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We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL
(a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on
the interval [0, T ] representing a chromosome. The originality of this study is that we are
under selective genotyping : only the individuals with extreme phenotypes are genotyped. We
give the asymptotic distribution of this LRT process under the null hypothesis that there
is no QTL on [0, T ] and under local alternatives with a QTL at t? on [0, T ]. We show that
the LRT process is asymptotically the square of a “ non-linear interpolated and normalized
Gaussian process ”. We have an easy formula in order to compute the supremum of the square
of this interpolated process. We prove that we have to genotype symmetrically and that the
threshold is exactly the same as in the situation where all the individuals are genotyped.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, selective genotyping.

AMS Subject Classification: 62M86; 65C05; 62P10

1. Introduction

We study a backcross population: A× (A×B), where A and B are purely homozy-
gous lines and we address the problem of detecting a Quantitative Trait Locus, so-
called QTL (a gene influencing a quantitative trait which is able to be measured)
on a given chromosome. The trait is observed on n individuals (progenies) and we
denote by Yj , j = 1, ..., n, these observations. The mechanism of genetics, or more
precisely of meiosis, implies that among the two chromosomes of each individual,
one is purely inherited from A while the other (the “recombined” one), consists of
parts originated from A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on [0, T ]
is called the genetic distance, it is measured in Morgans (see for instance Wu et al.
[1] or Siegmund and Yakir [2]). The genome X(t) of one individual takes the value
+1 if, for example, the “recombined chromosome” is originated from A at location
t and takes the value −1 if it is originated from B. The Haldane modeling, which
assumes no crossover interference, can be represented as follows: X(0) is a random
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sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poisson process on [0, T ].
Calculations on the Poisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(
∣∣N(t)−N(t′)

∣∣ odd) =
1

2
(1− e−2|t−t′|),

we set in addition

r̄(t, t′) = 1− r(t, t′).

We assume an “analysis of variance model” for the quantitative trait :

Y = µ + X(t?) q + σε (1)

where ε is standard Gaussian and t∗ is the true location of the QTL.
Usually, in the classical problem of detecting a QTL on a chromosome, the

genome information is available only at fixed locations t1 = 0 < t2 < ... < tK = T ,
called genetic markers. So, usually an observation is

(Y, X(t1), ..., X(tK)) ,

and the challenge is that the location t? of the QTL is unknown.
The originality of this paper is that we consider the classical problem, but in

order to reduce the costs of genotyping, a selective genotyping has been performed
: we consider two real thresholds S− and S+, with S− 6 S+ and we genotype if and
only if the phenotype Y is extreme, that is to say Y 6 S− or Y > S+. Note that
in practice, the cutoffs for genotyping are based on quantiles. However, in most
of the theoretical studies about selective genotyping (e.g. Darvasi and Soller [13],
Muranty and Goffinet [14]), authors consider fixed thresholds. This approximation
is reasonable when we deal with a large number of observations.

If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now

(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).
• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means that the

genome information is missing at the marker locations.

We will observe n observations
(
Yj , Xj(t1), ..., Xj(tK)

)
independent and iden-

tically distributed (i.i.d.).
It can be proved that

(
Y, X(t1), ..., X(tK)

)
obeys to a mixture model with

known weights, times a function g(.) which does not depend on the parameters µ,
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q and σ :[
p(t∗) f(µ+q,σ)(Y ) 1Y /∈[S−,S+] + {1− p(t∗)} f(µ−q,σ)(Y ) 1Y /∈[S−,S+]

+
1

2
f(µ+q,σ)(Y ) 1Y ∈[S−,S+] +

1

2
f(µ−q,σ)(Y ) 1Y ∈[S−,S+]

]
g(.) (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the function
p(t) is fully given in Section 2.

As mentioned before, the challenge is that t∗ is unknown. So, at every location
t ∈ [0, T ], we perform a Likelihood Ratio Test (LRT), Λn(t), of the hypothesis
“q = 0”. It leads to a LRT process Λn(.) and taking as test statistic the maximum
of this process comes down to perform a LRT in a model when the localisation of
the QTL is an extra parameter.

In the classical problem of detecting a QTL on a chromosome, that is to say in
the complete data situation where all the individuals are genotyped (i.e. without
selective genotyping), the asymptotic distribution of the LRT statistic has been
given under some approximations by Rebäı et al. [4], Rebäı et al. [5], Cierco [6],
Azäıs and Cierco-Ayrolles [7], Azäıs and Wschebor [8], Chang et al. [9]. Recently,
Azäıs et al. [10] have shown that the distribution of the LRT statistic is asymptot-
ically that of the maximum of the square of a “non linear normalized interpolated
process”.

