℄:Mobile Adaptive Information Systems : The MAIS projet stud-ies adaptability at all levels in information systems, from appliation level tonetwork and devie levels (PCs, laptops, palmtops, ellular phones, and so on).Several levels of adaptability are onsidered: the upper level (Appliation level),the middle level (web servie level) and the bottom level (Infrastruture & Mid-dleware level). MAIS provides an environment to run omposite, multi-hannel,mobile, and ontext-aware web servies in an adaptive way. The MAIS arhite-ture implements a runtime servie-oriented fault analysis and reovery ations.It detets faults by inspeting request and response messages and analyzingthem through a diagnoser omponent. This arhiteture provides four modulesto handle reon�guration ations, namely: "realloation", "substitution", "wrap-per generator" and "quality modules".Jade [62℄ : Jade is an autonomous administration platform for software in-frastruture. It provides an abstrat view of the appliation and ats when afailure ours on a part of the system. It uses dupliation to maintain the ser-vie availability and to handle the resoure alloation aording to the loadvariation in order to manage salability. Jade is omposed of two parts:� Managed Element : whih wraps eah software and provides an administra-tion interfae;� Autonomi Manager : whih implements the administration managementpoliies (repair and optimization). It monitors and ats on system throughthe Managed Elements interfaes.SAFDIS [48℄ : Self-Adaptation For DIstributed Servies, enables the dy-nami management of servie-based arhitetures. The implementation is builtfor the OSGi platform, using iPOJO to manage the life-yle. The di�erent om-ponents are:� Adaptation Manager : its role onentrates on ensuring the ommuniationbetween the di�erent omponents and servies responsible of the adaptationof the system.� Event Manager : it ollets events from monitors, omposes them and keepsa loal view of the system. It is the supervisor of the whole system.� Analyst : it is a distributed and a deentralized proess. It identi�es, analyzesthe system hanges and deides if an adaptation is needed. Then, it makesan adaptation deision when a need arises. Furthermore, this omponent isomposed of:

Dynami Reon�gurable Arhiteture 15
• Deision Maker : it listens to events oming from the event manager andsends them to the reasoners for analysis.
• Negotiator : it is omposed of a bak end and a front end onneted to aremote negotiator of another SAFDIS instane.
• Negotiation Manager : it is responsible of managing the multiple negoti-ations that an happen at the same time.� Planner : it is omposed of a set of Planning Algorithms and a Manageromponent. Aording to objetives and onstraints, the Manager produessimple orderings of ations to reon�gure system.� Exeution Engine: it is alled to perform planned ations. In SAFDIS, the re-on�guration ation moves a servie from an exeution node to another,whihis alled the migration of servies.There are other platforms like in [63℄ and [64℄. The work desribed in [63℄presents a re�exive and dynamially adaptable exeution environment whihallows building dynami, re�exive and �exible appliation and middleware. Au-thors of [64℄ propose a mehanism for adding and adapting servies based on anadaptable reon�guration language.In table 4, we present properties of eah platform. Most platforms do notallow any interation between human or administrator and appliation exeptfor Unity and MAIS. The programming language supported by all platforms isJava. But, there is another Catus version that supports C and C++. CODA,Unity and MAIS support web servies based dynami reon�guration. The othersmay investigate to support them. Catus integrates the dynami adaptation inthe level of the exhanged data. In order to support web servies, it may extendSOAP protool to take into onsideration new handlers for QoS preservation.3.6 Conluding RemarksInternal vs. External autonomi omputing All ited implementationshave as goal the dynami reon�guration of the system whih allows it to evolveinrementally from one state to another at run-time in order to aommodate tohanges [12℄. The dynami reon�guration ativities, based on autonomi om-puting, an be arried out either internally or externally to the appliation. Ininternal, odes responsible of the reon�guration are merged with the appliationodes, while in external, they are separated from the appliation odes [65℄.In an Internal autonomi mehanism, it is di�ult to add a new ode or anew strategy to a blak-box omponent; we must know about the omponentdesign in order to govern it. The Unity [11℄ and PAC-MEN [12℄ projets presenta prototype enabling dynami reon�guration, based on internal mehanisms.External mehanism is appropriate when it is so di�ult to modify applia-tion odes. We generally deploy omponents in heterogeneous ontext; therefore,if we use an internal strategy, we have to develop a new omponent version (withspei� self-healing mehanism) for eah ontext. Also, externalized mehanismsallow the reuse of autonomi omponents and make easy their update, sine theyare loalized [66℄. In addition, external mehanism allows us to divide the task

