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We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval [0, T ] representing a chromosome. The originality of this study is that we are under selective genotyping : only the individuals with extreme phenotypes are genotyped. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on [0, T ] and under local alternatives with a QTL at t on [0, T ]. We show that the LRT process is asymptotically the square of a " non-linear interpolated and normalized Gaussian process ". We have an easy formula in order to compute the supremum of the square of this interpolated process. We prove that we have to genotype symmetrically and that the threshold is exactly the same as in the situation where all the individuals are genotyped.

Introduction

We study a backcross population: A × (A × B), where A and B are purely homozygous lines and we address the problem of detecting a Quantitative Trait Locus, socalled QTL (a gene influencing a quantitative trait which is able to be measured) on a given chromosome. The trait is observed on n individuals (progenies) and we denote by Y j , j = 1, ..., n, these observations. The mechanism of genetics, or more precisely of meiosis, implies that among the two chromosomes of each individual, one is purely inherited from A while the other (the "recombined" one), consists of parts originated from A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on [0, T ] is called the genetic distance, it is measured in Morgans (see for instance Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF] or Siegmund and Yakir [START_REF] Siegmund | The statistics of gene mapping[END_REF]). The genome X(t) of one individual takes the value +1 if, for example, the "recombined chromosome" is originated from A at location t and takes the value -1 if it is originated from B. The Haldane modeling, which assumes no crossover interference, can be represented as follows: X(0) is a random sign and X(t) = X(0)(-1) N (t) where N (.) is a standard Poisson process on [0, T ]. Calculations on the Poisson distribution show that r(t, t ) := P(X(t)X(t ) = -1) = P( N (t) -N (t ) odd) = 1 2 (1 -e -2|t-t | ), we set in addition r(t, t ) = 1 -r(t, t ).

We assume an "analysis of variance model" for the quantitative trait :

Y = µ + X(t ) q + σε ( 1 
)
where ε is standard Gaussian and t * is the true location of the QTL. Usually, in the classical problem of detecting a QTL on a chromosome, the genome information is available only at fixed locations t 1 = 0 < t 2 < ... < t K = T , called genetic markers. So, usually an observation is (Y, X(t 1 ), ..., X(t K )) , and the challenge is that the location t of the QTL is unknown.

The originality of this paper is that we consider the classical problem, but in order to reduce the costs of genotyping, a selective genotyping has been performed : we consider two real thresholds S -and S + , with S -S + and we genotype if and only if the phenotype Y is extreme, that is to say Y S -or Y S + . Note that in practice, the cutoffs for genotyping are based on quantiles. However, in most of the theoretical studies about selective genotyping (e.g. Darvasi and Soller [START_REF] Darvasi | Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus[END_REF], Muranty and Goffinet [START_REF] Muranty | Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus[END_REF]), authors consider fixed thresholds. This approximation is reasonable when we deal with a large number of observations.

If we call X(t) the random variable such as

X(t) = X(t) if Y / ∈ [S -, S + ] 0 otherwise ,
then, in our problem, one observation will be now Y, X(t 1 ), ..., X(t K ) .

Note that with our notations :

• when Y / ∈ [S -, S + ], we have X(t 1 ) = X(t 1 ), ..., X(t K ) = X(t K ). • when Y ∈ [S -, S + ],
we have X(t 1 ) = 0, ..., X(t K ) = 0, which means that the genome information is missing at the marker locations.

We will observe n observations Y j , X j (t 1 ), ..., X j (t K ) independent and identically distributed (i.i.d.).

It can be proved that Y, X(t 1 ), ..., X(t K ) obeys to a mixture model with known weights, times a function g(.) which does not depend on the parameters µ, q and σ :

p(t * ) f (µ+q,σ) (Y ) 1 Y / ∈[S-,S+] + {1 -p(t * )} f (µ-q,σ) (Y ) 1 Y / ∈[S-,S+] + 1 2 f (µ+q,σ) (Y ) 1 Y ∈[S-,S+] + 1 2 f (µ-q,σ) (Y ) 1 Y ∈[S-,S+] g(.) (2) 
where f (m,σ) is the Gaussian density with parameters (m, σ) and where the function p(t) is fully given in Section 2.

As mentioned before, the challenge is that t * is unknown. So, at every location t ∈ [0, T ], we perform a Likelihood Ratio Test (LRT), Λ n (t), of the hypothesis "q = 0". It leads to a LRT process Λ n (.) and taking as test statistic the maximum of this process comes down to perform a LRT in a model when the localisation of the QTL is an extra parameter.

In the classical problem of detecting a QTL on a chromosome, that is to say in the complete data situation where all the individuals are genotyped (i.e. without selective genotyping), the asymptotic distribution of the LRT statistic has been given under some approximations by Rebaï et al. [START_REF] Rebaï | Comparing power of different methods for QTL detection[END_REF], Rebaï et al. [START_REF] Rebaï | Approximate thresholds of interval mapping tests for QTL detection[END_REF], Cierco [START_REF] Cierco | Asymptotic distribution of the maximum likelihood ratio test for gene detection[END_REF], Azaïs and Cierco-Ayrolles [START_REF] Azaïs | An asymptotic test for quantitative gene detection[END_REF], Azaïs and Wschebor [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF], Chang et al. [START_REF] Chang | Score statistics for mapping quantitative trait loci[END_REF]. Recently, Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] have shown that the distribution of the LRT statistic is asymptotically that of the maximum of the square of a "non linear normalized interpolated process".

