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DRAAS: Dynamially Reon�gurableArhiteture for Autonomi ServiesEmna Mezghani1,2,3, Riadh Ben Halima1,2,3 and Khalil Drira1,2
1 CNRS, LAAS, 7 avenue du olonel Rohe, F-31400 Toulouse, Frane

2 Univ de Toulouse, LAAS, F-31400 Toulouse, Frane
3 University of Sfax, ReDCAD, B.P.W, 3038 Sfax, Tunisia{emna.mezghani,khalil.drira}�laas.fr, riadh.benhalima�enis.rnu.tnAbstrat. The development and the provisioning of autonomi net-worked servies are essential for enterprises and fatories of the future.Endowing servies with autonomi properties allows one to maintain atruntime the Quality of Servie (QoS) inluding di�erent parameters re-lated to performane, availability and reputation suh as response timeand suessful exeution rate. Handling the autonomi properties re-quires the ability to deal with permanent requirement evolving and on-straint hanges. For instane, managing QoS degradation requires theapaity of identifying its possible or atual soures and the apaityof reon�guration planning and exeution. Dealing with these issues isespeially hallenging for web servies sine the autonomi solution hasto be seamless for the servie requesters, ensuring that Web Servies arealways usable under the di�erent deployment onstraints. To implementsuh autonomi systems, the literature provides di�erent approahes,varying from the design to the full implementation of autonomi primi-tives. In this hapter, we present DRAAS: a Dynamially Reon�gurableArhiteture for Autonomi Servies able to provide autonomi proper-ties for QoS management in web servie-based distributed appliations.DRAAS has been implemented and experimented suessfully with dif-ferent use ases. It overs the whole yle of autonomi managementinluding monitoring and analysis of QoS parameters , planning and ex-eution.1 IntrodutionThe important data �ows, the frequent interativity, the inreasing number ofonneted devies, and the network unpreditability make ritial the manage-ment of the new distributed software systems. In one hand, although the reformof veri�ation and validation of software models hasn't eased improving, om-ponents of the systems may still hide design faults resulting in system failuresor ome aross deadlok that freezes the system. In the other hand, user′s re-quirements are evolving following the end-user tehnologies evolution as mobilephone emergene (Multimedia mobile and group-enabled appliation). In thesame time, systems onstraints are variable as unstable bandwidth and dereas-ing energy. As a result, autonomi omputing paradigm is ruial for urrentsystems in order to ensure QoS-aware exeution.



2 Authors Suppressed Due to Exessive LengthMore spei�ally, self-ontrol systems suh as elevator ontrol systems or rit-ial systems suh as spaeraft navigational systems need robustness to detetanomalies and avoid them by reon�guring the systems at runtime [1℄. For thesereasons, researh ators are aelerating the work on autonomi systems. Suhsystems are apable to detet the problems and ontinue to operate by manag-ing malfuntions without human intervention. Autonomi omputing tehnologydoes not only redue potential atastrophi errors, in ritial systems for exam-ple, but it also minimizes the human intervention. It is applied when reliabilityand QoS are required. An autonomi system inspets and hanges its own ar-hiteture and behavior when the evaluation indiates that the intended QoS isnot ahieved, or when a better funtionality or performane is required.The autonomi omputing arhiteture is omposed of four modules anda knowledge omponent that onstitute a ontrol loop namely MAPE-K [2℄.Monitoring whih monitors the data exhanged between the managed elements,Analysis whih detets possible QoS or performane degradations, Planning thatimplements algorithms for seleting and sheduling appropriate elementary re-on�guration ations and Exeution whih performs them.
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Fig. 1. Autonomi omputing sopeThis autonomi omputing paradigm inludes the design and implementa-tion of omputer systems, as shown in Figure 1. The �rst step fouses on es-tablishing a detailed design from whih results a framework or an arhiteture.Frameworks present the skeleton of an appliation that an be ustomized bythe developer. We distinguish two types of framework [3, 4℄: blak box that doesnot need a deep understanding of the framework's implementation in order touse it and white box that requires the internal understanding of the frameworkto use it e�etively. Arhitetures provide high-level abstration of system om-ponents, while enabling easier understanding and interpretation. Furthermore,the arhitetural approah onstraints an be expressed expliitly. The seond



Dynami Reon�gurable Arhiteture 3step onentrates on implementing the arhiteture or the framework throughvarious tehniques. The implementation may be lassi�ed into three ategories:model-based, middleware-based and platform-based (see Figure 1). Model-basedsolutions [5�7℄ provide expliit implementation of all neessary ations for moni-toring, analysis, planning and exeution. In this ategory (model-based), we fouspartiularly on arhitetural approahes. Monitoring and analysis are made bytesting if the running system onforms to a given arhitetural style or model.Middlewares, like Bionet [8℄, AgFlow [9℄, and OpenORB [10℄, support dynamireon�guration proess by o�ering primitives (like intereption) for all auto-nomi omputing modules. Platforms [11�13℄ provide developers with alreadydeveloped autonomi entities.In this paper, we evaluate and lassify a set of autonomi solutions aordingto riteria suh as provided funtionalities, managed autonomi steps, appliedtehniques, programming languages, et. We aim to provide features whih helpand guide users to selet a suitable solution for implementing autonomi servies.However, it is usually di�ult to selet the appropriate approah to implementan appliation. We think that this hoie depends on the size of the problemto solve, the arhiteture type (deentralized or entralized), the programminglanguage, the appliation area (Server or Client, et.), et. Then, we proposeour DRAAS arhiteture implementing the autonomi omputing to ensure thedynami reon�guration of web servie-based appliations.This paper is organized as follows. Setion 2 gives an overview of the auto-nomi omputing bakground. Setion 3 details di�erent ways to design auto-nomi system. Setion 4 desribes a taxonomy of dynami reon�guration imple-mentation approahes fousing on the "model", "middleware" and "platform"ategories. Setion 5 presents our DRAAS arhiteture illustrated by a use ase.Finally, setion 6 onludes this paper and presents our future works.2 Autonomi Computing BakgroundAutonomi omputing onstitutes an ative researh area in omputer systems[14℄. This paradigm, inspired from the human autonomi nervous system [2℄,has a mehanism that an trigger hanges in the omputing system struturesand behaviors in order to bypass or orret them. Furthermore, it is a olletionof autonomi omponents that the overarhing goal is to manage themselves,so that systems will be dynamially reon�gured at run time, with minimumhuman intervention.2.1 Self-* CapabilitiesThe priniples that govern all autonomi omputing systems, aording to IBM,have been summarized in eight aspets [15℄:� Self-Con�guring: the ability to dynamially on�gure omponents followinghigh-poliies in order to adjust the system. Suh on�gurations ould inlude