16 Authors Suppressed Due to Exessive Lengthof the appliation implementation between the omponent developers and man-agers. Kinesthetis eXtreme [7℄ and Rainbow [6℄ built systems based on externalmehanisms.Eah omponent may inlude autonomi mehanisms in order to heal itself.Designed systems have to inquire into problems and ask omponents to reon�g-ure their struture or behavior. Furthermore, dynami reon�guration strategymust not ause signi�ant slowdown to the exeution proess and espeially forthe real time appliation. It must reat in order to repair rashes while the vari-ane of global system response time is kept in limited bounds. In order to reaha suitable and adaptable system whih makes system resilient to faults, we haveto apply autonomi omputing tehniques whih over all levels: hardware andsoftware. But this solution may be very expensive and it requires ombinationof various mehanisms.Behavioral vs. Strutural autonomi omputing We an distinguish twostrategies of the dynami reon�guration in the Exeution level. In fat, reon-�guration ations at on the system either behaviorally or struturally.Following the �rst strategy , it is related to the behavioral dimension of thesystem in general; otherwise, it fouses on its internal behavior. Indeed, we speakabout suh approah when omponents behavior is ustomizable or modi�able.So, when degradation is deteted, the installed reon�guration infrastrutureis brought to repair the proess at runtime, by applying the reon�gurationations to the onerned omponents. This reon�guration is onsidered as adiret adjustment, beause its ations are supposed to modify at one the internalomposition of system omponents in order to orret it further to a problem.Eternal [57℄, CEYLON [47℄ and JavaPod [58℄ hange the behavior of omponentsin order to dynamially reon�gure the system.Following the seond one, it is related to the strutural dimension of thesystem. So that systems omponents are observed during the exeution of thislater. Several symptoms are stored before taking the deision of ativating ornot reon�guration ations. In this ase, the reon�guration is done by applyingbasis ations suh as adding or removing omponents or their onnetions. Thestrutural adaption referred to as "run-time" when the reon�guration is shed-uled during exeution. DynamiTAO [56℄ and OpenORB [10℄ implement thestrutural reon�guration. While, CME [59℄ implements both strutural reon-�guration by swithing and behavioral reon�guration by adjusting hannels.4 DRAAS: Dynamially Reon�gurable Arhiteture forAutonomi ServiesIn this setion, we present our approah, DRAAS whih manages QoS of webservie-base appliations at runtime. It is based on monitors, able to extendSOAP messages exhanged between the servie requester and the servie provider(Web Servie), and a dynami onnetor whih is used to rediret requests toonrete providers o�ering the same business logi.

Dynami Reon�gurable Arhiteture 174.1 DRAAS arhitetureDRAAS provides the management of QoS by implementing virtualization andthe di�erent omponents of the autonomi omputing arhiteture referene(MAPE K-loop): The �rst step is Monitoring. It orresponds to the supervi-sion of the appliation. It observes �ows and stores the value of the monitoreddata. Seond, the Analysis detets the QoS degradation. If deteted, an alarmsignal will be sent to the planning module. Third, the Planning identi�es theorigin of the QoS degradation and alulates the new reon�guration. Fourth,the Exeution module exeutes the reon�guration ations.

Log

Requester1

Side Monitor

Requester1 Provider1

Provider

Side Monitor

Analysis Planning

Execution

V�����������	
�D�����

C���
����

ServiceManagement

K����

I���������� R��������R��������

� � b �� �����

!������� R��������R��������

Provider2

1" #$%&$'('

Requester2

Requester2

Side Monitor

2) *+,-+./ Q03 M045/06547

8) B549 6+,-+./. /0
c04c6+/+ p60:59+6.

;<) =04c6+/+
6+.p04.+.

;) >-??@ *+.p04.+

8<)A07

E<)A07

E) *+.p04.+.

F) N0/5G@ /t+ H4JL@.5.

O) =04.-L/ A07

P) HLJ6?