In this paper, we study a problem which has never been studied theoretically
before : the detection of a QTL on a chromosome with a selective genotyping.
Selective genotyping has been studied theoretically by many authors : for instance
Lebowitz and al. [11], Lander and Botstein [12], Darvasi and Soller [13], Muranty
and Goffinet [14], Rabier [15]... However, in all these articles, the focus is only on
one fixed location of the genome. This way, our study which focuses on the whole
chromosome is totally new, with a real impact for geneticists. In a more practical
point of view, we can find in Rabbee et al. [16], a simulation study in which the
authors study different strategies for analyzing data in selective genotyping and
give the power associated to each strategy. On the other hand, in Manichaikul et
al. [17], the authors focus on permutation tests for selective genotyping... This way,
our study is complementary to the work of Rabbee et al. [16] and Manichaikul et
al. [17].

The main result of the paper (Theorems 2.5 and 4.1) is that the distribution
of the LRT statistic is asymptotically that of the maximum of the square of a
“non linear normalized interpolated process”. This is a generalization of the results
obtained by Azäıs et al. [10] only for the complete data situation. Under the null
hypothesis, despite the selective genotyping, our process is exactly the same as the
one obtained by Azäıs et al. [10]. However, under the alternative, we show that the
mean functions of the two processes are not the same anymore.

Some important results are also introduced in Theorem 4.2. We give the Asymp-
totic Relative Efficiency (ARE) with respect to the complete data situation. Recall
that the Asymptotic Relative Efficiency (ARE) determines the relative sample size
required to obtain the same local asymptotic power as the one of the test under the
complete data situation where all the genotypes are known. Note that we show that
we have exactly the same ARE, if we look for a QTL on a whole chromosome or if
we focus only on one locus (even if the QTL is not located on this locus). Another
interesting result of Theorem 4.2 is the following : if we want to genotype only a
percentage γ of the population, we should genotype symmetrically, that is to say
the γ/2% individuals with the largest phenotypes and γ/2% individuals with the
smallest phenotypes. This is a generalization of Rabier [15], where it is proved that
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we have to genotype symmetrically, when we focus only on one genetic marker.
Furthermore, we propose a test statistic (see Lemma 3.1 and formula 15) asymp-

totically distributed as the LRT, but which presents computational advantages.
Indeed, usually, in order to perform a LRT, we have to compute an EM algorithm
at each location of the genome, which is quite challenging. In contrast, our test
statistic does not require the use of any EM algorithm. Note that in this paper, we
also prove that the non extreme phenotypes (for which the genotypes are missing)
don’t bring any extra information for statistical inference (same result as in Rabier
[15] but for the whole chromosome). In other words, we give theoretical answers
relevant to the previous work of Rabbee et al. [16]. However, we have to mention
that the non-extreme phenotypes are useful for the estimation of the QTL effect.

To conclude, we will illustrate our theoretical results with the help of simulated
data. Note that, according to Theorem 2.5 and 4.1, the threshold (i.e. critical
value) in selective genotyping, is exactly the same as the classical threshold used
in the complete data situation. So, in order to obtain our threshold, the Monte
Carlo Quasi Monte-Carlo methods of Azäıs et al. [10], based on Genz [18] is still
suitable here. This is an alternative to the stratified permutation method proposed
by Manichaikul et al. [17] and inspired by Churchill and Doerge [19], which requires
to permute the genotypes within the extremes. Our method is very fast since it
relies on very powerful algorithms developed by Genz [18]. In contrast, permutation
methods are usually time consuming since a large number of permutations has to
be performed in order to obtain an accurate threshold.

We refer to the book of Van der Vaart [20] for elements of asymptotic statistics
used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T
: 0 = t1 < t2 = T . We look for a QTL located at t? ∈ [t1, t2]. As said before, since
t? is unknown, we have to consider every locations t ∈ [t1, t2]. So, let’s consider a
location t ∈ [t1, t2], and let’s suppose t = t?.

Notation 2.1: For (i, i′) ∈ {−1, 1}2, Qi,i
′

t is the quantity such as

Qi,i
′

t = P
{
X(t) = 1

∣∣X(t1) = i,X(t2) = i′
}

.

Using Bayes rules, we have

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)
(3)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can remark that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Notation 2.2: Pt {l | i} is the quantity such as ∀ i ∈ {−1, 1} and ∀ l ∈ {−1, 0, 1}

Pt {l | i} = P(X(t) = l | X(t) = i) .
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In order to compute the likelihood, we have to study the different probability
distributions. To begin, let’s compute P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)
for instance. We have, according to Bayes rules (we remind that we consider t = t?),

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)

=
∑

i∈{−1,1}

P(Y ∈ [y , y + dy] | X(t) = i) P(X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1) .

