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Abstract

In the present paper we consider the problem of matrix completion

with noise for general sampling schemes. Unlike previous works, in our

construction we do not need to know or to evaluate the sampling distribu-

tion or the variance of the noise. We propose new nuclear-norm penalized

estimators, one of them of the “square-root” type. We prove that, up to

a logarithmic factor, our estimators achieve optimal rates with respect to

the estimation error.

1 Introduction

This paper considers the problem of matrix recovery from a small set of noisy
observations. Suppose that we observe a small set of entries of a matrix. The
problem of inferring the many missing entries from this set of observations is
the matrix completion problem. A usual assumption that allows to succeed
such a completion is to suppose that the unknown matrix has low rank or has
approximately low rank.

The problem of matrix completion comes up in many areas including col-
laborative filtering, multi-class learning in data analysis, system identification
in control, global positioning from partial distance information and computer
vision, to mention some of them. For instance, in computer vision, this problem
arises as many pixels may be missing in digital images. In collaborative filter-
ing, one wants to make automatic predictions about the preferences of a user
by collecting information from many users. So, we have a data matrix where
rows are users and columns are items. For each user, we have a partial list of
his preferences. We would like to predict the missing rates in order to be able
to recommend items that may interest each user.

The noiseless setting was first studied by Candès and Recht [6] using nuclear
norm minimization. A tighter analysis of the same convex relaxation was carried
out in [7]. For a simpler approach see [21] and [10]. An alternative line of
work was developed by Keshavan et al in [12]. A more common situation in
applications corresponds to the noisy setting in which the few available entries
are corrupted by noise. This problem has been extensively studied recently.
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The most popular methods relies on nuclear norm minimization. (see, e.g.,
[5, 11, 22, 20, 17, 18, 9, 13]). One can also use rank penalization as it was
done by Bunea et al [4] and Klopp [14]. Typically, in the matrix completion
problem, the sampling scheme is supposed to be uniform. However, in practice,
the observed entries are not guaranteed to follow the uniform scheme and its
distribution is not known exactly.

In the present paper we consider nuclear norm penalized estimators and
study the corresponding estimation error in Frobenuis norm. We consider both
cases when the variance of the noise is known or not. In our construction we
do not need to know or to estimate the sampling distribution. Our results are
valid for more general sampling schemes than the uniform one: we only assume
that the sampling distribution satisfies some mild “regularity” conditions (see
Assumptions 1 and 2).

Let A0 ∈ R
m1×m2 be the unknown matrix. Our main results, Theorem

10 and 7, show the following bound on the normalized Frobenius error of the
estimators Â that we propose in this paper: with high probability

‖Â−A0‖22
m1m2

.
log(m1 +m2)max(m1,m2)rank(A0)

n

the symbol . means that the inequality holds up to a multiplicative numerical
constant. This theorem guarantees, that the prediction error of our estimator
is small whenever n & log(m1 + m2)max(m1,m2)rank(A0). This quantifies
the sample size necessary for successful matrix completion. Note that, when
rank(A0) is small, this is considerably smaller then m1m2, the total number of
entries. For large m1,m2 and small r, this is also quite close to the degree of
freedom of a rank r matrix, which is (m1 +m2)r − r2.

An important feature of our estimator is that its construction requires only
an upper bound on the maximum absolute value of the entries of A0. This
condition is very mild. A bound on the maximum of the elements is often
known in applications. For instance, if the entries of A0 are some user’s ratings
it corresponds to the maximal rating. Previously, the estimators proposed by
Koltchinskii et al. [18] and by Klopp [14] also require a bound on the maximum
of the elements of the unknown matrix but their constructions use the uniform
sampling and additionally require the knowledge of an upper bound on the
variance of the noise. Other works on the matrix completion require more
involved conditions on the unknown matrix. For more details see Section 3.