ST) ULJ4

SS) WX+c-/+ /t+ ULJ4

DRAAS

Monitoring

YZ[\]^_`\Z

ad efghijgf kil mijnoiqnjr

Fig. 2. DRAAS arhitetureThe �gure 2 presents an overview of DRAAS deployed between Requestersand Providers. Software entities omposing our arhiteture are:� In the Monitoring module:
• RSM: Requester Side Monitor, assoiated to eah requester, is responsi-ble of interepting in�ow/out�ow (Request/Response) in the requesterside.
• PSM: Provider Side Monitor, assoiated to all providers, is responsibleof interepting in�ow/out�ow (Request/Response)in the provider side.� Analysis for deteting QoS degradation.� Planning for alulating the new reon�guration.� In the Exeution module:

18 Authors Suppressed Due to Exessive Length
• VirtualProvider, is the initial destination of requester requests.
• Dynami Connetor, redirets/binds requester requests to onrete providersaording to the reon�guration plan.
• ServieManagement, exeutes the new reon�guration.Aording to the omparative study established in the previews setions,DRAAS is a deentralized arhiteture thanks toWeb Servies, based on lient/serverommuniation, implements the strutural strategy by redireting requests. It isan externalized approah for dynami reon�guration.4.2 Illustration: Data Load Use CaseIn this setion, we illustrate the DRAAS arhiteture within the Data Load usease. It onsists in transferring �les from the lient side to a Load Repository.Transferring �les is provided by providers (Web Servies) whih o�er the Load-Transfer servie and eah �le is assoiated to a request.A prototype of DRAAS is implemented enabling the balane of load amongavailable providers in order to manage QoS suh as response time whih or-responds to minimizing the transfer time. Balaning requests is the task of thedynami onnetor. Aording to the DRAAS arhiteture, presented in �gure2, we distinguish these ators:� Requester −→ Client� Provider1 −→ LoadTransferWS1� Provider2 −→ LoadTransferWS2� VirtualProvider−→ LoadTransferVirtualWSInitially, the lient sends �les to the LoadTransferVirtualWS. Eah one is en-apsulated in a request. Eah request is interepted twie, �rst by the RSM andseond by the PSM. The Dynami Connetor, assoiated to the LoadTransfer-VirtualWS, balane the load (requests) by redireting them to LoadTransferWS1or LoadTransferWS2. Eah web servie provider (LoadTransfer) transfers a �leper request. If the transfer of eah �le is suessfully done, eah response is alsointerepted twie as the request but inversely: �rst by the PSM and seondby the RSM. All monitored data is stored in the log. If the Analysis detetsan inrease of the transfer time, it sends an alarm to the Planning in order toalulate a new reon�guration. In this ase, the Planning deides to ativatean available LoadTransferWS3 to partiipate in the next transfer. It sends thisdeision to the ServieManagement to perform it. The exeution of this deisionwill be aught by the Dynami Connetor. It will be taken into aount for thenext load transfer.4.3 ExperimentationTo show the feasibility of DRAAS, we have arried out experiments on the DataLoad. We present in the sequel hardware arhiteture and tools used for theseexperiments.

Dynami Reon�gurable Arhiteture 19Hardware Arhiteture and Tools All test senarios (to be presented in thenext setion) are assessed under this on�guration:� Operating system: Windows 7, 32 bits� Proessor: Intel Core(TM)2 Duo CPU T5800� RAM: 2GoOur implementation is built of the Web Servie tehnology. Analysis, Plan-ning and ServieManagement are Web Servies, while monitors and DynamiConnetor are based on handlers. In the following, we ite the tehnial hoiesfor our implementation:� Web servie ontainer: Axis2 1.5� Web server: Tomat 6.0.30� Programming language: Java 1.6� Monitors & Connetors: Axis2 Handlers� Communiation level: SOAP� Logging: MySQL DBMSAssessment To assess DRAAS performane, we have �xed the global size ofthe �les to be transferred (T=32Mo) and we have prepared six senarios fortesting. All senarios foused on varying the number of �les while maintainingthe global size. We present in table 5 the di�erent senarios used to evaluateDRAAS performane.Number of �les File SizeSenario1 1 {32 Mo}Senario2 2 {17Mo; 15Mo}Senario3 3 {10Mo; 11Mo; 11Mo}Senario4 4 {9Mo; 8Mo; 8Mo; 7Mo}Senario5 8 {3,7Mo; 4,3Mo; 3Mo; 5Mo; 4Mo; 4Mo; 4,2Mo;3,8Mo}Senario6 10 {3,2Mo; 2,8Mo; 3Mo; 2,8Mo; 3,2Mo; 3,2Mo;3,2Mo; 3,2Mo; 3,7Mo; 3,7Mo;}Table 5. Load transfer senariosIn order to show the bene�ts of DRAAS, we have distinguished two asesfor the Data Load use ase: First, the transfer of �le is aomplished withoutload balaning. Seond, deploying DRAAS in order to maintain the QoS man-agement, suh transfer time, at runtime. Therefore, without applying DRAASto the DataLoad, the lient is onneted only to the LoadTransferWS1 Web Ser-vie, even if there is another available LoadTransferWS2 Web Servie providingthe same business logi, and all �les are transferred through it. If the LoadTrans-ferWS1 Web Servie shows a QoS degradation, expressed by an inrease of thetransfer time, this degradation a�ets the Data Load appliation.However, when we integrate our DRAAS prototype as desribed in the pre-views setion, the load will be balaned on available Web servies o�ering theload transfer servie.