Besides,

P(Y ∈ [y , y + dy] | X(t) = i) =
P(Y ∈ [y , y + dy] ∩X(t) 6= 0 | X(t) = i)

P(X(t) 6= 0 | X(t) = i)

=
f(µ+iq,σ)(y) 1y/∈[S−,S+]

Pt {i | i}

and

P(X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= P(X(t) 6= 0 ∩ X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

= Pt {i | i} P(X(t) = i ∩ X(t1) = 1 ∩ X(t2) = 1)

=
1

2
Pt {1 | 1} r(t1, t) r(t, t2)1i=1 +

1

2
Pt {−1 | −1} r(t1, t) r(t, t2)1i=−1 .

As a result, using formula (3),

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = 1)

=
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q1,1

t +
1

2
f(µ−q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q−1,−1

t .

In the same way, after some calculations, we find

P(Y ∈ [y , y + dy] ∩ X(t1) = 1 ∩ X(t2) = −1)

=
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q1,−1

t +
1

2
f(µ−q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q−1,1

t ,

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = 1)

=
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q−1,1

t +
1

2
f(µ−q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q1,−1

t ,

P(Y ∈ [y , y + dy] ∩ X(t1) = −1 ∩ X(t2) = −1)

=
1

2
f(µ+q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q−1,−1

t +
1

2
f(µ−q,σ)(y) 1y/∈[S−,S+] r(t1, t2) Q1,1

t .

Finally, when the genome information is missing at marker locations (i.e. the phe-
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notype is not extreme), we find

P(Y ∈ [y , y + dy] ∩ X(t1) = 0 ∩ X(t2) = 0)

=
1

2
f(µ+q,σ)(y) 1y∈[S−,S+] +

1

2
f(µ−q,σ)(y) 1y∈[S−,S+] .

Let’s define the quantity p(t) such as

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (4)

and let θ = (q, µ, σ) be the parameter of the model at t fixed. As a consequence, the
likelihood of the triplet

(
Y, X(t1), X(t2)

)
with respect to the measure λ⊗N ⊗N ,

λ being the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2] :

Lt(θ) =
[
p(t) f(µ+q,σ)(Y )1Y /∈[S−,S+] + {1− p(t)} f(µ−q,σ)(Y )1Y /∈[S−,S+] (5)

+
1

2
f(µ+q,σ)(Y )1Y ∈[S−,S+] +

1

2
f(µ−q,σ)(Y )1Y ∈[S−,S+]

]
g(t)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
+ 1X(t1)=01X(t2)=0

can be removed because it does not depend on the parameters. Recall that ∀k,
1X(tk)6=0 = 1Y /∈[S−,S+] and note also that for t = t?, we find our formula (2) of the

introduction where p(t?) is described in formula (4).

Notation 2.3: γ, γ+ and γ− are respectively the quantities
PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−).

Notation 2.4: A is the quantity such as
A = σ2

{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
, where ϕ(x) and zα denote respec-

tively the density of a standard normal distribution taken at the point x, and the
quantile of order 1− α of a standard normal distribution.

Before introducing our main theorem, let us define the score statistic and the LRT
statistic at t. Since the Fisher Information matrix is diagonal (cf. proof of Theorem
2.5 below), the score statistic of the hypothesis “q = 0” at t, for n independent
observations, will be defined as

Sn(t) =

∂lnt
∂q |θ0√

V
(
∂lnt
∂q |θ0

) ,

where lnt (θ) denotes the log likelihood at t, associated to n observations.
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The LRT at t, for n independent observations, will be defined as

Λn(t) = 2
{
lnt (θ̂)− lnt (θ̂|H0

)
}

,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE under H0.

Our main result is the following :

Theorem 2.5 : Suppose that the parameters (q, µ, σ2) vary in a compact and that
σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and define the
following local alternative

Hat? : “the QTL is located at the position t? with effect q = a/
√
n where a 6= 0 ”.

With the previous defined notations,

Sn(.)⇒ V (.) , Λn(.)
F.d.−→ V 2(.) , sup Λn(.)

L−→ supV 2(.)

as n tends to infinity, under H0 and Hat? where :

• Sn(.) is the score process

• ⇒ is the weak convergence,
F.d.→ is the convergence of finite-dimensional distri-

butions and
L−→ is the convergence in distribution

• V (.) is the Gaussian process with unit variance such as :

V (t) =
α(t)V (t1) + β(t)V (t2)√

V {α(t)V (t1) + β(t)V (t2)}
(6)

where

Cov {V(t1),V(t2)} = ρ(t1, t2) = exp(−2|t1 − t2|)

α(t) = Q1,1
t −Q

−1,1
t , β(t) = Q1,1

t −Q
1,−1
t

and with expectation :
• under H0, m(t) = 0,
• under Hat?

mt?(t) =
α(t) mt?(t1) + β(t) mt?(t2)√

V {α(t)V (t1) + β(t)V (t2)}

where

mt?(t1) =
a
√
A ρ(t1, t

?)

σ2
, mt?(t2) =

a
√
A ρ(t?, t2)

σ2
.