In this paper, we study a problem which has never been studied theoretically before : the detection of a QTL on a chromosome with a selective genotyping. Selective genotyping has been studied theoretically by many authors : for instance Lebowitz and al. [START_REF] Lebowitz | Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines[END_REF], Lander and Botstein [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF], Darvasi and Soller [START_REF] Darvasi | Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus[END_REF], Muranty and Goffinet [START_REF] Muranty | Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus[END_REF], Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF]... However, in all these articles, the focus is only on one fixed location of the genome. This way, our study which focuses on the whole chromosome is totally new, with a real impact for geneticists. In a more practical point of view, we can find in Rabbee et al. [START_REF] Rabbee | Power calculations for selective genotyping in QTL mapping in backcross mice[END_REF], a simulation study in which the authors study different strategies for analyzing data in selective genotyping and give the power associated to each strategy. On the other hand, in Manichaikul et al. [START_REF] Manichaikul | Significance thresholds for Quantitative Trait Locus mapping under selective genotyping[END_REF], the authors focus on permutation tests for selective genotyping... This way, our study is complementary to the work of Rabbee et al. [START_REF] Rabbee | Power calculations for selective genotyping in QTL mapping in backcross mice[END_REF] and Manichaikul et al. [START_REF] Manichaikul | Significance thresholds for Quantitative Trait Locus mapping under selective genotyping[END_REF].

The main result of the paper (Theorems 2.5 and 4.1) is that the distribution of the LRT statistic is asymptotically that of the maximum of the square of a "non linear normalized interpolated process". This is a generalization of the results obtained by Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] only for the complete data situation. Under the null hypothesis, despite the selective genotyping, our process is exactly the same as the one obtained by Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF]. However, under the alternative, we show that the mean functions of the two processes are not the same anymore.

Some important results are also introduced in Theorem 4.2. We give the Asymptotic Relative Efficiency (ARE) with respect to the complete data situation. Recall that the Asymptotic Relative Efficiency (ARE) determines the relative sample size required to obtain the same local asymptotic power as the one of the test under the complete data situation where all the genotypes are known. Note that we show that we have exactly the same ARE, if we look for a QTL on a whole chromosome or if we focus only on one locus (even if the QTL is not located on this locus). Another interesting result of Theorem 4.2 is the following : if we want to genotype only a percentage γ of the population, we should genotype symmetrically, that is to say the γ/2% individuals with the largest phenotypes and γ/2% individuals with the smallest phenotypes. This is a generalization of Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF], where it is proved that we have to genotype symmetrically, when we focus only on one genetic marker.

Furthermore, we propose a test statistic (see Lemma 3.1 and formula 15) asymptotically distributed as the LRT, but which presents computational advantages. Indeed, usually, in order to perform a LRT, we have to compute an EM algorithm at each location of the genome, which is quite challenging. In contrast, our test statistic does not require the use of any EM algorithm. Note that in this paper, we also prove that the non extreme phenotypes (for which the genotypes are missing) don't bring any extra information for statistical inference (same result as in Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF] but for the whole chromosome). In other words, we give theoretical answers relevant to the previous work of Rabbee et al. [START_REF] Rabbee | Power calculations for selective genotyping in QTL mapping in backcross mice[END_REF]. However, we have to mention that the non-extreme phenotypes are useful for the estimation of the QTL effect.

To conclude, we will illustrate our theoretical results with the help of simulated data. Note that, according to Theorem 2.5 and 4.1, the threshold (i.e. critical value) in selective genotyping, is exactly the same as the classical threshold used in the complete data situation. So, in order to obtain our threshold, the Monte Carlo Quasi Monte-Carlo methods of Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF], based on Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF] is still suitable here. This is an alternative to the stratified permutation method proposed by Manichaikul et al. [START_REF] Manichaikul | Significance thresholds for Quantitative Trait Locus mapping under selective genotyping[END_REF] and inspired by Churchill and Doerge [START_REF] Churchill | Empirical threshold values for quantitative trait mapping[END_REF], which requires to permute the genotypes within the extremes. Our method is very fast since it relies on very powerful algorithms developed by Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF]. In contrast, permutation methods are usually time consuming since a large number of permutations has to be performed in order to obtain an accurate threshold.

We refer to the book of Van der Vaart [START_REF] Van Der | Asymptotic statistics[END_REF] for elements of asymptotic statistics used in proofs.

Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T : 0 = t 1 < t 2 = T . We look for a QTL located at t ∈ [t 

For (i, i ) ∈ {-1, 1} 2 , Q i,i t
is the quantity such as

Q i,i t = P X(t) = 1 X(t 1 ) = i, X(t 2 ) = i .
Using Bayes rules, we have

Q 1,1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) , Q 1,-1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) (3) Q -1,1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) , Q -1,-1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) .
We can remark that we have

Q -1,-1 t = 1 -Q 1,1 t and Q -1,1 t = 1 -Q 1,-1 t . Notation 2.2: P t {l | i} is the quantity such as ∀ i ∈ {-1, 1} and ∀ l ∈ {-1, 0, 1} P t {l | i} = P(X(t) = l | X(t) = i) .
In order to compute the likelihood, we have to study the different probability distributions. To begin, let's compute P(Y ∈ [y , y + dy] ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) for instance. We have, according to Bayes rules (we remind that we consider t = t ),

P(Y ∈ [y , y + dy] ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) = i∈{-1,1} P(Y ∈ [y , y + dy] | X(t) = i) P(X(t) = i ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) . Besides, P(Y ∈ [y , y + dy] | X(t) = i) = P(Y ∈ [y , y + dy] ∩ X(t) = 0 | X(t) = i) P(X(t) = 0 | X(t) = i) = f (µ+iq,σ) (y) 1 y / ∈[S-,S+] P t {i | i} and P(X(t) = i ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) = P(X(t) = 0 ∩ X(t) = i ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) = P t {i | i} P(X(t) = i ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) = 1 2 P t {1 | 1} r(t 1 , t) r(t, t 2 )1 i=1 + 1 2 P t {-1 | -1} r(t 1 , t) r(t, t 2 )1 i=-1 .
As a result, using formula (3),

P(Y ∈ [y , y + dy] ∩ X(t 1 ) = 1 ∩ X(t 2 ) = 1) = 1 2 f (µ+q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q 1,1 t + 1 2 f (µ-q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q -1,-1 t .
In the same way, after some calculations, we find

P(Y ∈ [y , y + dy] ∩ X(t 1 ) = 1 ∩ X(t 2 ) = -1) = 1 2 f (µ+q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q 1,-1 t + 1 2 f (µ-q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q -1,1 t , P(Y ∈ [y , y + dy] ∩ X(t 1 ) = -1 ∩ X(t 2 ) = 1) = 1 2 f (µ+q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q -1,1 t + 1 2 f (µ-q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q 1,-1 t , P(Y ∈ [y , y + dy] ∩ X(t 1 ) = -1 ∩ X(t 2 ) = -1) = 1 2 f (µ+q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q -1,-1 t + 1 2 f (µ-q,σ) (y) 1 y / ∈[S-,S+] r(t 1 , t 2 ) Q 1,1 t .
Finally, when the genome information is missing at marker locations (i.e. the phe-notype is not extreme), we find

P(Y ∈ [y , y + dy] ∩ X(t 1 ) = 0 ∩ X(t 2 ) = 0) = 1 2 f (µ+q,σ) (y) 1 y∈[S-,S+] + 1 2 f (µ-q,σ) (y) 1 y∈[S-,S+] .
Let's define the quantity p(t) such as

p(t) = Q 1,1 t 1 X(t1)=1 1 X(t2)=1 + Q 1,-1 t 1 X(t1)=1 1 X(t2)=-1 + Q -1,1 t 1 X(t1)=-1 1 X(t2)=1 + Q -1,-1 t 1 X(t1)=-1 1 X(t2)=-1 (4) 
and let θ = (q, µ, σ) be the parameter of the model at t fixed. As a consequence, the likelihood of the triplet Y, X(t 1 ), X(t 2 ) with respect to the measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t 1 , t 2 ] :

L t (θ) = p(t) f (µ+q,σ) (Y )1 Y / ∈[S-,S+] + {1 -p(t)} f (µ-q,σ) (Y )1 Y / ∈[S-,S+] (5) 
+ 1 2 f (µ+q,σ) (Y )1 Y ∈[S-,S+] + 1 2 f (µ-q,σ) (Y )1 Y ∈[S-,S+] g(t)
where the function

g(t) = 1 2 r(t 1 , t 2 ) 1 X(t1)=1 1 X(t2)=1 + r(t 1 , t 2 ) 1 X(t1)=1 1 X(t2)=-1 + 1 2 r(t 1 , t 2 ) 1 X(t1)=-1 1 X(t2)=1 + r(t 1 , t 2 ) 1 X(t1)=-1 1 X(t2)=-1 + 1 X(t1)=0 1 X(t2)=0
can be removed because it does not depend on the parameters. Recall that ∀k, 1 X(tk) =0 = 1 Y / ∈[S-,S+] and note also that for t = t , we find our formula (2) of the introduction where p(t ) is described in formula (4). Notation 2.3: γ, γ + and γ -are respectively the quantities P H0 (Y / ∈ [S -, S + ]), P H0 (Y > S + ) and P H0 (Y < S -).

Notation 2.4:

A is the quantity such as

A = σ 2 γ + z γ+ ϕ(z γ+ ) -z 1-γ-ϕ(z 1-γ-)
, where ϕ(x) and z α denote respectively the density of a standard normal distribution taken at the point x, and the quantile of order 1 -α of a standard normal distribution.