20 Authors Suppressed Due to Exessive LengthWe have arried out eah senario experiments at least 5 times. Aordingto obtained values, results are shown in table 6, where the average equals to thesum of values obtained by tests divided by the number of tests.Response Time (ms)Single Web Servie Two Web Servies(DRAAS)Min Max Avg Min Max AvgSenario1 4565 5141 4812,6 3748 5168 4700,6Senario2 6210 7669 6717,44 4067 5357 4918Senario3 7780 8228 7920 4520 5583 5039,4Senario4 8790 9609 9153,6 4090 5362 4600Senario5 14592 16326 15451,6 7611 9631 8324,6Senario6 18313 25147 20113,8 8123 8500 8510,4Table 6. Performane measurement

0

5000

10000

15000

20000

25000

1 2 � � 5 �

A
�
�
��
�
�
R
�
�
	

�
��
T
�
�
(
�
�

N����� o� F����

S����� WS �W��� !� D"##S$

2 WS �%& ��e'��) D"##S$

Fig. 3. Average response time of DRAAS prototypeOur experiments provided the urves shown in Figure 3. The blue urve ()desribes the average response time related to transferring a variable number of�les with a single Web Servie where the global size is maintained onstant andequal to 32Mo. However, the red urve () desribes the same parameters butwhile using two Web servies and enabling the load balaning.It is obvious that transferring �les within our DRAAS prototype, using twoWeb servies, is more e�ient in term of transfer time than using a single Webservie. We have notied that the transfer time (response time) depends on thenumber of �les. In fat, without DRAAS, inreasing the number of �les whilemaintaining the overall size leads to inrease the response time. However, theDRAAS urve presents a ritial point having the following oordinates (4, 4600)for whih the average response time is optimal. Moreover, the deployment of

Dynami Reon�gurable Arhiteture 21DRAAS with a single provider auses the inrease of the response time due toan added delay ǫ, epsilon, aused by the virtualization. This ǫ has no impats onresponse time sine both the number of requests and the number of providershave exeed two. Therefore, the deployment of DRAAS is based on a neessaryand su�ient assumption whih is the presene of at least two providers o�eringthe same business logi. Indeed the presene of a single provider does not allowthe dynami reon�guration, whih is urrently based on load balaning.5 ConlusionIn this paper, �rst,we have presented a lassi�ation and a omparative study ofexisting arhitetures and frameworks implementing autonomi systems. Di�er-ent implementations are provided. For example, a model-based solution is usuallysuitable for a small system. Platform-based solutions are appropriated for sys-tems in whih only generi QoS properties are required. The new objetives areoriented towards the deployment and the exeution of distributed appliationson heterogeneous platforms (PC, smart devies, Smart ard, et).Seond, we have proposed our DRAAS arhiteture to bring dynami reon-�guration apabilities to distributed web servie-based appliations. A prototypeof DRAAS has been implemented to assess the appliability of the monitoringand reon�guration within the designed arhiteture. The repair enatment isbased on the arhitetural reon�guration providing load balaning for web ser-vies at the origin of the QoS degradation.We aim to improve our DRAAS arhiteture's to support new reon�gurationations suh as substitution. Moreover, we target to manage dynamially MAPE-K loop omponents while enabling �exibility by hanging their behaviors atruntime in order to inlude new features, suh as new monitors or new analysisalgorithms.Referenes1. Shin, M.E.: Self-healing omponents in robust software arhiteture for onurrentand distributed systems. Journal of Siene of Computer Programming 57(1) (July2005) 27�442. Kephart, J.O., Chess, D.M.: The vision of autonomi omputing. Computer 36(1)(2003) 41�503. Ciupa, I.: Study on whitebox frameworks in java. (2003)4. Conte, A., Anquetil, L.P.: A blak box framework for an appliation protool stak.In: Proeedings of the 3rd IEEE Symposium on, Appliation-Spei� Systems andSoftware Engineering Tehnology, 2000, IEEE Computer Soiety (2000) 96 � 1015. Gurguis, S.A., Zeid, A.: Towards autonomi web servies: ahieving self-healingusing web servies. In: DEAS '05: Proeedings of the 2005 workshop on Designand evolution of autonomi appliation software, New York, NY, USA, ACM Press(2005) 1�5