In the sense of this equation, V (.) will be called a ”non linear normalized inter-
polated process”. We can see that under the null hypothesis, despite the selective
genotyping, V (.) is exactly the same process as the process Z(.) of Theorem 2.1
of Azäıs et al. [10] obtained for the complete data situation. However, under the
alternative, the mean functions of the two processes are not the same anymore :
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the mean functions are proportional of a factor
√
A/σ. Note also that V (.) is the

generalization of Z(.). Indeed, if we choose S− = S+, that is to say we genotype
all the individuals, the factor

√
A/σ is equal to 1, and V (.) is the same process as

Z(.).

Proof : Theorem 2.5

Fisher Information Matrix

Let lt(θ) be the loglikelihood. We first compute the Fisher information at a point
θ0 that belongs to H0. The proof relies on two key lemmas.

Lemma 2.6: We have the following relationship :

{2p(t)− 1} 1Y /∈[S−,S+] = α(t)X(t1) + β(t)X(t2)

with α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

To prove this lemma, use formula (4) and check that both sides coincide when
Y /∈ [S−, S+].

Lemma 2.7: Let W ∼ N(µ, σ2), then

E
{

(W − µ)21W /∈[S−, S+]

}
= σ2 P(W /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
− σ (S− − µ) ϕ

(
S−−µ
σ

)
.

To prove this lemma, use integration by parts. A consequence of Lemma 2.7 is
that we have the relationship A = EH0

{
(Y − µ)21Y /∈[S−,S+]

}
. To conclude, after

some easy calculations, we find that the Fisher information is diagonal :

Iθ0 = Diag

[
A
{
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)

}
/σ4 ,

1

σ2
,

2

σ2

]
. (7)

Study of the score process under H0

Using Lemma 2.6, it is clear that

∂lnt
∂q
|θ0 =

n∑
j=1

Yj − µ
σ2

{2pj(t)− 1} 1Yj /∈[S−,S+]

=
α(t)

σ

n∑
j=1

εj Xj(t1) +
β(t)

σ

n∑
j=1

εj Xj(t2) (8)

this proves that V (.) is a non linear interpolated process.
On the other hand, we have ∀k = 1, 2 :

Sn(tk) =

∂lntk
∂q |θ0√

V
(
∂lntk
∂q |θ0

) =

n∑
j=1

σεj Xj(tk)√
n A

.

Since ∂lnt
∂q |θ0 is centered under H0, a direct application of the central limit theorem
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implies that

Sn(tk)
L−→ N(0, 1) .

Let’s compute the covariance of the score statistics on markers, i.e.
CovH0

{Sn(t1),Sn(t2)}. Since EH0

{
(Y − µ)21Y /∈[S−,S+]

}
= A, we have :

EH0
{Sn(t1)Sn(t2)} =

1

A
EH0

{
(Y − µ)2 X(t1) X(t2) 1Y /∈[S−,S+]

}
=

1

A
EH0

{
(Y − µ)21Y /∈[S−,S+]

}
E {X(t1)X(t2)} = ρ(t1, t2) .

As a consequence, CovH0
{Sn(t1), Sn(t2)} = ρ(t1, t2). The weak convergence of

the score process, Sn(.), is then a direct consequence of (8), the convergence of
(Sn(t1), Sn(t2)) and the Continuous Mapping Theorem.

Study under the local alternative

Let’s consider a local alternative defined by t∗ and q = a/
√
n.

It remains to compute the asymptotic distribution of Sn(.) under this alterna-
tive. Since we have already proved that Sn(.) is a non linear interpolated process
(see Lemma 2.6), we only need to compute the distribution of Sn(t1) and Sn(t2)
under the alternative. The mean function of the process is obviously a non linear
interpolated function (same interpolation as previously).

So, let’s consider the score statistic at location tk ∀k = 1, 2. We recall that under
H0,

Sn(tk) =

n∑
j=1

σεj Xj(tk)√
n A

, Sn(tk)
L−→ N(0, 1) . (9)

Since our model is differentiable in quadratic mean, according to Theorem 7.2 of
Van der Vaart [20], under H0, the log likelihood ratio verifies

lnt?(θ) − lnt?(θ0) =
a√
n

∂lnt?

∂q
|θ0 −

a2

2
EH0

{(
∂lt?

∂q
|θ0
)2
}

+ oP (1) (10)

where oP (1) denotes a sequence which converges in probability to zero.
According to the central limit theorem and formula (7), under H0

lnt?(θ) − lnt?(θ0)
L−→ N(−1

2
ϑ2, ϑ2) with ϑ2 = a2A

{
α2(t?) + β2(t?) + 2α(t?)β(t?)ρ(t1, t2)

}
/σ4 .

(11)

As a consequence, conditions required to apply Lecam’s third lemma are fulfilled
(cf. formulae 9 and 11). Recall that Lecam’s third lemma allows to obtain the
asymptotic distribution of Sn(tk) under the local alternative, by computing the
covariance beween the log likelihood ratio and Sn(tk) under the null hypothesis.