More general sampling schemes were previously considered in [19, 20, 8]. In
[19], Lounici considers a different estimator and measures the prediction error
in the spectral norm. In [20, 8] the authors consider penalization using weighted
trace-norm, which was first introduced by Srebro et al [23]. For this construction
one needs to know the actual sampling distribution or to estimate the empir-
ical frequencies. The weighted trace-norm, used in [20, 8], corrects a specific
situation where the standard trace-norm fails. This situation corresponds to a
non-uniform distribution where the row/column marginal distribution is such
that some columns or rows are sampled with very high probability (for a more
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thorough discussion see [23, 8]). Unlike [20, 8], we use the standard trace-norm
penalization and our assumption on the sampling distribution (Assumption 1)
guarantees that no row or column is sampled with very high probability.

Most of the existing methods of matrix completion rely on the knowledge or
a pre-estimation of the standard deviation of the noise. The matrix completion
problem with unknown variance of the noise was previously considered in [13]
using a different estimator which requires uniform sampling. Note also that
in [13] the bound on the prediction error is obtained under some additional
condition on the rank and the “spikiness ratio” of the matrix. The construction
of the present paper is valid for more general sampling distributions and does
not require such an extra condition.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce our model and the assumptions on the sampling scheme. For the reader’s
convenience, we also collect notation which we use throughout the paper. In
Section 3 we consider matrix completion in the case of known variance of the
noise. We define our estimator and prove Theorem 3 which gives a general
bound on its Frobenius error conditionally on bounds for the stochastic terms.
Theorem 7, provides bounds on the Frobenius error of our estimator in closed
form. Therefore we use bounds on the stochastic terms that we derive in Section
5. To obtain such bounds, we use a non-commutative extension of the classical
Bernstein inequality. Such inequalities were first obtained in a pioneering work
of Ahlswede et al [1] and Tropp [24]. We use an extension of these ideas to the
case of the sub-exponential tails due to Koltchinskii [15].

In Section 4 we consider the case when the variance of the noise is unknown.
Our construction uses the idea of “square-root” estimators, first introduced by
Belloni et al [2] in the case of the square-root Lasso estimator. Theorem 10,
shows that our estimator has the same performances as previously considered
estimators which require the knowledge of the standard deviation of the noise
and of the sampling distribution.

2 Preliminaries

2.1 Model and sampling scheme

Let A0 ∈ R
m1×m2 be an unknown matrix, and consider the observations (Xi, Yi)

satisfying the trace regression model

Yi = tr(XT
i A0) + σξi, i = 1, . . . , n. (1)

The noise variables ξi are independent, with E(ξi) = 0 and E(ξ2i ) = 1; Xi are
random matrices with dimension m1 × m2 and tr(A) denotes the trace of the
matrix A. Assume that the design matrices Xi are i.i.d copies of a random
matrix X having distribution Π on the set

X =
{

ej(m1)e
T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}

, (2)
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where el(m) are the canonical basis vectors in R
m. Then, the problem of esti-

mating A0 coincides with the problem of matrix completion with random sam-
pling distribution Π.

One of the particular settings of this problem is the Uniform Sampling at
Random (USR) matrix completion which corresponds to the uniform distribu-
tion Π. We consider a more general weighted sampling model. More precisely,
let πjk = P

(

X = ej(m1)e
T
k (m2)

)

be the probability to observe the (j, k)-th en-

try. Let us denote by Ck =
m1

Σ
j=1

πjk the probability to observe an element from

the k-th column and by Rj =
m2

Σ
k=1

πjk the probability to observe an element from

the j-th row. Observe that max
i,j

(Ci, Rj) ≥ 1/min(m1,m2).

As it was shown in [23], the trace-norm penalization fails in the specific
situation when the row/column marginal distribution is such that some columns
or rows are sampled with very high probability (for more details see [23, 8]).
To avoid such a situation we need the following assumption on the sampling
distribution:

Assumption 1. There exists a positive constant L ≥ 1 such that

max
i,j

(Ci, Rj) ≤ L/min(m1,m2).

In order to get bounds in the Frobenius norm, we suppose that each element
is sampled with positive probability:

Assumption 2. There exists a positive constant µ ≥ 1 such that

πjk ≥ (µm1m2)
−1.