Before introducing our main theorem, let us define the score statistic and the LRT statistic at t. Since the Fisher Information matrix is diagonal (cf. proof of Theorem 2.5 below), the score statistic of the hypothesis "q = 0" at t, for n independent observations, will be defined as

S n (t) = ∂l n t ∂q | θ0 V ∂l n t ∂q | θ0
, where l n t (θ) denotes the log likelihood at t, associated to n observations. C.E. Rabier

The LRT at t, for n independent observations, will be defined as

Λ n (t) = 2 l n t ( θ) -l n t ( θ |H0 ) ,
where θ is the maximum likelihood estimator (MLE), and θ |H0 the MLE under H 0 . Our main result is the following :

Theorem 2.5 : Suppose that the parameters (q, µ, σ 2 ) vary in a compact and that σ 2 is bounded away from zero. Let H 0 be the null hypothesis q = 0 and define the following local alternative H at : "the QTL is located at the position t with effect q = a/ √ n where a = 0 ".

With the previous defined notations,

S n (.) ⇒ V (.) , Λ n (.) F.d. -→ V 2 (.) , sup Λ n (.) L -→ sup V 2 (.)
as n tends to infinity, under H 0 and H at where :

• S n (.) is the score process • ⇒ is the weak convergence, F.d.
→ is the convergence of finite-dimensional distributions and L -→ is the convergence in distribution • V (.) is the Gaussian process with unit variance such as :

V (t) = α(t)V (t 1 ) + β(t)V (t 2 ) V {α(t)V (t 1 ) + β(t)V (t 2 )} (6) 
where

Cov {V(t 1 ), V(t 2 )} = ρ(t 1 , t 2 ) = exp(-2|t 1 -t 2 |) α(t) = Q 1,1 t -Q -1,1 t , β(t) = Q 1,1 t -Q 1,-1 t
and with expectation :

• under H 0 , m(t) = 0, • under H at m t (t) = α(t) m t (t 1 ) + β(t) m t (t 2 ) V {α(t)V (t 1 ) + β(t)V (t 2 )}
where

m t (t 1 ) = a √ A ρ(t 1 , t ) σ 2 , m t (t 2 ) = a √ A ρ(t , t 2 ) σ 2 .
In the sense of this equation, V (.) will be called a "non linear normalized interpolated process". We can see that under the null hypothesis, despite the selective genotyping, V (.) is exactly the same process as the process Z(.) of Theorem 2.1 of Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] obtained for the complete data situation. However, under the alternative, the mean functions of the two processes are not the same anymore : the mean functions are proportional of a factor √ A/σ. Note also that V (.) is the generalization of Z(.). Indeed, if we choose S -= S + , that is to say we genotype all the individuals, the factor √ A/σ is equal to 1, and V (.) is the same process as Z(.).

Proof : Theorem 2.5

Fisher Information Matrix

Let l t (θ) be the loglikelihood. We first compute the Fisher information at a point θ 0 that belongs to H 0 . The proof relies on two key lemmas. Lemma 2.6: We have the following relationship :

{2p(t) -1} 1 Y / ∈[S-,S+] = α(t)X(t 1 ) + β(t)X(t 2 ) with α(t) = Q 1,1 t -Q -1,1 t and β(t) = Q 1,1 t -Q 1,-1 t .
To prove this lemma, use formula (4) and check that both sides coincide when

Y / ∈ [S -, S + ]. Lemma 2.7: Let W ∼ N (µ, σ 2 ), then E (W -µ) 2 1 W / ∈[S-, S+] = σ 2 P(W / ∈ [S -, S + ]) + σ (S + -µ) ϕ S+-µ σ -σ (S --µ) ϕ S--µ σ .
To prove this lemma, use integration by parts. A consequence of Lemma 2.7 is that we have the relationship

A = E H0 (Y -µ) 2 1 Y / ∈[S-,S+] .
To conclude, after some easy calculations, we find that the Fisher information is diagonal :

I θ0 = Diag A α 2 (t) + β 2 (t) + 2α(t)β(t)ρ(t 1 , t 2 ) /σ 4 , 1 σ 2 , 2 σ 2 . ( 7 
)
Study of the score process under H 0 Using Lemma 2.6, it is clear that

∂l n t ∂q | θ0 = n j=1 Y j -µ σ 2 {2p j (t) -1} 1 Yj / ∈[S-,S+] = α(t) σ n j=1 ε j X j (t 1 ) + β(t) σ n j=1 ε j X j (t 2 ) (8) 
this proves that V (.) is a non linear interpolated process.

On the other hand, we have ∀k = 1, 2 :

S n (t k ) = ∂l n t k ∂q | θ0 V ∂l n t k ∂q | θ0 = n j=1 σε j X j (t k ) √ n A .
Since ∂l n t ∂q | θ0 is centered under H 0 , a direct application of the central limit theorem Let's compute the covariance of the score statistics on markers, i.e. Cov H0 {S n (t 1 ), S n (t 2 )}. Since E H0 (Y -µ) 2 1 Y / ∈[S-,S+] = A, we have :

E H0 {S n (t 1 )S n (t 2 )} = 1 A E H0 (Y -µ) 2 X(t 1 ) X(t 2 ) 1 Y / ∈[S-,S+] = 1 A E H0 (Y -µ) 2 1 Y / ∈[S-,S+] E {X(t 1 )X(t 2 )} = ρ(t 1 , t 2 ) .
As a consequence, Cov H0 {S n (t 1 ), S n (t 2 )} = ρ(t 1 , t 2 ). The weak convergence of the score process, S n (.), is then a direct consequence of ( 8), the convergence of (S n (t 1 ), S n (t 2 )) and the Continuous Mapping Theorem.