In order to compute this covariance easily, we need an explicit expression of the
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log likelihood ratio. According to formulae (7), (8) and (10), under H0,

lnt?(θ) − lnt?(θ0)

=
a

σ
√
n

α(t?)

n∑
j=1

εj Xj(t1) + β(t?)

n∑
j=1

εj Xj(t2)


− a2

2σ4
A
{
α2(t?) + β2(t?) + 2α(t?)β(t?)ρ(t1, t2)

}
+ oP (1). (12)

First, let us focus on the score statistic at location t1. Then, we have

CovH0

Sn(t1),
a α(t?)

σ
√

n

n∑
j=1

εj Xj(t1)

 = CovH0


n∑

j=1

σεj Xj(t1)√
n A

,
a α(t?)

σ
√

n

n∑
j=1

εj Xj(t1)


=
a α(t?)√
A

VH0

{
ε X(t1)

}
=
a α(t?)

√
A

σ2
.

In the same way,

CovH0

Sn(t1),
a β(t?)

σ
√

n

n∑
j=1

εj Xj(t2)

 =
a β(t?)√
A

CovH0

{
ε X(t1), ε X(t2)

}
=
a β(t?)

σ2
√
A

EH0

{
(Y − µ)2 X(t1) X(t2) 1Y /∈[S−,S+]

}
=
a β(t?)

σ2
√
A

EH0

{
(Y − µ)2 1Y /∈[S−,S+]

}
E {X(t1) X(t2)}

=
a β(t?)

√
A ρ(t1, t2)

σ2
. (13)

As consequence, since α(t?) + β(t?)ρ(t1, t2) = ρ(t1, t
?),

CovH0
{Sn(t1), lnt?(θ) − lnt?(θ0)} =

a
√
A ρ(t1, t

?)

σ2
.

Using the same kind of proof, and the fact that α(t?)ρ(t1, t2) + β(t?) = ρ(t?, t2),
we obtain

CovH0
{Sn(t2), lnt?(θ) − lnt?(θ0)} =

a
√
A ρ(t?, t2)

σ2
.

As a result, under the local alternative, according to Lecam’s third lemma,

Sn(t1)
L−→ N(

a
√
A ρ(t1, t

?)

σ2
, 1) and Sn(t2)

L−→ N(
a
√
A ρ(t?, t2)

σ2
, 1)

which concludes the proof.

Study of the supremum of the LRT process

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1)
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under the null hypothesis. Our goal is now to prove that the rest above is uniform
in t.

Let us consider now t as an extra parameter. Let t∗, θ∗ be the true parameter
that will be assumed to belong to H0. Note that t∗ makes no sense for θ belonging
to H0. It is easy to check that at H0 the Fisher information relative to t is zero so
that the model is not regular.

It can be proved that assumptions 1, 2 and 3 of Azäıs et al. [21] holds. So, we
can apply Theorem 1 of Azäıs et al. [21] and we have

sup
(t,θ)

lnt (θ)− lnt∗(θ∗) = sup
d∈D

 1√
n

n∑
j=1

d(Xj)


2

1d(Xj)>0

+ oP (1) (14)

where the observation Xj stands for Yj , Xj(t1), Xj(t2) and where D is the set of
scores defined in Azäıs et al. [21], see also Gassiat [22]. A similar result is true
under H0 with a set D0. Let us precise the sets of scores D and D0. This sets are
defined at the sets of scores of one parameter families that converge to the true
model pt∗,θ∗ and that are differentiable in quadratic mean.

It is easy to see that

D =
{ 〈U, l′t(θ∗)〉√

V(〈U, l′t(θ∗)〉)
, U ∈ R3, t ∈ [t1, t2]

}
where l′ is the gradient with respect to θ. In the same manner

D0 =
{ 〈U, l′t(θ∗)〉√

V(〈U, l′t(θ∗)〉)
, U ∈ R2

}
,

where now the gradient is taken with respect to µ and σ only. Of course this
gradient does not depend on t.

Using the transform U → −U in the expressions of the sets of score, we see
that the indicator function can be removed in formula (14). Then, since the Fisher
information matrix is diagonal (see formula (7)) , it is easy to see that

sup
d∈D

 1√
n

n∑
j=1

d(Xj)


2− sup

d∈D0

 1√
n

n∑
j=1

d(Xj)


2

= sup
t∈[t1,t2]


 1√

n

n∑
j=1

∂lt
∂q (Xj) |θ0√

V
{
∂lt
∂q (Xj) |θ0

}


2 .