In the case of uniform distribution L = µ = 1. Let us set ‖A‖2L2(Π) =

E
(

〈A,X〉2
)

. Assumption 2 implies that

‖A‖2L2(Π) ≥ (m1m2µ)
−1‖A‖22. (3)

2.2 Notation

We provide a brief summary of the notation used throughout this paper. Let
A,B be matrices in R

m1×m2 .

• We define the scalar product 〈A,B〉 = tr(ATB).

• For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is defined by

‖A‖q =
(

min(m1,m2)

Σ
j=1

σj(A)
q

)1/q

for 0 < q < ∞ and ‖A‖ = σ1(A),

where (σj(A))j are the singular values of A ordered decreasingly.
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• ‖A‖∞ = max
i,j

| aij | where A = (aij).

• PS is the projector on the linear vector subspace S.

• S⊥ is the orthogonal complement of S.

• Let uj(A) and vj(A) denote respectively the left and right orthonormal
singular vectors of A, S1(A) is the linear span of {uj(A)}, S2(A) is the
linear span of {vj(A)}.

• Let P⊥
A(B) = PS⊥

1
(A)BPS⊥

2
(A) and PA(B) = B −P⊥

A(B).

• Let πi,j = P
(

X = ei(m1)e
T
j (m2)

)

be the probability to observe the (i, j)-
th element.

• For j = 1 . . .m2, Cj =
m1

Σ
i=1

πij and for i = 1 . . .m1, Ri =
m2

Σ
j=1

πij .

• R = diag(R1, . . . , Rm1
) and C = diag(C1, . . . , Cm2

).

• Let M = max(m1,m2), m = min(m1,m2) and d = m1 +m2.

• ‖A‖2L2(Π) = E
(

〈A,X〉2
)

.

• Let {ǫi}ni=1 be an i.i.d. Rademacher sequence and we define

ΣR =
1

n

n
∑

i=1

ǫiXi and Σ =
σ

n

n
∑

i=1

ξiXi (4)

• Define the observation operator O : Rm1×m2 → R
n as (O(A))i = 〈Xi, A〉.

• Q(A) =

√

1

n

n
∑

i=1

(Yi − 〈Xi, A〉)2.

3 Matrix completion with known variance of the

noise

In this section we consider the matrix completion problem when the variance of
the noise is known. We define the following estimator of A0:

Â = argmin
‖A‖

∞
≤a

{

1

n

n
∑

i=1

(Yi − 〈Xi, A〉)2 + λ‖A‖1
}

, (5)

where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞.
The following theorem gives a general upper bound on the prediction error

of estimator Â. Its proof is given in Appendix A. The stochastic terms ‖Σ‖ and
‖ΣR‖ play a key role in what follows.
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Theorem 3. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 2 and 1 and λ > 3 ‖Σ‖. Assume that ‖A0‖∞ ≤ a for some constant a.
Then, there exist numerical constants (c1, c2) such that

‖Â−A0‖22
m1m2

≤ max

{

c1 µ
2 m1m2rank(A0)

(

λ2 + a2 (E (‖ΣR‖))2
)

, c2 a
2 µ

√

log(d)

n

}

.

with probability at least 1− 2

d
, where d = m1 +m2.

In order to get a bound in a closed form we need to obtain suitable upper
bounds on E (‖ΣR‖) and, with probability close to 1, on ‖Σ‖. We will ob-
tain such bounds in the case of sub-exponential noise i.e. under the following
assumption:

Assumption 4.
max

i=1,...,n
E exp (|ξi|/K) < ∞.

Let K > 0 be a constant such that max
i=1,...,n

E exp (|ξi|/K) ≤ e. The following

two lemmas give bounds on ‖Σ‖ and E (‖ΣR‖). We prove them in Section 5
using the non-commutative Bernstein inequality.

Lemma 5. Let Xi be i.i.d. with distribution Π on X which satisfies Assumption
1 and 2. Assume that (ζi)

n
i=1 are independent with E(ζi) = 0, E

(

ζ2i
)

= 1 and
satisfy Assumption 4. Then, there exists an absolute constant C∗ > 0 that
depends only on K and such that, for all t > 0 with probability at least 1− e−t

we have
∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

≤ C∗ max

{
√

L(t+ log(d))

mn
,
log(m) (t+ log(d))

n

}

(6)

where d = m1 +m2.