Study under the local alternative

Let's consider a local alternative defined by t * and q = a/ √ n. It remains to compute the asymptotic distribution of S n (.) under this alternative. Since we have already proved that S n (.) is a non linear interpolated process (see Lemma 2.6), we only need to compute the distribution of S n (t 1 ) and S n (t 2 ) under the alternative. The mean function of the process is obviously a non linear interpolated function (same interpolation as previously).

So, let's consider the score statistic at location t k ∀k = 1, 2. We recall that under H 0 ,

S n (t k ) = n j=1 σε j X j (t k ) √ n A , S n (t k ) L -→ N (0, 1) . ( 9 
)
Since our model is differentiable in quadratic mean, according to Theorem 7.2 of Van der Vaart [START_REF] Van Der | Asymptotic statistics[END_REF], under H 0 , the log likelihood ratio verifies

l n t (θ) -l n t (θ 0 ) = a √ n ∂l n t ∂q | θ0 - a 2 2 E H0 ∂l t ∂q | θ0 2 + o P (1) (10) 
where o P (1) denotes a sequence which converges in probability to zero. According to the central limit theorem and formula [START_REF] Azaïs | An asymptotic test for quantitative gene detection[END_REF], under H 0

l n t (θ) -l n t (θ 0 ) L -→ N (- 1 2 ϑ 2 , ϑ 2 ) with ϑ 2 = a 2 A α 2 (t ) + β 2 (t ) + 2α(t )β(t )ρ(t 1 , t 2 ) /σ 4 . ( 11 
)
As a consequence, conditions required to apply Lecam's third lemma are fulfilled (cf. formulae 9 and 11). Recall that Lecam's third lemma allows to obtain the asymptotic distribution of S n (t k ) under the local alternative, by computing the covariance beween the log likelihood ratio and S n (t k ) under the null hypothesis.

In order to compute this covariance easily, we need an explicit expression of the log likelihood ratio. According to formulae ( 7), ( 8) and [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF], under H 0 ,

l n t (θ) -l n t (θ 0 ) = a σ √ n    α(t ) n j=1 ε j X j (t 1 ) + β(t ) n j=1 ε j X j (t 2 )    - a 2 2σ 4 A α 2 (t ) + β 2 (t ) + 2α(t )β(t )ρ(t 1 , t 2 ) + o P (1). ( 12 
)
First, let us focus on the score statistic at location t 1 . Then, we have

Cov H0    S n (t 1 ), a α(t ) σ √ n n j=1 ε j X j (t 1 )    = Cov H0    n j=1 σε j X j (t 1 ) √ n A , a α(t ) σ √ n n j=1 ε j X j (t 1 )    = a α(t ) √ A V H0 ε X(t 1 ) = a α(t ) √ A σ 2 .
In the same way,

Cov H0    S n (t 1 ), a β(t ) σ √ n n j=1 ε j X j (t 2 )    = a β(t ) √ A Cov H0 ε X(t 1 ), ε X(t 2 ) = a β(t ) σ 2 √ A E H0 (Y -µ) 2 X(t 1 ) X(t 2 ) 1 Y / ∈[S-,S+] = a β(t ) σ 2 √ A E H0 (Y -µ) 2 1 Y / ∈[S-,S+] E {X(t 1 ) X(t 2 )} = a β(t ) √ A ρ(t 1 , t 2 ) σ 2 . ( 13 
)
As consequence, since α(t

) + β(t )ρ(t 1 , t 2 ) = ρ(t 1 , t ), Cov H0 {S n (t 1 ), l n t (θ) -l n t (θ 0 )} = a √ A ρ(t 1 , t ) σ 2 .
Using the same kind of proof, and the fact that α(t )ρ(t 1 , t 2 ) + β(t ) = ρ(t , t 2 ), we obtain

Cov H0 {S n (t 2 ), l n t (θ) -l n t (θ 0 )} = a √ A ρ(t , t 2 ) σ 2 .
As a result, under the local alternative, according to Lecam's third lemma,

S n (t 1 ) L -→ N ( a √ A ρ(t 1 , t ) σ 2 , 1) and S n (t 2 ) L -→ N ( a √ A ρ(t , t 2 ) σ 2 , 1)
which concludes the proof.

Study of the supremum of the LRT process

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λ n (t) = S 2 n (t) + o P (1)
under the null hypothesis. Our goal is now to prove that the rest above is uniform in t.

Let us consider now t as an extra parameter. Let t * , θ * be the true parameter that will be assumed to belong to H 0 . Note that t * makes no sense for θ belonging to H 0 . It is easy to check that at H 0 the Fisher information relative to t is zero so that the model is not regular.