This is exactly the desired result. Since the model with t∗ fixed is differentiable in
quadratic mean, the alternative defines a contiguous sequence of alternatives. By
Le Cam’s first lemma, relation (14) remains true under the alternative. �

Remark 1 : According to the Law of Large Numbers, under the null hypothesis
H0 and under the local alternative Hat? ,

1
n

∑
1Yj /∈[S+,S−] → γ. So, γ corresponds

asymptotically to the percentage of individuals genotyped. In the same way, γ+

(resp. γ−) corresponds asymptotically to the percentage of individuals genotyped
with the largest (resp. the smallest) phenotypes.
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3. An easy way to perform the statistical test

Since V (.) is a ”non linear normalized interpolated process”, we can use Lemma
2.2 of Azäıs et al. [10] in order to compute easily the supremum of V 2(.). Note that
this lemma is suitable here because we have exactly the same interpolation as in
Theorem 2.1 of Azäıs et al. [10]. As a result

max
t∈[t1,t2]

{α(t)V (t1) + β(t)V (t2)}2

α2(t) + β2(t) + 2ρ(t1, t2)α(t)β(t)

= max

(
V 2(t1) , V 2(t2) ,

V 2(t1) + V 2(t2)− 2ρ(t1, t2)V (t1)V (t2)

1− ρ2(t1, t2)
1V (t2)

V (t1)
∈ ] ρ(t1,t2) , 1

ρ(t1,t2)
[

)
.

(15)

Note that since under H0, the process V (.) is exactly the same process as the
process Z(.) obtained by Azäıs et al. [10], we will have exactly the same threshold
if we are under selective genotyping or not. So, the Monte-Carlo Quasi Monte-Carlo
method of Azäıs et al. [10] and based on Genz [18], is still suitable here.

Let’s focus now on the data analysis. Which test statistic should we use in order
to make the data analysis easy ? It is well known that under selective genotyping,
when we focus only on one location of the genome which is a marker location,
performing a LRT or a Wald test is time consuming : an EM algorithm is required
to obtain the maximum likelihood estimators. In Rabier [15], I propose a very easy
test which is almost a comparison of means and which has the same asymptotic
properties as LRT and Wald tests. So, the idea now is to adapt this comparison of
means to our problem which focus on the whole chromosome.

As a consequence, ∀k = 1, 2 , let’s define now the test statistic Tn(tk) such as

Tn(tk) =

∑n
j=1(Yj − Y ) Xj(tk)√∑n
j=1(Yj − Y )2 1Yj /∈[S−,S+]

.

We introduce the following lemma.

Lemma 3.1: Let Tn(.) be the process such as

Tn(t) =
α(t)Tn(t1) + β(t)Tn(t2)√

α2(t) + β2(t) + 2ρ(t1, t2)α(t)β(t)
, then Tn(.)⇒ V (.) and T 2

n(.)⇒ V 2(.) .

Note that this lemma can easily be proved by contiguity and using Slutsky’s
lemma.

Then, for the data analysis, we just have to consider as a test statistic supT 2
n(.),

which can be obtained easily using formula (15) and replacing V (t1) and V (t2) by
respectively Tn(t1) and Tn(t2). Note that, according to Lemma 3.1, this test has
the same asymptotic properties as the test based on the test statistic sup Λn(.),
which corresponds to a LRT on the whole chromosome. So, Lemma 3.1 is an answer
to the work of Rabbee et al. [16] where the authors study different strategies for
analyzing data in selective genotyping.

On the other hand, a consequence of Lemma 3.1 is that the non extreme phe-
notypes (for which the genotypes are missing) don’t bring any information for
statistical inference. Indeed, our test statistics Tn(t) are based only on the ex-
treme phenotypes, as soon as we replace the empirical mean Y by µ̂, an estimator√
n consistent based only on the extreme phenotypes (µ̂ can be obtained by the
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method of moments for instance). This is a generalization of Rabier [15], where
I have proved that the non extreme phenotypes don’t bring any information for
statistical inference, when we look for a QTL only on one genetic marker.

4. Several markers : the “Interval Mapping‘’ of Lander and Botstein [12]
under selective genotyping

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T .
We consider values t, t′ or t? of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.
For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t`, tr).

Theorem 4.1 : We have the same result as in Theorem 2.5, provided that we
make some adjustments and that we redefine V (.) in the following way :

• in the definition of α(t) and β(t), t1 becomes t` and t2 becomes tr

• under the null hypothesis, the process V (.) considered at marker positions is the
”squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaussian process
with covariance ρ(tk, tk′) = exp(−2|tk − tk′ |)

• at the other positions, V (.) is obtained from V (t`) and V (tr) by interpolation
and normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such as mt?(tk) = a
√
A ρ(tk,t?)
σ2

• at other positions, the expection is obtained from mt?(t
`) and mt?(t

r) by inter-
polation and normalization using the functions α(t) and β(t).

Proof :
Due to Haldane model with Poisson increments, for a position t, we can limit

our attention to the interval (t`, tr). As a result when t? does belong to the marker
interval (t`, tr), the proof is the same as the proof of Theorem 2.5. On the other
hand, when t? does not belong to the marker interval (t`, tr), some adjustments
have to be done for computing the distribution of the test statistic under the
local alternative. In particular, in order to obtain an explicit expression of the log
likelihood ratio, we can still use formula (12) provided that we replace t1 and t2
by respectively t?` and t?r. As a consequence, if we consider tk = t`, we have

CovH0

Sn(tk),
a α(t?)