4 Authors Suppressed Due to Exessive Lengththe deployment, the installation of new omponents or the removal of existingones [16�18℄.� Self-Healing: the ability of the system to pereive if it doesn't work or-retly. It ensures the neessary adjustments to restitute it towards its nor-mal state without human intervention [19℄. By knowing about the system,it analyzes information, detets system degradations and initiates orretiveations without disrupting the system exeution.� Self-Optimizing: the ability of the system to ontinually enhane its perfor-mane. It is a proative mehanism that detets performane degradationand ats intelligently suh as in realloating resoures with minimal humanintervention [16℄.� Self-Proteting: the ability of the system to detet and protet its resouresfrom internal and external attaks and maintain its seurity [2℄.� Self-Awareness: the ability of the system to know itself and to be aware ofits state and behaviors [15℄.� Context Awareness: the ability of the system to know its exeution environ-ment and be able to reat to its hanges [15℄.� Open: the ability of the system to work in a heterogeneous world and imple-ment open standards. It should be portable aross multiply hardware andsoftware arhitetures [15℄.� Antiipatory: the ability of the system to antiipate its needs and behaviorsand to manage itself proatively [15℄.2.2 Autonomi Computing TehniquesAutonomi omputing is based on four main steps [2℄: Monitoring, Analysis,Plan and Exeution.Monitoring tehniques Analysis tehniques Plan&Exeution teh-niquesIntereption [20, 21℄ Arhitetural differ-entiation [22, 23℄ Substitution[24, 10℄Assertion [25, 26℄ Behavioral differentia-tion[27℄ Wrapping[28, 29℄AOP [30�32℄ QoS-ontrat (SLA)[33℄ Load Balaning[34℄Refletion [10, 35℄ QoS-aware (QoS his-tori)[36, 37℄ Rollbak [38℄Redundany & Duplia-tion [39�41℄Table 1. MAPE-k loop tehniques.Monitoring is usually de�ned as the at of listening, arrying out supervi-sion on, and/or reording the ativity of a software entity for the purpose ofmaintaining system reliability and QoS. Monitoring an be ensured using thefollowing tehniques as listed in table 1:



Dynami Reon�gurable Arhiteture 5� Intereption whih represents a hook into exhanged data between a lientand a server allowing requests/responses supervision.� Assertion is a set of ode lines, introdued in a program, whih enables toontrol and to onstrain a program.� AOP (Aspet Oriented Programming) whih aims to verify system propertiesand also to on�gure sope/onstraints of eah funtion and disover even atiny abnormal state.� Re�etion whih enables to disover and to operate on �elds and methodsof an objet at runtime.Analysis is the proess of deteting possible degradation of the system throughthe evaluation and the examination of monitored data. Analysis ompares ur-rent system behavior and arhiteture with a referene model. The followingtehniques are used by the Analysis (see table 1):� Arhitetural Di�erentiation refers to ompare the obtained arhiteturalmodel to the arhitetural style of the system in order to detet non-ompliane.� Behavioral Di�erentiation refers to map the behavior of an implementationto model behavior.� QoS Contrat whih represents expliitly the system requirements underontrat between lients and providers.� QoS Aware whih is based on the histori of the system state. It omparesthe urrent state with previous system states.Plan&Exeution are omplementary. In fat, the plan presents a set of algo-rithms whih refer to onrete reon�guration ations enfored in the Exeutionmodule. While, the Exeution refers to the at/the proess of repairing or theondition of being repaired. Also, it may be de�ned as hanges applied to a soft-ware entity so that it reahes a desirable state. In distributed systems, severaltehniques are used to ahieve the repair proess (see table 1):� Substitution whih replaes a system omponent by another.� Wrapping whih substitutes a system omponent by another enveloped whihpresents the same business logi.� Load Balaning onsists on distributing load on available omponents.� Rollbak allows the system to ome bak to the last stable state.� Redundany whih repeats an ation more than one time in order to ahieveit.� Dupliation (repliation) whih involves addition of omponents representingsimilar funtionalities.3 Autonomi Design and Implementation ApproahesSoftware design is de�ned in IEEE610.12-90 as both "the proess of de�ningthe arhiteture, omponents, interfaes, and other harateristis of a system"and "the result of that proess" [42℄. It is the only way allowing an aurate