It can be proved that assumptions 1, 2 and 3 of Azaïs et al. [START_REF] Azaïs | Asymptotic distribution and local power of the likelihood ratio test for mixtures[END_REF] holds. So, we can apply Theorem 1 of Azaïs et al. [START_REF] Azaïs | Asymptotic distribution and local power of the likelihood ratio test for mixtures[END_REF] and we have sup

(t,θ) l n t (θ) -l n t * (θ * ) = sup d∈D      1 √ n n j=1 d(X j )    2 1 d(Xj) 0   + o P (1) (14) 
where the observation X j stands for Y j , X j (t 1 ), X j (t 2 ) and where D is the set of scores defined in Azaïs et al. [START_REF] Azaïs | Asymptotic distribution and local power of the likelihood ratio test for mixtures[END_REF], see also Gassiat [START_REF] Gassiat | Likelihood ratio inequalities with applications to various mixtures[END_REF]. A similar result is true under H 0 with a set D 0 . Let us precise the sets of scores D and D 0 . This sets are defined at the sets of scores of one parameter families that converge to the true model p t * ,θ * and that are differentiable in quadratic mean.

It is easy to see that

D = U, l t (θ * ) V( U, l t (θ * ) ) , U ∈ R 3 , t ∈ [t 1 , t 2 ]
where l is the gradient with respect to θ. In the same manner

D 0 = U, l t (θ * ) V( U, l t (θ * ) ) , U ∈ R 2 ,
where now the gradient is taken with respect to µ and σ only. Of course this gradient does not depend on t.

Using the transform U → -U in the expressions of the sets of score, we see that the indicator function can be removed in formula [START_REF] Muranty | Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus[END_REF]. Then, since the Fisher information matrix is diagonal (see formula [START_REF] Azaïs | An asymptotic test for quantitative gene detection[END_REF]) , it is easy to see that

sup d∈D      1 √ n n j=1 d(X j )    2   -sup d∈D0      1 √ n n j=1 d(X j )    2   = sup t∈[t1,t2]         1 √ n n j=1 ∂lt ∂q (X j ) | θ0 V ∂lt ∂q (X j ) | θ0     2     .
This is exactly the desired result. Since the model with t * fixed is differentiable in quadratic mean, the alternative defines a contiguous sequence of alternatives. By Le Cam's first lemma, relation [START_REF] Muranty | Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus[END_REF] remains true under the alternative. method of moments for instance). This is a generalization of Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF], where I have proved that the non extreme phenotypes don't bring any information for statistical inference, when we look for a QTL only on one genetic marker.

4. Several markers : the "Interval Mapping'' of Lander and Botstein [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] under selective genotyping

In that case suppose that there are K markers 0 = t 1 < t 2 < ... < t K = T . We consider values t, t or t of the parameters that are distinct of the markers positions, and the result will be prolonged by continuity at the markers positions. For t ∈ [t 1 , t K ]\T K where T K = {t 1 , ..., t K }, we define t and t r as :

t = sup {t k ∈ T K : t k < t} , t r = inf {t k ∈ T K : t < t k } .
In other words, t belongs to the "Marker interval" (t , t r ).

Theorem 4.1 : We have the same result as in Theorem 2.5, provided that we make some adjustments and that we redefine V (.) in the following way :

• in the definition of α(t) and β(t), t 1 becomes t and t 2 becomes t r • under the null hypothesis, the process V (.) considered at marker positions is the "squeleton" of an Ornstein-Uhlenbeck process: the stationary Gaussian process with covariance ρ(t k , t k ) = exp(-2|t k -t k |) • at the other positions, V (.) is obtained from V (t ) and V (t r ) by interpolation and normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such as

m t (t k ) = a √ A ρ(tk,t ) σ 2
• at other positions, the expection is obtained from m t (t ) and m t (t r ) by interpolation and normalization using the functions α(t) and β(t).

Proof :

Due to Haldane model with Poisson increments, for a position t, we can limit our attention to the interval (t , t r ). As a result when t does belong to the marker interval (t , t r ), the proof is the same as the proof of Theorem 2.5. On the other hand, when t does not belong to the marker interval (t , t r ), some adjustments have to be done for computing the distribution of the test statistic under the local alternative. In particular, in order to obtain an explicit expression of the log likelihood ratio, we can still use formula [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] provided that we replace t 1 and t 2 by respectively t and t r . As a consequence, if we consider t k = t , we have

Cov H0    S n (t k ), a α(t ) σ √ n n j=1 ε j X j (t )    = Cov H0    n j=1 σε j X j (t k ) √ n A , a α(t ) σ √ n n j=1 ε j X j (t )    = a α(t ) σ 2 √ A E H0 (Y -µ) 2 X(t k ) X(t ) 1 Y / ∈[S-,S+] = a α(t ) √ A ρ(t k , t ) σ 2 .
In the same way,

Cov H0    S n (t k ), a β(t ) σ √ n n j=1 ε j X j (t r )    = a β(t ) √ A ρ(t k , t r ) σ 2 .
Since α(t )ρ(t k , t ) + β(t )ρ(t k , t r ) = ρ(t k , t ) and according to Lecam's third lemma, we have under the local alternative

S n (t k ) L -→ N ( a √ A ρ(t k , t ) σ 2 , 1 
) .