22 Authors Suppressed Due to Exessive Length6. Cheng, S.W., Garlan, D., Shmerl, B.R.: Making self-adaptation an engineer-ing reality. In: Self-star Properties in Complex Information Systems, Coneptualand Pratial Foundations [the book is a result from a workshop at Bertinoro,Italy, Summer 2004℄. Volume 3460 of Leture Notes in Computer Siene., Springer(2005) 158�1737. Wile, D.S., Egyed, A.: An externalized infrastruture for self-healing systems. In:WICSA '04: Proeedings of the Fourth Working IEEE/IFIP Conferene on Soft-ware Arhiteture (WICSA'04), Washington, DC, USA, IEEE Computer Soiety(2004) 2858. Suzuki, J., Suda, T.: A middleware platform for a biologially inspired networkarhiteture supporting autonomous and adaptive appliations. In IEEE Journalon Seleted Areas in Communiations (JSAC) 23(2) (February 2005) 249�2609. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web servies omposition. IEEE Trans. Softw. Eng. 30(5)(2004) 311�32710. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grae, P., Moreira, R., Parla-vantzas, N.: Re�etion, self-awareness and self-healing in openorb. In: WOSS '02:Proeedings of the �rst workshop on Self-healing systems, New York, NY, USA,ACM Press (2002) 9�1411. Chess, D.M., Segal, A., Whalley, I., White, S.R.: Unity: Experienes with a proto-type autonomi omputing system. In: 1st International Conferene on AutonomiComputing (ICAC 2004), 17-19 May 2004, New York, NY, USA, IEEE ComputerSoiety (2004) 140�14712. Sterritt, R., Bantz, D.F.: Pa-men: Personal autonomi omputing monitoringenvironment. In: 15th International Workshop on Database and Expert SystemsAppliations (DEXA 2004), Zaragoza, Spain, IEEE Computer Soiety (2004) 737�74113. Cappiello, C., Missier, P., Pernii, B., Plebani, P., Batini, C.: Qos in multihannelis: The mais approah. In: Engineering Advaned Web Appliations: Proeed-ings of Workshops in onnetion with the 4th International Conferene on WebEngineering (ICWE 2004), Munih, Germany, 28-30 July, 2004. (2004) 255�26814. Paulson, L.D.: Computer system, heal thyself. Computer 35(8) (2002) 20�2215. Parashar, M., Hariri, S.: Autonomi omputing : An overview. (2005) 247�25916. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An arhi-tetural approah to autonomi omputing. In: 1st International Conferene onAutonomi Computing (ICAC 2004), 17-19 May 2004, New York, NY, USA, IEEEComputer Soiety (2004) 2�917. P.K., S., S., S.: Seured remote traking of ritial autonomi omputing applia-tions. published in IEEE E-Teh, Karahi, Pakistan (2004)18. Charles Gouin-Vallerand, S.G., Abdulrazak, B.: Toward a self-on�guration mid-dleware for smart spaes. In: FGCN '08: Proeedings of the 2008 Seond Interna-tional Conferene on, Future Generation Communiation and Networking, 2008.Volume 2., IEEE Computer Soiety (2008) 463 � 46819. Riadh Ben-Halima, Khalil Drira, M.J.: Survey a qos-oriented reon�gurable mid-dleware for self-healing web servies. In: ICWS '08: Proeedings of the 2008 IEEEInternational Conferene on Web Servies. Volume 1., IEEE Computer Soiety(2008) 104 � 11120. Tosi, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management appliationsof the web servie o�erings language (wsol). In: Advaned Information Systems En-gineering, 15th International Conferene, CAiSE 2003, Klagenfurt, Austria, June