6 Authors Suppressed Due to Exessive Lengthtranslation of requirements into a �nished system. The design of arhiteturesand frameworks is derived from the system spei�ation.From the implementation point of view, three main ategories of solutionsould be used to implement autonomi systems: the model-based ategory, themiddleware-based ategory and the platform-based ategory. For the model-based implementations [7, 50℄, developers start from the srath and should im-plement all ations related to autonomi omputing modules. For the middleware-based implementations [8, 9, 51℄, developers build their solutions by adapting ba-si primitives to their appliation ontext. The provided APIs inlude primitivesfor monitoring, analysis, planning and possible reon�guration ations. The plat-form ategory provides reusable omponents to implement autonomi omputingstrategies [11�13℄.In the following, we present in detail the di�erent approahes related to thedesign and the three ategories implementing the autonomi omputing. We alsostudy the di�erent fators that an guide to hoose a spei�ed approah ratherthan another.3.1 Arhiteture designThe arhiteture models the struture of the system. It provides the global per-spetives and a high-level abstration enabling easier understanding of systems.The work in [43℄ de�nes the arhitetural design as the high hierarhialstruture of a system. It desribes the overall design of the system that inludesglobal ontrol struture, ommuniation protool, data aess, system ompo-nents and their behaviors.The authors of [44℄ de�ne a derivative of the arhiteture, namely dynamiarhiteture. This type of arhiteture evolves and hanges itself during runtimeas the system hanges. It aims to design an autonomi system in order to ensurethe dynami reon�guration of system.3.2 Framework designWork in [45℄ de�nes a framework as a reusable design of all or part of a sys-tem that is represented by a set of abstrat lasses and the way their instanesinterat. The same author desribes the framework in [46℄ as a ombination ofomponents and design pattern. CEYLON [47℄, SAFDID [48℄ and Catus [49℄ areexamples of frameworks implementing autonomi omputing in order to dynam-ially reon�gure the system. The purpose of frameworks is to ensure reusabilityand extensibility, two main types of frameworks are distinguished [3℄:� White Box Framework : In a white box framework, we usually extendbehavior by reating sublasses, taking advantage of inheritane. A whitebox framework often omes with soure ode.� Blak Box Framework : In a blak box framework, the behavior is ex-tended by omposing objets together, and delegating behavior between ob-jets. We have no idea about tehnial implementation only the funtionalityof the omponent and where omponents an be plugged into the framework.



Dynami Reon�gurable Arhiteture 7Table 2 reapitulates the di�erene between blak and white frameworks.White Box Framework Blak Box FrameworkUse sublassing Use Composition and delegationInheritane PolymorphismMust know the internal struture Must know interfaesSimpler, easier to design Complex, harder to designHarder to program Easier to programTable 2. Comparison between White and Blak Box Frameworks
3.3 Model-based implementation approahesModel-based solutions implement all ations starting from the srath. No prim-itives are o�ered. In this ategory, we fous partiularly on arhitetural ap-proahes in whih onstraints an be expressed expliitly. Management modulesare generally proposed to ensure the dynami reon�guration proess. Theseentities enable monitoring, implement analysis and planning, and enfore reon-�guration ations.The work desribed in [7℄ provides "Kinesthetis eXtreme" (KX), whih isa generi framework for self-healing based on lightweight middleware. It is adeentralized arhiteture using event-based system. It an be implemented atthe middleware level or at the appliation level. The analysis is based on spe-i� rules for error detetions. KX approah follows the funtional propertiesof an appliation in order (i) to semantially analyze exhanged messages; itplays the role of proxy for apturing message ontents (soure address, subjet,message-ID) for deteting SPAM messages (ii) and to monitor the beginning andthe end of method alls in order to detet servies whih run inorretly. KX issalable and an be applied to a omposed system. However, it has limits: First,the senarios is implemented with manually-written glue ode for attahing theexternal autonomi infrastruture to the target system. Seond, the probe de-ployment, the gauge derivation, and the onstrution of reon�guration plansare performed manually.Rainbow [6, 50℄ is a framework for self-adaptive systems. It is omposed oftwo layers. First, the system layer, whih ollets information about the sys-tem and enfores reon�guration plans. Seond, the arhiteture layer, whihre�ets the urrent arhiteture model, heks onstraint violations, and de-termines the required adaptation. The arhiteture and system layers interatthrough a translation infrastruture. However, experimental work [52℄ has shownthat this externalized approah for self-adaptation auses a signi�ant slowdownof the system behavior. Also, this approah supposes that the target system on-tains hooks for monitoring and management. The reon�guration plan is builtmanually and integrated in the ode. No evaluation or validation of this plan isprovided.



8 Authors Suppressed Due to Exessive LengthOther model-based approahes use arhitetural styles designed to enableautonomi omputing. In fat, an arhitetural style represents a olletion ofdesign deisions that have already been made and an be reused. It onsists ina few key features and rules for ombining these features so that arhiteturalintegrity is preserved. From this ategory, we an mention Prism [22, 53℄ whihis an autonomi approah based on omponent oriented arhitetures. It is om-posed of two layers. The �rst is the appliation layer whih inludes funtionalomponents and exhanges messages between them. The seond represents theautonomi layer. At this layer, omponents at as e�etors. They failitate mon-itoring, enating hanges, planning and deployment. These e�etors are awareof appliation-layer omponents and may initiate interations with them, butnot vie versa. The proposed style, even it is abstrat, seems to be omplete asit overs most requirements for autonomi system like adaptability, dynamis,awareness and robustness. It is one of the few approahes whih onsiders mobil-ity. However, this framework does not target a solution for spei� appliationontext, but it is a general approah for designing autonomi systems. Spei�funtionalities, like oordination and poliies are not onsidered in this approah.The appliability of the style has been demonstrated.Taylor and all present an arhitetural approah for autonomi omputing. In[25℄, Taylor and Oreizy propose an approah for self-adaptive arhiteture. Thisapproah is neither implemented nor applied to a spei� appliation ontext. Itfouses on system integrity whih requires the management of onsisteny, or-retness and oordination of reon�guration ations. In [54℄, Taylor and Dashofyre�ne the arhiteture proposed in [25℄. They exhibit a style-based approah forautonomi systems. They provide an infrastruture able to support the design,validation and exeution of reon�guration plans. The arhiteture is desribedusing xADL 2.0 (XML-based Arhiteture Desription Language). The infras-truture is mainly designed for event-based systems. However, this arhitetureis entralized for single proess systems and no mehanism is onsidered for errordetetions.3.4 Middleware-based implementation approahesThe middleware-based approahes provide primitives helping developers to im-plement autonomi omputing system. In the following, we present middleware-based implementations. Details about eah middleware are presented in table 3.OpenORB middleware [10℄ is built on the basis of re�etive tehnology. Itsre�etive arhiteture uses meta-objet protools to perform integrations thatsupport dynami adaptation at runtime. The meta-models allow monitoringand reon�guration of misbehaviors in order to preserve the arhiteture style.Through the intereption meta-model, it analyzes exhanged messages betweenomponents and lient requests. The interfae meta-model provides aess tothe omponent implementation while the arhiteture meta-model provides a-ess to the objet graph. The illustration prototype deals with the ontinuousmedia �ows transmission quality while introspeting and reon�guring availableresoures (CPU, network, et.) in order to maintain QoS [55℄. This ase study