An important point is that since for a position t we can limit our attention to the interval (t , t r ), Lemma 3.1 and formula [START_REF] Rabier | On statistical inference for selective genotyping[END_REF] are still true here. We just have to replace t 1 and t 2 by t and t r in order to have the good expressions. As a consequence, we can easily compute sup T 2 n (.).

Before introducing our Theorem 4.2, let us recall that the Asymptotic Relative Efficiency (ARE) determines the relative sample size required to obtain the same local asymptotic power as the one of the test under the complete data situation where all the genotypes are known. 

) κ = γ + z γ+ ϕ(z γ+ ) -z 1-γ-ϕ(z 1-γ-) ii) κ reaches its maximum for γ + = γ -= γ/2 .
According to i) of Theorem 4.2, the ARE with respect to the complete data situation, does not depend on the constant a linked to the QTL effect, and does not depend on the location of the QTL t . Besides, we can remark that we have exactly the same ARE with respect to the complete data situation, if we scan the chromosome or if we focus only on one locus (even if the QTL is not on this locus). Indeed, since the mean functions (complete data situation and selective genotyping) are proportional of a factor √ A/σ, it is obvious that the ARE will be the same if we scan the chromosome or if we focus only on one locus. On the other hand, according to ii) of Theorem 4.2, if we want to genotype only a percentage γ of the population, we should genotype the γ/2% individuals with the largest phenotypes and γ/2% individuals with the smallest phenotypes. This confirms theoretically what geneticists do in practice. It is also a generalization of Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF] where I prove that we have to genotype symmetrically when we look for a QTL on only one genetic marker.

Proof :

The proof of i) is obvious since the mean functions of the selective genotyping and the complete data situation, are proportional of a factor √ A/σ. Let's now prove that the maximum is reached for γ + = γ -= γ/2. We have to answer the following question : how must we choose γ + and γ -to maximize the efficiency ? We remind that γ + +γ -= γ and that ϕ(.) and Φ(.) denote respectively the density and the cumulative distribution of the standard normal distribution. Let u(.) be the function such as : u(z γ+ ) = Φ -1 γ -1 + Φ(z γ+ ) . Then, z 1-γ-= u(z γ+ ).

Let k 1 (.) be the following function : k 1 (z γ+ ) = z γ+ ϕ(z γ+ ) -u(z γ+ ) ϕ u(z γ+ ) . In order to maximize κ, we have to maximize the function k 1 (.). Let k 1 (.), u (.) and ϕ (.) be respectively the derivative of k 1 (.), u(.) and ϕ(.). We have : k 1 (z γ+ ) = ϕ(z γ+ ) + z γ+ ϕ (z γ+ ) -u (z γ+ ) ϕ u(z γ+ ) -u(z γ+ ) u (z γ+ ) ϕ u(z γ+ ) , u (z γ+ ) = ϕ(z γ+ ) ϕ(z 1-γ-) .

Table 1. Percentage of False Positives as a function of n and the percentage γ+ of individuals genotyped in the right tail. The chromosome is of length T = 1M and two markers are located at each extremity (γ = 0.3, a = 0, µ = 0, σ = 1, 10000 samples of size n). 

Remark 1 : 1 n 1

 111 According to the Law of Large Numbers, under the null hypothesis H 0 and under the local alternative H at , Yj / ∈[S+,S-] → γ. So, γ corresponds asymptotically to the percentage of individuals genotyped. In the same way, γ + (resp. γ -) corresponds asymptotically to the percentage of individuals genotyped with the largest (resp. the smallest) phenotypes.

Theorem 4 . 2 :

 42 Let κ denote the ARE, then we have i

  (in brackets) as a function of the location of the QTL t and the percentage γ+ of individuals genotyped in the right tail . The chromosome is of length T = 1M and 6 markers are equally spaced every 20cM (γ = 0.6, a = 4, µ = 0, σ = 1, 10000 samples of size n = 1000, 100000 paths for the Theoretical Power).

Table 2 .

 2 Theoretical Power and Empirical Power (in brackets) as a function of the location of the QTL t and the percentage γ+ of individuals genotyped in the right tail . The chromosome is of length T = 1M and two markers are located at each extremity (γ = 0.3, a = 4, µ = 0, σ = 1, 10000 samples of size n = 1000, 100000 paths for the Theoretical Power).

	P P γ +	P	P P P t	10cM	30cM	60cM	80cM
		γ		53.72% (53.84%) (30.02%) (25.88%) (39.10%) 30.70% 25.59% 39.88%
		γ/2	76.22% (75.98%) (46.15%) (38.30%) (59.07%) 46.64% 38.91% 59.82%
		γ/4	72.71% (72.41%) (43.51%) (35.72%) (56.02%) 43.80% 36.42% 56.53%
		γ/8	67.95% (67.56%) (39.65%) (33.77%) (51.44%) 40.15% 33.22% 52.16%

Table 3 .