Dynami Reon�gurable Arhiteture 2316-18, 2003, Proeedings. Volume 2681 of Leture Notes in Computer Siene.,Springer (2003) 468�48421. Chang, F., Karamheti, V.: Automati on�guration and run-time adaptationof distributed appliations. In: HPDC '00: Proeedings of the Ninth IEEE In-ternational Symposium on High Performane Distributed Computing (HPDC'00),Washington, DC, USA, IEEE Computer Soiety (2000) 1122. Medvidovi, N., Miki-Raki, M.: Programming-in-the-many: A software engineer-ing paradigm for the 21st entury. In: Workshop on New Visions for Software De-sign and Produtivity: Researh and Appliations, Nashville, Tennessee (Deember2001)23. Cheng, S.W., Garlan, D., Shmerl, B.R., Sousa, J.P., Spitnagel, B., Steenkiste, P.:Using arhitetural style as a basis for system self-repair. In: WICAS3: Proeedingsof the IFIP 17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Con-ferene on Software Arhiteture, Deventer, The Netherlands, The Netherlands,Kluwer, B.V. (2002) 45�5924. Shmidt, H.: Trustworthy omponents-ompositionality and predition. Journalof Systems and Software 65(3) (2003) 215�22525. Oreizy, P., Gorlik, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovi,N., Quilii, A., Rosenblum, D.S., Wolf, A.L.: An arhiteture-based approah toself-adaptive software. IEEE Intelligent Systems 14(3) (1999) 54�6226. Guinea, S.: Self-healing web servie ompositions. In: ICSE '05: Proeedings ofthe 27th international onferene on Software engineering, New York, NY, USA,ACM Press (2005) 655�65527. Rihters, M., Gogolla, M.: Aspet-oriented monitoring of uml and ol onstraints.In: In AOSD Modeling With UML Workshop, 6th International Conferene on theUni�ed Modeling Language (UML. (2003)28. Sridhar, N., Pike, S.M., Weide, B.W.: Dynami module replaement in distributedprotools. In: Distributed Computing Systems, 2003. Proeedings. 23rd Interna-tional Conferene on, IEEE Computer Soiety (June 2003) 620 � 62729. Bouhenak, S., Boyer, F., Krakowiak, S., Hagimont, D., Mos, A., Jean-Bernard,S., Palma, N.d., Quema, V.: Arhiteture-based autonomous repair management:An appliation to j2ee lusters. In: SRDS '05: Proeedings of the 24th IEEE Sym-posium on Reliable Distributed Systems, Orlando, Florida, USA, IEEE ComputerSoiety (2005) 13�2430. Yoo, G., Lee, E.: Monitoring methodology using aspet oriented programming infuntional based system. In: Advaned Communiation Tehnology (ICACT), 2010The 12th International Conferene on. Volume 1., IEEE Computer Soiety (April2010) 783 � 78631. seong Lee, K., Lee, C.G.: Model-driven monitoring of time-ritial systems basedon aspet-oriented programming. In: Seure Software Integration and ReliabilityImprovement (SSIRI), 2011 Fifth International Conferene on, IEEE ComputerSoiety (August 2011) 80 � 8732. Mdha�ar, A., Ben-Halima, R., Juhnke, E., Jmaiel, M., Freisleben, B.: AOP4CSM:An Aspet-Oriented Programming Approah for Cloud Servie Monitoring. In:Proeedings of the 11th IEEE International Conferene on Computer and Infor-mation Tehnology, IEEE Press (2011) 363 � 37033. Mostafaei, F.S., Amani, N., Hajipour, P.: Proposing a new qos/sla managementmodel by regulatory authority. In: Teleommuniations (IST), 2010 5th Interna-tional Symposium on, IEEE Computer Soiety (2010) 508 � 51234. Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynami load balaning withoutpaket reordering. ACM SIGCOMM Computer Communiation 37 (April 2007)