Dynami Reon�gurable Arhiteture 9demonstrates that OpenORB provides su�ient support for small-sale multi-media appliations. To seure the ommuniation between peers, authors of [10℄said that it may be done while using intereptors.DynamiTAO [56℄ is a re�etive ORB (an extension of the TAO ORB). Itenables deteting hanges in environment and reloading new omponent imple-mentations whih may be bound to the system at runtime. These features areahieved by the use of a olletion of entities known as omponent on�gurators.These on�gurators maintain information about the dependenies between theomponents they manage. The DynamiCon�gurator inspets omponent imple-mentations (list_ategories, list_omponents, domain_omponent, impl_info,omp_info, et.) and reon�gures system on the �y while loading or removingimplementations stored in a Repository. The salability of DynamiTAO is notimproved. However, it is only tested with a simple example (getHello()). The Dy-namiTAO infrastruture inludes two management seurity servies. The �rstis used to rypt/derypt message ontents and the seond authentiates ommu-niation peers to ontrol aess. The seurity strategy an be loaded and bounddynamially to the system at runtime. This allows the use of a large range ofseurity models.Eternal [57℄ is a omponent-based middleware whih provides fault toleraneto CORBA-based appliations by repliating omponents. The autonomi om-puting aspet is developed as an external layer underneath the ORB layer. Themonitoring is based on the middleware intereption approah whih is trans-parent to all ORB. Eternal interepts lient requests and transfers them to arepliation manger in the ase of misbehaviors. A simple test appliation is donein order to measure the performane of Eternal when a fail happen. It showsthe reovery time required for reon�guration while varying the size of the ap-pliation state to transfer aross the network. The drawn urve points out thatthe reovery time inreases while the transferred data size goes up. Eternal usesCORBA seurity servie (SeIOP) and integrates SSL to seure exhanged mes-sages. Also, it implements a �rewall in order to �lter requests and aepts onlyauthentiated lients.
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Middleware DynamiTAO Eternal OpenORB JavaPod CMEMonitoring Event Colletor :Observes behaviorof omponents andgenerates relevantQoS events DynamiCon�gurator :Inspets omponentimplementations Intereptor : Usesthree tehnis:hekpoint, pinging("i-am-alive" peri-odi message), andlogging Server Container :No given details Connetion Monitor :Monitors networkdevies (as modem)and ontrols protoolentities (as routingtable).Analysis Monitor : ColletsQoS events andreports abnormalbehaviors The user : Interrogatesthe database, in orderto inspet QoS values Fault Detetor :Communiates theourrene of faultsto the Fault Noti�er No given details Adaptation Trigger :Triggers adaptationbased on prede�nedontext riteriaPlanning Strategy Seletors:Selets an appro-priate adaptationstrategy basedon feedbak frommonitors The user : Chooses thesuitable implementa-tion from eah ate-gory Fault Noti�er :Distributes faultevent noti�ationsto Repliationmanager No given details Adaptation Seletor :Chooses suitable adap-tation approahExeution Strategy Ativators:Implements a parti-ular strategy, e.g. bymanipulating om-ponent graph whilepreserving the arhi-tetural style
DynamiCon�gurator :Loads and binds newservie implementa-tions (load, resume,suspend, remove,delete et.) Repliation Man-ager : Transfersthe system statetowards a replia Composition: Ex-tends omponentwith new implemen-tations and wrapsrequests Adaptation Exeutor :Exeutes ommands(open and swith han-nels) and hanges entitybehaviorsExternal/Internal External or Internal External External External ExternalProgramminglanguage Python C++ / Java C++ ejava (extension ofJava) JavaSalability High Low Medium Medium LowSeurity Low High High Medium MediumAppliation do-main Component/Webservie Component Component Component/ MobileComponent Network devies (PC,PDA,...) and protools(LAN, GPRS,...)Reon�gurationStrategy Strutural : Modi�esthe arhiteture Behavioral : Reloads anew omponent imple-mentation Strutural : Connetslients to replia Behavioral : Extendsomponents withnew implementa-tions Strutural/Behavioral :Swithing/Adjustinghannels.Table 3. Middleware features