Lemma 6. Let Xi be i.i.d. with distribution Π on X which satisfies Assumption
1 and 2. Assume that (ζi)

n
i=1 are independent with E(ζi) = 0, E

(

ζ2i
)

= 1 and

satisfy Assumption 4. Then, for n ≥ m log3(d)/L, there exists an absolute
constant C∗ > 0 such that

E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

≤ C∗
√

2eL log(d)

nm

where d = m1 +m2.

An optimal choice of the parameter t in these lemmas is t = log(d). Larger t
leads to a slower rate of convergence and a smaller t does not improve the rate
but makes the concentration probability smaller. With this choice of t the second
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terms in the maximum in (6) is negligible for n > n∗ where n∗ = 2 log2(d)m/L.
Then, we can choose

λ = 3C∗σ

√

2L log(d)

mn
. (7)

where C∗ is an absolute numerical constant which depends only on K. If ξi are
N(0, 1), then we can take C∗ = 6.5 (see Lemma 4 in [13]). With this choice of
λ we obtain the following Theorem.

Theorem 7. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 2 and 1. Assume that ‖A0‖∞ ≤ a for some constant a and that Assumption
4 holds. Consider the regularization parameter λ satisfying (7). Then, there ex-
ist numerical constant c′ such that

‖Â−A0‖22
m1m2

≤ c′ max

{

max(σ2, a2)µ2 L
log(d)rank(A0)M

n
, a2µ

√

log(d)

n

}

. (8)

with probability greater than 1− 3/d.

An important feature of our estimator is that its construction requires only
an upper bound on the maximum absolute value of the entries of A0 (and an
upper bound on the variance of the noise). This condition is very mild. Let
us compare it with the conditions used in previous work on the noisy matrix
completion. Except [13], the previous estimators require the prior knowledge
of an upper bound on the standard deviation of the noise. In addition, in [11],
a prior information on the rank of the unknown matrix as well as a matrix
incoherence assumption( which is stated in terms of the singular vectors of
A0) are required. In [20] a prior information on the “spikiness ratio” αsp =√
m1m2 ‖A0‖∞

‖A0‖2
of A0 is needed. In [18, 14, 13], similarly to our construction,

a prior bound on ‖A0‖∞ is required. An important difference is that, in these
papers, the upper bound is used in the choice of the regularization parameter λ.
This implies the dependence on a of the convex functional which is minimized in
order to obtain Â. A too large bound may jeopardize exactness of the estimation.
In our construction, a determines the ball over which we are minimizing our
convex functional, which itself is independent of a.

4 Matrix completion with unknown variance of

the noise

In this section we propose a new estimator for the matrix completion problem
in the case when the variance of the noise σ is unknown. Our construction
is inspired by the square-root Lasso estimator proposed in [2]. We define the
following estimator of A0:

ÂSQ = argmin
‖A‖

∞
≤a







√

√

√

√

1

n

n
∑

i=1

(Yi − 〈Xi, A〉)2 + λ‖A‖1







, (9)
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where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞.
Note that the first term of this estimator is the square root of the data-dependent
term of the estimator that we considered in Section 3. This is similar to the
principle used to define the square-root Lasso estimator for the usual vector
regression model.

Let us set ρ =
1

16µm1m2rank(A0)
. The following theorem gives a general

upper bound on the prediction error of the estimator ÂSQ. Its proof is given in
Appendix D.

Theorem 8. Let Xi be i.i.d. with distribution Π on X which satisfies As-
sumption 2 and 1 and

√
ρ ≥ λ ≥ 3 ‖Σ‖ /Q(A0) . Then, there exist numerical

constants (c′1, c2) such that

∥

∥

∥ÂSQ −A0

∥

∥

∥

2

2

m1m2
≤ max

{

c′1µ
2m1m2rank(A0)

(

Q2(A0)λ
2 + a2 (E (‖ΣR‖))2

)

,

c2 a
2µ

√

log(d)

n

}

.

with probability at least 1− 2

d
.