24 Authors Suppressed Due to Exessive Length35. Grae, P., Blair, G.S., Samuel, S.: Remmo: A re�etive middleware to supportmobile lient interoperability. In: On The Move to Meaningful Internet Systems2003: CoopIS, DOA, and ODBASE - OTM Confederated International Confer-enes, CoopIS, DOA, and ODBASE 2003, Catania, Siily, Italy, November 3-7,2003. Volume 2888 of Leture Notes in Computer Siene., Springer (2003) 1170�118736. Ben-Halima, R., Drira, K., Guennoun, K., Jmaiel, M.: Non-intrusive qos monitor-ing and analysis for self-healing web servies. In: First IEEE International Confer-ene on the Appliations of Digital Information and Web Tehnologies(ICADIWT2008), Ostrava, Czeh Republi, IEEE Computer Soiety (August 4-6 2008)37. Truong, H.L., Samborski, R., Fahringer, T.: Towards a framework for monitoringand analyzing qos metris of grid servies. In: e-Siene and Grid Computing, 2006.e-Siene '06. Seond IEEE International Conferene on, IEEE Computer Soiety(Deembre 2006) 65 � 7338. Zhang, H.Y., Urtado, C., Vauttier, S.: Connetor-driven proess for the gradualevolution of omponent-based software. In: Software Engineering Conferene, 2009.ASWEC '09. Australian, IEEE Computer Soiety (June 2009) 246 � 25539. Diaonesu, A.: A framework for using omponent redundany for self-adaptingand self-optimising omponent-based enterprise systems. In: OOPSLA '03: Com-panion of the 18th annual ACM SIGPLAN onferene on Objet-oriented pro-gramming, systems, languages, and appliations, New York, NY, USA, ACM Press(2003) 390�39140. George, S., Evans, D., Marhette, S.: A biologial programming model for self-healing. In: SSRS '03: Proeedings of the 2003 ACM workshop on Survivable andself-regenerative systems, New York, NY, USA, ACM Press (2003) 72�8141. MOO-MENA, F., DRIRA, K.: Reon�guration of web servies arhitetures: Amodel-based approah. In: Computers and Communiations, 2007. ISCC 2007.12th IEEE Symposium on, IEEE Computer Soiety (August 2007) 357 � 36242. MBride, Matt: Software arhiteture and design. Tehnial report, IEEE EDU-CATIONAL COURSES,Developed exlusively for IEEE eLearning Library (2011)43. Hai-Shan, C.: Survey on the style and desription of software arhiteture. In: Pro-eedings of the 8th International Conferene on, Computer Supported CooperativeWork in Design. Volume 1., IEEE Computer Soiety (2004) 698 � 70044. Yang Qun, Y.X.., wu ;, X.M.: A framework for dynami software arhiteture-based self-healing. In: Systems, Man and Cybernetis, 2005 IEEE InternationalConferene on. Volume 3., IEEE Computer Soiety (2006) 2968 � 297245. Johnson, R.E.: Components, frameworks, patterns. ACM SIGSOFT SoftwareEngineering Notes 22(3) (1997) 10�1746. Johnson, R.E.: Frameworks = (omponents + patterns). Communiations of theACM 40(10) (1997) 39�4247. Yoann Maurel, A.D., Lalanda, P.: Ceylon : A servie-oriented framework for build-ing autonomi managers. In: EASe'10: Proeedings of the 2010 Seventh IEEEInternational Conferene and Workshops on Engineering of Autonomi and Au-tonomous Systems, IEEE Computer Soiety (2010) 3�1148. Gauvrit, G., Daubert, E., André, F.: Safdis: A framework to bring self-adaptabilityto servie-based distributed appliations. In: SEAA'10: Proeedings of the 201036th EUROMICRO Conferene on, Software Engineering and Advaned Applia-tions, IEEE Computer Soiety (2010) 211 � 21849. Hiltunen, M.A., Shlihting, R.D., Ugarte, C.A., Wong, G.T.: Survivability throughustomization and adaptability: the atus approah. In: DARPA InformationSurvivability Conferene and Exposition. (1999) 294�306