σ
√

n

n∑
j=1

εj Xj(t
?`)

 = CovH0


n∑

j=1

σεj Xj(tk)√
n A

,
a α(t?)

σ
√

n

n∑
j=1

εj Xj(t
?`)


=
a α(t?)

σ2
√
A

EH0

{
(Y − µ)2 X(tk) X(t?`) 1Y /∈[S−,S+]

}
=
a α(t?)

√
A ρ(tk, t

?`)

σ2
.

In the same way,

CovH0

Sn(tk),
a β(t?)

σ
√

n

n∑
j=1

εj Xj(t
?r)

 =
a β(t?)

√
A ρ(tk, t

?r)

σ2
.
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Since α(t?)ρ(tk, t
?`) + β(t?)ρ(tk, t

?r) = ρ(tk, t
?) and according to Lecam’s third

lemma, we have under the local alternative

Sn(tk)
L−→ N(

a
√
A ρ(tk, t

?)

σ2
, 1) .

�

An important point is that since for a position t we can limit our attention
to the interval (t`, tr), Lemma 3.1 and formula (15) are still true here. We just
have to replace t1 and t2 by t` and tr in order to have the good expressions. As a
consequence, we can easily compute supT 2

n(.).

Before introducing our Theorem 4.2, let us recall that the Asymptotic Relative
Efficiency (ARE) determines the relative sample size required to obtain the same
local asymptotic power as the one of the test under the complete data situation
where all the genotypes are known.

Theorem 4.2 : Let κ denote the ARE, then we have

i) κ = γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .

According to i) of Theorem 4.2, the ARE with respect to the complete data
situation, does not depend on the constant a linked to the QTL effect, and does
not depend on the location of the QTL t?. Besides, we can remark that we have
exactly the same ARE with respect to the complete data situation, if we scan the
chromosome or if we focus only on one locus (even if the QTL is not on this locus).
Indeed, since the mean functions (complete data situation and selective genotyping)
are proportional of a factor

√
A/σ, it is obvious that the ARE will be the same

if we scan the chromosome or if we focus only on one locus. On the other hand,
according to ii) of Theorem 4.2, if we want to genotype only a percentage γ of the
population, we should genotype the γ/2% individuals with the largest phenotypes
and γ/2% individuals with the smallest phenotypes. This confirms theoretically
what geneticists do in practice. It is also a generalization of Rabier [15] where I
prove that we have to genotype symmetrically when we look for a QTL on only
one genetic marker.

Proof : The proof of i) is obvious since the mean functions of the selective geno-
typing and the complete data situation, are proportional of a factor

√
A/σ. Let’s

now prove that the maximum is reached for γ+ = γ− = γ/2. We have to answer the
following question : how must we choose γ+ and γ− to maximize the efficiency ?
We remind that γ+ +γ− = γ and that ϕ(.) and Φ(.) denote respectively the density
and the cumulative distribution of the standard normal distribution. Let u(.) be
the function such as : u(zγ+) = Φ−1

{
γ − 1 + Φ(zγ+)

}
. Then, z1−γ− = u(zγ+).

Let k1(.) be the following function : k1(zγ+) = zγ+ϕ(zγ+)− u(zγ+) ϕ
{
u(zγ+)

}
.

In order to maximize κ, we have to maximize the function k1(.). Let k′1(.), u′(.)
and ϕ′(.) be respectively the derivative of k1(.), u(.) and ϕ(.). We have :

k′1(zγ+) = ϕ(zγ+) + zγ+ϕ
′(zγ+) − u′(zγ+) ϕ

{
u(zγ+)

}
− u(zγ+) u′(zγ+) ϕ′

{
u(zγ+)

}
,

u′(zγ+) =
ϕ(zγ+)

ϕ(z1−γ−)
.
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Then, k′1(zγ/2) = ϕ(zγ/2) −
{
zγ/2

}2
ϕ(zγ/2) − ϕ(z1−γ/2) +

{
z1−γ/2

}2
ϕ(z1−γ/2) =

0. As a result, the efficiency κ reaches its maximum when γ+ = γ− = γ
2 . �

5. Applications

In this Section, we propose to illustrate the theoretical results obtained in this
paper. For all the following applications, we will consider statistical tests at the
5% level. If we call

hn(tk, tk+1) =
T 2
n(tk) + T 2

n(tk+1)− 2ρ(tk, tk+1)Tn(tk)Tn(tk+1)

1− ρ2(tk, tk+1)
1Tn(tk+1)

Tn(tk)
∈]ρ(tk,tk+1), 1

ρ(tk,tk+1)
[

,

as explained before, an easy way to perform our statistical test is to use the test
statistic

Mn = max
{
T 2
n(t1), T 2

n(t2), hn(t1, t2), ..., T 2
n(tK−1), T 2

n(tK), hn(tK−1, tK)
}
.