Dynami Reon�gurable Arhiteture 11JavaPod [58℄ is a re�etive middleware whih fouses on the separation offuntional and nonfuntional properties in a distributed ontext. The adaptationis managed using objet ompositions. It is ahieved while dynamially extendingmethods with new implementations. Authors developed a java extension to makeeasy implementation of this approah. They provide new protools to manageonnetions and handle faults. For the seurity, JavaPod implements an aessontrol list, whih allows to manage aess at the method level for eah user.For the evaluation, an e-learning appliation, alled Baghera, is used as a asestudy. The performane evaluation shows that an overhead is onsiderable dueto the omposition mehanism. But, this overhead is negligible ompared to theommuniation time whih is enhaned.CME [59℄ (Connetion Management Engine) is a middleware for networkappliations. It manages logial onnetions (alled hannels) between two om-muniation peers. It monitors hannels to determine whih stations ommuniatewith eah other, when onnetions begin and end, and how muh information isexhanged. CME uses a poliy mehanism to failitate the Network management.Poliies represent adaptation requirements to ensure at runtime. CME enablesmonitoring of seurity privileges by reording whih stations ommuniate witheah other. The salability is not improved. The middleware is only tested witha prototype on PDA. CME ats on the network level. Consequently, it is abovethe Operating System and it an support many kinds of appliations.DynamiTAO, Eternal, JavaPod and CME are developed as an external layerto manage autonomi systems at runtime. However, OpenORB an be externalor internal. External, in whih the monitoring omponent is supported by appli-ations as an external servie. Internal, in whih the monitoring omponent isinjeted into the appliation omponents to provide suh servie. With Eternal,the reon�guration mehanism is limited to the repliation. DynamiTAO doesnot provide entities for fault detetions and analysis. The user has to inquireabout the appliation health and to hoose the suitable reon�guration plan.JavaPod does not provide any entities for analyzing and planning. Meanwhile,all steps are automated with other middlewares.3.5 Platform-based implementation approahesIn this setion, we present the main suggested platforms employed for developingautonomi appliations. The evaluation is based on riteria inluding providedself-aware, used omponents and the arhiteture types supported by these plat-forms.Unity [11, 60℄ : The Unity projet is looking for how omponent behaviorsand relationships an support self-management of omputing systems. The Unityprojet implements a prototype of autonomi systems, designed to show the fea-sibility and to validate the dynami reon�guration of the environment. Duringruntime it realloates and reon�gures resoures to optimize its behavior a-ording to spei�ed poliies. In this approah, every omponent inorporates anautonomi part in a way that it beomes autonomi. The di�erent omponentsof Unity are:



12 Authors Suppressed Due to Exessive Length� "Appliation environment manager": whih is responsible for the manage-ment, ommuniation between omponents, and prediting the resoure avail-ability.� "Resoure arbiter": whih manages sharing and alloation of resoures.� "Registry": whih allows loating omponents.� "Poliy repository": whih represents administration interfaes.� "Sentinel": whih is used by a omponent to monitor the funtioning ofanother.� "Solution manager": whih is responsible for the reon�guration and themaintenane.The monitoring is enabled by all omponents, inluding defetive omponents(if they exist) whih an ause system damages. They have to be sure aboutmonitored Data. They should add poliies in order to �lter gathered data.PAC-MEN [12℄: Personal Autonomi ComputingMonitoring ENvironment:PAC-MEN provides onepts and tehniques for a range of platforms inludingPCs, mobile laptops, PDA et. It is based on 're�ex reation' in order to respondto threats, and 'vital signs ' to assess operational health (inspired from humanmehanisms). In this approah, every peer in the system is an element:� Eah peer is responsible for its own internal behavior.� Eah peer may be extended to inlude shared monitoring of the externalenvironment to inform group members of events that may require individualation.PAC-MEN approah proposes to set up a management server in eah peeralled "Autonomi Manager" (AM ), whih shares data and management dei-sions between other AMs. This allows ollaboration of AMs. However, this styleis more dynami and deentralized.CODA [61℄: Complex Organi Distributed Arhiteture: CODA applies on-epts suh as self-organization, self-regulation and viability to derive an intel-ligent arhiteture. It reats to operation failures and proatively searhes forsuessful patterns of behavior. CODA is a layered approah. It ontains �velayers:� "Operations": whih represents business operations of a system.� "Monitor Operations": whih performs internal monitoring.� "Monitor of the Monitors": whih performs external monitoring.� "Control": whih learns about faults and predits reon�guration ations.� "Command": whih reognizes threats and makes deisions.
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Platform names Unity PAC-MEN CODA Catus MAIS Jade SAFDISCentralized/Deentralized Deentralized Deentralized Centralized Deentralized Centralized Centralized DeentralizedArhiteturetype Client/Server peer-to-peer,Grid Client/Server Client/Server Client/Server Client/Server Client/ServerHuman inter-vention Minimal No No No Interation No NoSelf-aware Self-on�guration,self-optimizing,self-proteting,self-healing Self-healing,self-awareness,self-monitoring Self-organization,self-regulation,self-monitoring Self-on�guration,self-adaptation Self-adaptation,self-optimizing Self-adaptation,self-optimizing Self-adaptation,self-optimizingExternal/ Inter-nal Internal Internal Internal, exter-nal External Internal, exter-nal External ExternalProgramminglanguage Java Java Java C/C++/Java Java Java JavaPresentation GUI No No Monitoring in-terfae No Monitoringvisualizator NoMonitoring Sentinel Vital signs Monitor opera-tions, Monitor ofthe Monitors Event Handlers Diagnoser andInspetor Monitor Event Man-agerExeution Solution manager Re�ex reation Command Event Handlers Reovery a-tions Connetor Migration ofServiesLevel Appliation Appliationand devie Appliation Network Appliation,network anddevie Appliation AppliationWeb servies Yes No Yes No Yes Yes NoTable 4. Platform features.