Dynami Reon�gurable Arhiteture 2550. Cheng, S.W., Huang, A.C., Garlan, D., Shmerl, B.R., Steenkiste, P.: An arhite-ture for oordinating multiple self-management systems. In: 4th Working IEEE /IFIP Conferene on Software Arhiteture (WICSA 2004), 12-15 June 2004, Oslo,Norway, Washington, DC, USA, IEEE Computer Soiety (2004) 243�25451. Huebsher, M.C., MCann, J.A.: Adaptive middleware for ontext-aware appli-ations in smart-homes. In: Proeedings of the 2nd workshop on Middleware forpervasive and ad-ho omputing, New York, NY, USA, ACM Press (2004) 111�11652. Garlan, D., Cheng, S.W., Shmerl, B.R.: Inreasing system dependability througharhiteture-based self-repair. In: WADS. Volume 2677 of Leture Notes in Com-puter Siene., Springer (2002) 61�8953. Miki-Raki, M., Mehta, N., Medvidovi, N.: Arhitetural style requirements forself-healing systems. In: WOSS '02: Proeedings of the �rst workshop on Self-healing systems, New York, NY, USA, ACM Press (2002) 49�5454. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards arhiteture-based self-healing systems. In: WOSS '02: Proeedings of the �rst workshop on Self-healingsystems, New York, NY, USA, ACM Press (2002) 21�2655. Limon, D.: A Resoure Management Framework for Re�etive Multimedia Mid-dleware. PhD thesis, Lanaster University, UK (Otober 2001)56. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., Campbell,R.H.: Monitoring, seurity, and dynami on�guration with the dynamitao re�e-tive orb. In: Middleware 2000, IFIP/ACM International Conferene on DistributedSystems Platforms, New York, NY, USA, April 4-7, 2000, Proeedings. Volume1795 of Leture Notes in Computer Siene., Springer (2000) 121�14357. Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Eternal: a omponent-basedframework for transparent fault-tolerant orba. Softw. Prat. Exper. 32(8) (2002)771�78858. Bruneton, E., Riveill, M.: Experiments with javapod, a platform designed for theadaptation of non-funtional properties. In: REFLECTION '01: Proeedings ofthe Third International Conferene on Metalevel Arhitetures and Separation ofCrossutting Conerns, London, UK, Springer-Verlag (2001) 52�7259. J., S., J., T., J., S.: Cme: a middleware arhiteture for network-aware adaptiveappliations. In: 14th IEEE International Symposium on Personal, Indoor andMobile Radio Communiations. Volume 1., Beijing, China, IEEE Computer Soiety(2003) 839�84360. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,J.O., White, S.R.: A multi-agent systems approah to autonomi omputing. In:3rd International Joint Conferene on Autonomous Agents and Multiagent Systems(AAMAS 2004), 19-23 August 2004, New York, NY, USA, IEEE Computer Soiety(2004) 464�47161. Ribeiro-Justo, G.R., Karran, T.: Modelling organi adaptable servie-oriented en-terprise arhitetures. In: On The Move to Meaningful Internet Systems 2003:OTM 2003 Workshops, OTM Confederated International Workshops, HCI-SWWA,IPW, JTRES, WORM, WMS, and WRSM 2003, Catania, Siily, Italy, Novem-ber 3-7, 2003, Proeedings. Volume 2889 of Leture Notes in Computer Siene.,Springer (2003) 123�13662. de Palma, N., Bouhenak, S., Hagimont, D., Siard, S., Taton, C.: Jade : UnEnvironnement d'Administration Autonome. Tehniques et Sienes Informatiques27(9-10) (2008) 1225�125263. Ogel, F., Folliot, B., Piumarta, I.: On re�exive and dynamially adaptable envi-ronments for distributed omputing. In: ICDCSW '03: Proeedings of the 23rd

26 Authors Suppressed Due to Exessive LengthInternational Conferene on Distributed Computing Systems, Washington, DC,USA, IEEE Computer Soiety (2003) 11264. Hahihi, A., Martin, C., Thomas, G., Patarin, S., Folliot, B.: Reon�gurations dy-namiques de servies dans un intergiiel à omposants orbam. In: 1ère ConféreneFranophone sur le Déploiement et la (Re) Con�guration de Logiiels, Grenoble,Frane (Otober 2004)65. Qun, Y., Xian-Chun, Y., Man-Wu, X.: A framework for dynami softwarearhiteture-based self-healing. SIGSOFT Softw. Eng. Notes 30(4) (2005) 1�466. Garlan, D., Shmerl, B.: Model-based adaptation for self-healing systems. In:WOSS '02: Proeedings of the �rst workshop on Self-healing systems, New York,NY, USA, ACM Press (2002) 27�32