 3 Theoretical Power and Empirical Power
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3. An easy way to perform the statistical test Since V (.) is a "non linear normalized interpolated process", we can use Lemma 2.2 of Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] in order to compute easily the supremum of V 2 (.). Note that this lemma is suitable here because we have exactly the same interpolation as in Theorem 2.1 of Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF]. As a result max t∈[t1,t2] {α(t)V (t 1 ) + β(t)V (t 2 )} 2 α 2 (t) + β 2 (t) + 2ρ(t 1 , t 2 )α(t)β(t)

Note that since under H 0 , the process V (.) is exactly the same process as the process Z(.) obtained by Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF], we will have exactly the same threshold if we are under selective genotyping or not. So, the Monte-Carlo Quasi Monte-Carlo method of Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] and based on Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF], is still suitable here.

Let's focus now on the data analysis. Which test statistic should we use in order to make the data analysis easy ? It is well known that under selective genotyping, when we focus only on one location of the genome which is a marker location, performing a LRT or a Wald test is time consuming : an EM algorithm is required to obtain the maximum likelihood estimators. In Rabier [START_REF] Rabier | On statistical inference for selective genotyping[END_REF], I propose a very easy test which is almost a comparison of means and which has the same asymptotic properties as LRT and Wald tests. So, the idea now is to adapt this comparison of means to our problem which focus on the whole chromosome.

As a consequence, ∀k = 1, 2 , let's define now the test statistic T n (t k ) such as

.

We introduce the following lemma.

Lemma 3.1: Let T n (.) be the process such as

Note that this lemma can easily be proved by contiguity and using Slutsky's lemma.

Then, for the data analysis, we just have to consider as a test statistic sup T 2 n (.), which can be obtained easily using formula [START_REF] Rabier | On statistical inference for selective genotyping[END_REF] and replacing V (t 1 ) and V (t 2 ) by respectively T n (t 1 ) and T n (t 2 ). Note that, according to Lemma 3.1, this test has the same asymptotic properties as the test based on the test statistic sup Λ n (.), which corresponds to a LRT on the whole chromosome. So, Lemma 3.1 is an answer to the work of Rabbee et al. [START_REF] Rabbee | Power calculations for selective genotyping in QTL mapping in backcross mice[END_REF] where the authors study different strategies for analyzing data in selective genotyping.

On the other hand, a consequence of Lemma 3.1 is that the non extreme phenotypes (for which the genotypes are missing) don't bring any information for statistical inference. Indeed, our test statistics T n (t) are based only on the extreme phenotypes, as soon as we replace the empirical mean Y by μ, an estimator √ n consistent based only on the extreme phenotypes (μ can be obtained by the

As a result, the efficiency κ reaches its maximum when γ + = γ -= γ 2 .

Applications

In this Section, we propose to illustrate the theoretical results obtained in this paper. For all the following applications, we will consider statistical tests at the 5% level. If we call

as explained before, an easy way to perform our statistical test is to use the test statistic

Our first result is that the threshold (i.e. critical value) is the same if we are under selective genotyping or in the complete data situation. So, the Monte-Carlo Quasi Monte-Carlo method, proposed by Azaïs et al. [START_REF] Azaïs | Likelihood ratio test process for Quantitative Trait Locus detection[END_REF] (based on Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF]) for the complete data situation, is still suitable here to obtain our threshold. This way, in Figure 1, we propose to check these asymptotic results on simulated data. We consider a chromosome of length T = 1M, with two genetic markers located at each extremity. For such a configuration, if we choose a level 5%, the corresponding threshold is 5.40. We consider here γ = 0.3, and different ways of performing the selective genotyping : genotyping symmetrically (i.e. γ + = γ/2), genotyping only the individuals with the largest phenotypes (i.e. γ + = γ) .... We can see that, whatever the value of γ + , the Percentage of False Positives is close to the true level of the test (i.e. 5% ) even for small values of n (see n = 50). Note that our method to compute thresholds in an alternative to the permutation method proposed by Manichaikul et al. [START_REF] Manichaikul | Significance thresholds for Quantitative Trait Locus mapping under selective genotyping[END_REF] and inspired by Churchill and Doerge [START_REF] Churchill | Empirical threshold values for quantitative trait mapping[END_REF]. The permutation method is very time consuming and not easy to compute because of the missing genotypes. The advantage of our method is that it is very fast and it can be performed very easily (just download the Matlab package with graphical user interface, called "imapping.zip", on www.stat.wisc.edu/∼rabier ).

In Figures 2 and3, we focus on the alternative hypothesis. In Figure 2, we consider the same map and the same value of γ as previously. For the QTL effect q, we consider a = 4 : we remind that q = a/ √ n. We focus on different locations t of the QTL and different values of γ + . As expected (c.f. Theorem 4.2), we can see that the Theoretical Power is maximum when we genotype symmetrically (i.e. γ + = γ/2). Note that, we also give in brackets the Empirical Power obtained for n = 1000, just to confirm our asymptotic results. Finally, in Figure 3, we focus on a more dense genetic map (6 genetic markers), and we change the value of γ : γ = 0.6. We obtain the same kind of conclusions as before. This result was expected since all the theoretical results obtained in this paper, are suitable for any kind of genetic map.

To conclude with, we have proved in this study that the LRT process is asymptotically the same under the null hypothesis, whether selective genotyping was performed or not. However, under the alternative, the mean functions are not the same anymore. Finally, we have introduced a test statistic asymptotically similarly distributed as the LRT, and which presents a computational advantage.