14 Authors Suppressed Due to Exessive LengthCatus [49℄ : Catus provides support for dynami adaptation and o�ers apotential solution for building autonomi software in networked systems. A ser-vie in Catus is implemented as a "set of handlers" whih reats when an eventours in order to manage QoS (reliability, timeliness, performane, and seu-rity). In the ase of CORBA based appliation, the servie is a ommuniationprotool that resides in the protool stak on top of a lower level ommuniationservie suh as UDP. Handlers reat when a message is exhanged between thelient and the server. Catus proposes several handler kinds. Eah handler doesnot need to know about other one and we an hoose the desired handler foreah servie. This may return Catus more on�gurable and more adaptable.MAIS [13℄:Mobile Adaptive Information Systems : The MAIS projet stud-ies adaptability at all levels in information systems, from appliation level tonetwork and devie levels (PCs, laptops, palmtops, ellular phones, and so on).Several levels of adaptability are onsidered: the upper level (Appliation level),the middle level (web servie level) and the bottom level (Infrastruture & Mid-dleware level). MAIS provides an environment to run omposite, multi-hannel,mobile, and ontext-aware web servies in an adaptive way. The MAIS arhite-ture implements a runtime servie-oriented fault analysis and reovery ations.It detets faults by inspeting request and response messages and analyzingthem through a diagnoser omponent. This arhiteture provides four modulesto handle reon�guration ations, namely: "realloation", "substitution", "wrap-per generator" and "quality modules".Jade [62℄ : Jade is an autonomous administration platform for software in-frastruture. It provides an abstrat view of the appliation and ats when afailure ours on a part of the system. It uses dupliation to maintain the ser-vie availability and to handle the resoure alloation aording to the loadvariation in order to manage salability. Jade is omposed of two parts:� Managed Element : whih wraps eah software and provides an administra-tion interfae;� Autonomi Manager : whih implements the administration managementpoliies (repair and optimization). It monitors and ats on system throughthe Managed Elements interfaes.SAFDIS [48℄ : Self-Adaptation For DIstributed Servies, enables the dy-nami management of servie-based arhitetures. The implementation is builtfor the OSGi platform, using iPOJO to manage the life-yle. The di�erent om-ponents are:� Adaptation Manager : its role onentrates on ensuring the ommuniationbetween the di�erent omponents and servies responsible of the adaptationof the system.� Event Manager : it ollets events from monitors, omposes them and keepsa loal view of the system. It is the supervisor of the whole system.� Analyst : it is a distributed and a deentralized proess. It identi�es, analyzesthe system hanges and deides if an adaptation is needed. Then, it makesan adaptation deision when a need arises. Furthermore, this omponent isomposed of:
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• Deision Maker : it listens to events oming from the event manager andsends them to the reasoners for analysis.
• Negotiator : it is omposed of a bak end and a front end onneted to aremote negotiator of another SAFDIS instane.
• Negotiation Manager : it is responsible of managing the multiple negoti-ations that an happen at the same time.� Planner : it is omposed of a set of Planning Algorithms and a Manageromponent. Aording to objetives and onstraints, the Manager produessimple orderings of ations to reon�gure system.� Exeution Engine: it is alled to perform planned ations. In SAFDIS, the re-on�guration ation moves a servie from an exeution node to another,whihis alled the migration of servies.There are other platforms like in [63℄ and [64℄. The work desribed in [63℄presents a re�exive and dynamially adaptable exeution environment whihallows building dynami, re�exive and �exible appliation and middleware. Au-thors of [64℄ propose a mehanism for adding and adapting servies based on anadaptable reon�guration language.In table 4, we present properties of eah platform. Most platforms do notallow any interation between human or administrator and appliation exeptfor Unity and MAIS. The programming language supported by all platforms isJava. But, there is another Catus version that supports C and C++. CODA,Unity and MAIS support web servies based dynami reon�guration. The othersmay investigate to support them. Catus integrates the dynami adaptation inthe level of the exhanged data. In order to support web servies, it may extendSOAP protool to take into onsideration new handlers for QoS preservation.3.6 Conluding RemarksInternal vs. External autonomi omputing All ited implementationshave as goal the dynami reon�guration of the system whih allows it to evolveinrementally from one state to another at run-time in order to aommodate tohanges [12℄. The dynami reon�guration ativities, based on autonomi om-puting, an be arried out either internally or externally to the appliation. Ininternal, odes responsible of the reon�guration are merged with the appliationodes, while in external, they are separated from the appliation odes [65℄.In an Internal autonomi mehanism, it is di�ult to add a new ode or anew strategy to a blak-box omponent; we must know about the omponentdesign in order to govern it. The Unity [11℄ and PAC-MEN [12℄ projets presenta prototype enabling dynami reon�guration, based on internal mehanisms.External mehanism is appropriate when it is so di�ult to modify applia-tion odes. We generally deploy omponents in heterogeneous ontext; therefore,if we use an internal strategy, we have to develop a new omponent version (withspei� self-healing mehanism) for eah ontext. Also, externalized mehanismsallow the reuse of autonomi omponents and make easy their update, sine theyare loalized [66℄. In addition, external mehanism allows us to divide the task