Our first result is that the threshold (i.e. critical value) is the same if we are
under selective genotyping or in the complete data situation. So, the Monte-Carlo
Quasi Monte-Carlo method, proposed by Azäıs et al. [10] (based on Genz [18])
for the complete data situation, is still suitable here to obtain our threshold. This
way, in Figure 1, we propose to check these asymptotic results on simulated data.
We consider a chromosome of length T = 1M, with two genetic markers located at
each extremity. For such a configuration, if we choose a level 5%, the corresponding
threshold is 5.40. We consider here γ = 0.3, and different ways of performing the
selective genotyping : genotyping symmetrically (i.e. γ+ = γ/2), genotyping only
the individuals with the largest phenotypes (i.e. γ+ = γ) .... We can see that,
whatever the value of γ+, the Percentage of False Positives is close to the true
level of the test (i.e. 5% ) even for small values of n (see n = 50). Note that
our method to compute thresholds in an alternative to the permutation method
proposed by Manichaikul et al. [17] and inspired by Churchill and Doerge [19]. The
permutation method is very time consuming and not easy to compute because of
the missing genotypes. The advantage of our method is that it is very fast and it
can be performed very easily (just download the Matlab package with graphical
user interface, called “imapping.zip”, on www.stat.wisc.edu/∼rabier ).

In Figures 2 and 3, we focus on the alternative hypothesis. In Figure 2, we
consider the same map and the same value of γ as previously. For the QTL effect
q, we consider a = 4 : we remind that q = a/

√
n. We focus on different locations

t? of the QTL and different values of γ+. As expected (c.f. Theorem 4.2), we can
see that the Theoretical Power is maximum when we genotype symmetrically (i.e.
γ+ = γ/2). Note that, we also give in brackets the Empirical Power obtained for
n = 1000, just to confirm our asymptotic results. Finally, in Figure 3, we focus
on a more dense genetic map (6 genetic markers), and we change the value of γ :
γ = 0.6. We obtain the same kind of conclusions as before. This result was expected
since all the theoretical results obtained in this paper, are suitable for any kind of
genetic map.

To conclude with, we have proved in this study that the LRT process is asymp-
totically the same under the null hypothesis, whether selective genotyping was
performed or not. However, under the alternative, the mean functions are not the
same anymore. Finally, we have introduced a test statistic asymptotically similarly
distributed as the LRT, and which presents a computational advantage.
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Table 1. Percentage of False Positives as a

function of n and the percentage γ+ of indi-

viduals genotyped in the right tail. The chro-

mosome is of length T = 1M and two markers

are located at each extremity (γ = 0.3, a = 0,

µ = 0, σ = 1, 10000 samples of size n).

PPPPPPγ+

n
1000 200 50

γ 4.98% 4.96% 4.50%

γ/2 5.27% 4.89% 4.65%

γ/4 4.79% 4.91% 4.43%

γ/8 5.21% 4.99% 4.58%

Table 2. Theoretical Power and Empirical Power (in brackets) as

a function of the location of the QTL t? and the percentage γ+ of

individuals genotyped in the right tail . The chromosome is of length

T = 1M and two markers are located at each extremity (γ = 0.3,

a = 4, µ = 0, σ = 1, 10000 samples of size n = 1000, 100000 paths

for the Theoretical Power).

PPPPPPγ+

t?
10cM 30cM 60cM 80cM

γ
53.72% 30.70% 25.59% 39.88%

(53.84%) (30.02%) (25.88%) (39.10%)

γ/2
76.22% 46.64% 38.91% 59.82%

(75.98%) (46.15%) (38.30%) (59.07%)

γ/4
72.71% 43.80% 36.42% 56.53%

(72.41%) (43.51%) (35.72%) (56.02%)

γ/8
67.95% 40.15% 33.22% 52.16%

(67.56%) (39.65%) (33.77%) (51.44%)

Table 3. Theoretical Power and Empirical Power (in brackets) as

a function of the location of the QTL t? and the percentage γ+ of

individuals genotyped in the right tail . The chromosome is of length

T = 1M and 6 markers are equally spaced every 20cM (γ = 0.6,

a = 4, µ = 0, σ = 1, 10000 samples of size n = 1000, 100000 paths

for the Theoretical Power).

PPPPPPγ+

t?
18cM 44cM 70cM 90cM

γ
64.16% 62.45% 59.43% 58.05%

(63.34%) (62.48%) (58.86%) (57.67%)

γ/2
91.57% 90.45% 87.87% 87.42%

(91.71%) (89.47%) (88.05%) (87.25%)

γ/4
89.22% 87.84% 85.06% 84.35%

(88.82%) (88.17%) (84.92%) (83.77%)

γ/8
84.19% 82.55% 79.66% 78.43%

(84.84%) (82.09%) (79.51%) (78.55%)

Acknowledgements
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