16 Authors Suppressed Due to Exessive Lengthof the appliation implementation between the omponent developers and man-agers. Kinesthetis eXtreme [7℄ and Rainbow [6℄ built systems based on externalmehanisms.Eah omponent may inlude autonomi mehanisms in order to heal itself.Designed systems have to inquire into problems and ask omponents to reon�g-ure their struture or behavior. Furthermore, dynami reon�guration strategymust not ause signi�ant slowdown to the exeution proess and espeially forthe real time appliation. It must reat in order to repair rashes while the vari-ane of global system response time is kept in limited bounds. In order to reaha suitable and adaptable system whih makes system resilient to faults, we haveto apply autonomi omputing tehniques whih over all levels: hardware andsoftware. But this solution may be very expensive and it requires ombinationof various mehanisms.Behavioral vs. Strutural autonomi omputing We an distinguish twostrategies of the dynami reon�guration in the Exeution level. In fat, reon-�guration ations at on the system either behaviorally or struturally.Following the �rst strategy , it is related to the behavioral dimension of thesystem in general; otherwise, it fouses on its internal behavior. Indeed, we speakabout suh approah when omponents behavior is ustomizable or modi�able.So, when degradation is deteted, the installed reon�guration infrastrutureis brought to repair the proess at runtime, by applying the reon�gurationations to the onerned omponents. This reon�guration is onsidered as adiret adjustment, beause its ations are supposed to modify at one the internalomposition of system omponents in order to orret it further to a problem.Eternal [57℄, CEYLON [47℄ and JavaPod [58℄ hange the behavior of omponentsin order to dynamially reon�gure the system.Following the seond one, it is related to the strutural dimension of thesystem. So that systems omponents are observed during the exeution of thislater. Several symptoms are stored before taking the deision of ativating ornot reon�guration ations. In this ase, the reon�guration is done by applyingbasis ations suh as adding or removing omponents or their onnetions. Thestrutural adaption referred to as "run-time" when the reon�guration is shed-uled during exeution. DynamiTAO [56℄ and OpenORB [10℄ implement thestrutural reon�guration. While, CME [59℄ implements both strutural reon-�guration by swithing and behavioral reon�guration by adjusting hannels.4 DRAAS: Dynamially Reon�gurable Arhiteture forAutonomi ServiesIn this setion, we present our approah, DRAAS whih manages QoS of webservie-base appliations at runtime. It is based on monitors, able to extendSOAP messages exhanged between the servie requester and the servie provider(Web Servie), and a dynami onnetor whih is used to rediret requests toonrete providers o�ering the same business logi.



Dynami Reon�gurable Arhiteture 174.1 DRAAS arhitetureDRAAS provides the management of QoS by implementing virtualization andthe di�erent omponents of the autonomi omputing arhiteture referene(MAPE K-loop): The �rst step is Monitoring. It orresponds to the supervi-sion of the appliation. It observes �ows and stores the value of the monitoreddata. Seond, the Analysis detets the QoS degradation. If deteted, an alarmsignal will be sent to the planning module. Third, the Planning identi�es theorigin of the QoS degradation and alulates the new reon�guration. Fourth,the Exeution module exeutes the reon�guration ations.
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Fig. 2. DRAAS arhitetureThe �gure 2 presents an overview of DRAAS deployed between Requestersand Providers. Software entities omposing our arhiteture are:� In the Monitoring module:
• RSM: Requester Side Monitor, assoiated to eah requester, is responsi-ble of interepting in�ow/out�ow (Request/Response) in the requesterside.
• PSM: Provider Side Monitor, assoiated to all providers, is responsibleof interepting in�ow/out�ow (Request/Response)in the provider side.� Analysis for deteting QoS degradation.� Planning for alulating the new reon�guration.� In the Exeution module:
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• VirtualProvider, is the initial destination of requester requests.
• Dynami Connetor, redirets/binds requester requests to onrete providersaording to the reon�guration plan.
• ServieManagement, exeutes the new reon�guration.Aording to the omparative study established in the previews setions,DRAAS is a deentralized arhiteture thanks toWeb Servies, based on lient/serverommuniation, implements the strutural strategy by redireting requests. It isan externalized approah for dynami reon�guration.4.2 Illustration: Data Load Use CaseIn this setion, we illustrate the DRAAS arhiteture within the Data Load usease. It onsists in transferring �les from the lient side to a Load Repository.Transferring �les is provided by providers (Web Servies) whih o�er the Load-Transfer servie and eah �le is assoiated to a request.A prototype of DRAAS is implemented enabling the balane of load amongavailable providers in order to manage QoS suh as response time whih or-responds to minimizing the transfer time. Balaning requests is the task of thedynami onnetor. Aording to the DRAAS arhiteture, presented in �gure2, we distinguish these ators:� Requester −→ Client� Provider1 −→ LoadTransferWS1� Provider2 −→ LoadTransferWS2� VirtualProvider−→ LoadTransferVirtualWSInitially, the lient sends �les to the LoadTransferVirtualWS. Eah one is en-apsulated in a request. Eah request is interepted twie, �rst by the RSM andseond by the PSM. The Dynami Connetor, assoiated to the LoadTransfer-VirtualWS, balane the load (requests) by redireting them to LoadTransferWS1or LoadTransferWS2. Eah web servie provider (LoadTransfer) transfers a �leper request. If the transfer of eah �le is suessfully done, eah response is alsointerepted twie as the request but inversely: �rst by the PSM and seondby the RSM. All monitored data is stored in the log. If the Analysis detetsan inrease of the transfer time, it sends an alarm to the Planning in order toalulate a new reon�guration. In this ase, the Planning deides to ativatean available LoadTransferWS3 to partiipate in the next transfer. It sends thisdeision to the ServieManagement to perform it. The exeution of this deisionwill be aught by the Dynami Connetor. It will be taken into aount for thenext load transfer.4.3 ExperimentationTo show the feasibility of DRAAS, we have arried out experiments on the DataLoad. We present in the sequel hardware arhiteture and tools used for theseexperiments.



Dynami Reon�gurable Arhiteture 19Hardware Arhiteture and Tools All test senarios (to be presented in thenext setion) are assessed under this on�guration:� Operating system: Windows 7, 32 bits� Proessor: Intel Core(TM)2 Duo CPU T5800� RAM: 2GoOur implementation is built of the Web Servie tehnology. Analysis, Plan-ning and ServieManagement are Web Servies, while monitors and DynamiConnetor are based on handlers. In the following, we ite the tehnial hoiesfor our implementation:� Web servie ontainer: Axis2 1.5� Web server: Tomat 6.0.30� Programming language: Java 1.6� Monitors & Connetors: Axis2 Handlers� Communiation level: SOAP� Logging: MySQL DBMSAssessment To assess DRAAS performane, we have �xed the global size ofthe �les to be transferred (T=32Mo) and we have prepared six senarios fortesting. All senarios foused on varying the number of �les while maintainingthe global size. We present in table 5 the di�erent senarios used to evaluateDRAAS performane.Number of �les File SizeSenario1 1 {32 Mo}Senario2 2 {17Mo; 15Mo}Senario3 3 {10Mo; 11Mo; 11Mo}Senario4 4 {9Mo; 8Mo; 8Mo; 7Mo}Senario5 8 {3,7Mo; 4,3Mo; 3Mo; 5Mo; 4Mo; 4Mo; 4,2Mo;3,8Mo}Senario6 10 {3,2Mo; 2,8Mo; 3Mo; 2,8Mo; 3,2Mo; 3,2Mo;3,2Mo; 3,2Mo; 3,7Mo; 3,7Mo;}Table 5. Load transfer senariosIn order to show the bene�ts of DRAAS, we have distinguished two asesfor the Data Load use ase: First, the transfer of �le is aomplished withoutload balaning. Seond, deploying DRAAS in order to maintain the QoS man-agement, suh transfer time, at runtime. Therefore, without applying DRAASto the DataLoad, the lient is onneted only to the LoadTransferWS1 Web Ser-vie, even if there is another available LoadTransferWS2 Web Servie providingthe same business logi, and all �les are transferred through it. If the LoadTrans-ferWS1 Web Servie shows a QoS degradation, expressed by an inrease of thetransfer time, this degradation a�ets the Data Load appliation.However, when we integrate our DRAAS prototype as desribed in the pre-views setion, the load will be balaned on available Web servies o�ering theload transfer servie.



20 Authors Suppressed Due to Exessive LengthWe have arried out eah senario experiments at least 5 times. Aordingto obtained values, results are shown in table 6, where the average equals to thesum of values obtained by tests divided by the number of tests.Response Time (ms)Single Web Servie Two Web Servies(DRAAS)Min Max Avg Min Max AvgSenario1 4565 5141 4812,6 3748 5168 4700,6Senario2 6210 7669 6717,44 4067 5357 4918Senario3 7780 8228 7920 4520 5583 5039,4Senario4 8790 9609 9153,6 4090 5362 4600Senario5 14592 16326 15451,6 7611 9631 8324,6Senario6 18313 25147 20113,8 8123 8500 8510,4Table 6. Performane measurement
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Fig. 3. Average response time of DRAAS prototypeOur experiments provided the urves shown in Figure 3. The blue urve ( )desribes the average response time related to transferring a variable number of�les with a single Web Servie where the global size is maintained onstant andequal to 32Mo. However, the red urve ( ) desribes the same parameters butwhile using two Web servies and enabling the load balaning.It is obvious that transferring �les within our DRAAS prototype, using twoWeb servies, is more e�ient in term of transfer time than using a single Webservie. We have notied that the transfer time (response time) depends on thenumber of �les. In fat, without DRAAS, inreasing the number of �les whilemaintaining the overall size leads to inrease the response time. However, theDRAAS urve presents a ritial point having the following oordinates (4, 4600)for whih the average response time is optimal. Moreover, the deployment of



Dynami Reon�gurable Arhiteture 21DRAAS with a single provider auses the inrease of the response time due toan added delay ǫ, epsilon, aused by the virtualization. This ǫ has no impats onresponse time sine both the number of requests and the number of providershave exeed two. Therefore, the deployment of DRAAS is based on a neessaryand su�ient assumption whih is the presene of at least two providers o�eringthe same business logi. Indeed the presene of a single provider does not allowthe dynami reon�guration, whih is urrently based on load balaning.5 ConlusionIn this paper, �rst,we have presented a lassi�ation and a omparative study ofexisting arhitetures and frameworks implementing autonomi systems. Di�er-ent implementations are provided. For example, a model-based solution is usuallysuitable for a small system. Platform-based solutions are appropriated for sys-tems in whih only generi QoS properties are required. The new objetives areoriented towards the deployment and the exeution of distributed appliationson heterogeneous platforms (PC, smart devies, Smart ard, et).Seond, we have proposed our DRAAS arhiteture to bring dynami reon-�guration apabilities to distributed web servie-based appliations. A prototypeof DRAAS has been implemented to assess the appliability of the monitoringand reon�guration within the designed arhiteture. The repair enatment isbased on the arhitetural reon�guration providing load balaning for web ser-vies at the origin of the QoS degradation.We aim to improve our DRAAS arhiteture's to support new reon�gurationations suh as substitution. Moreover, we target to manage dynamially MAPE-K loop omponents while enabling �exibility by hanging their behaviors atruntime in order to inlude new features, suh as new monitors or new analysisalgorithms.Referenes1. Shin, M.E.: Self-healing omponents in robust software arhiteture for onurrentand distributed systems. Journal of Siene of Computer Programming 57(1) (July2005) 27�442. Kephart, J.O., Chess, D.M.: The vision of autonomi omputing. Computer 36(1)(2003) 41�503. Ciupa, I.: Study on whitebox frameworks in java. (2003)4. Conte, A., Anquetil, L.P.: A blak box framework for an appliation protool stak.In: Proeedings of the 3rd IEEE Symposium on, Appliation-Spei� Systems andSoftware Engineering Tehnology, 2000, IEEE Computer Soiety (2000) 96 � 1015. Gurguis, S.A., Zeid, A.: Towards autonomi web servies: ahieving self-healingusing web servies. In: DEAS '05: Proeedings of the 2005 workshop on Designand evolution of autonomi appliation software, New York, NY, USA, ACM Press(2005) 1�5
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