In order to get a bound on the prediction risk in a closed form we use the
bounds on ‖Σ‖ and E (‖ΣR‖) given by Lemmas 5 and 6 taking t = log(d). It

remains to bound Q(A0) = σ

√

1

n

n
∑

i=1

ξ2i . We consider the case of sub-Gaussian

noise:

Assumption 9. There exists a constant K such that

E [exp(tξi)] ≤ exp
(

t2/2K
)

for all t > 0.

Note that condition Eξ2i = 1 implies that K ≤ 1. Under Assumption 9, ξ2i
are sub-exponential random variables. Then, the Bernstein inequality for sub-
exponential random variables implies that, there exists a numerical constant c3
such that, with probability at least 1− 2 exp{−c3n}, one has

3σ/2 ≥ Q(A0) ≥ σ/2. (10)

Using Lemma 5 and the right-hand side of (10), for n ≥ 2 log2(d)m/L, we can
take

λ = 6C∗
√

2L log(d)

mn
. (11)

Note that λ does not depend on σ and satisfies the two conditions required in
Theorem 8. We have that

λ ≥ 3 ‖Σ‖ /Q(A0) (12)
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with probability greater then 1− 1/d− 2 exp{−c3n} and

λ2 ≤ 1

16µm1m2rank(A0)
(13)

for n large enough, more precisely, for n such that

n ≥ c4 µLMrank(A0) log(d) (14)

where c4 = 576(C∗)2. We obtain the following theorem.

Theorem 10. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 1 and 2. Assume that ‖A0‖ ≤ a for some constant a and that Assumption
9 holds. Consider regularization parameter λ satisfying (11) and n satisfying
(14). Then, there exist numerical constants (c′′, c3) such that,

‖ÂSQ −A0‖22
m1m2

≤ c′′ max

{

max(σ2, a2)µ2 L
log(d)rank(A0)M

n
, a2µ

√

log(d)

n

}

(15)
with probability greater than 1− 3/d− 2 exp{−c3n}.

Note that condition (14) is not restrictive: indeed the sampling sizes n sat-
isfying condition (14) are of the same order of magnitude as those for which
the normalized Frobenius error of our estimator is small. Thus, Theorem 10
shows, that ÂSQ has the same prediction performances as previously proposed
estimators which rely on the knowledge of the standard deviation of the noise
and of the sampling distribution.

5 Bounds on the stochastic errors

In this section we will obtain the upper bounds for the stochastic errors ‖ΣR‖
and E (‖ΣR‖) defined in (4). In order to obtain such bounds we use the matrix
version of Bernstein’s inequality. The following proposition is obtained by an
extension of Theorem 4 in [15] to rectangular matrices via self-adjoint dilation
(cf., for example 2.6 in [24]) . Let Z1, . . . , Zn be independent random matrices
with dimensions m1 ×m2. Define

σZ = max







∥

∥

∥

∥

∥

1

n

n
∑

i=1

E
(

ZiZ
T
i

)

∥

∥

∥

∥

∥

1/2

,

∥

∥

∥

∥

∥

1

n

n
∑

i=1

E

(

Z
T

i Zi

)

∥

∥

∥

∥

∥

1/2






and
Ui = inf {K > 0 : E exp (‖Zi‖/K) ≤ e} .

Proposition 11. Let Z1, . . . , Zn be independent random matrices with dimen-
sions m1 ×m2 that satisfy E(Zi) = 0. Suppose that Ui < U for some constant

9



U and all i = 1, . . . , n. Then, there exists an absolute constant c∗, such that,
for all t > 0, with probability at least 1− e−t we have

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Zi

∥

∥

∥

∥

∥

≤ c∗ max

{

σZ

√

t+ log(d)

n
, U

(

log
U

σZ

)

t+ log(d)

n

}

,

where d = m1 +m2.

5.1 Proof of Lemma 5

We apply Proposition 11 to Zi = ζiXi. We first estimate σZ and U . Note that
Zi is a zero-mean random matrix which satisfies

‖Zi‖ ≤ |ζi|.

Then, Assumption 4 implies that there exists a constant K such that Ui ≤ K
for all i = 1, . . . , n. We compute

E
(

ZiZ
T
i

)

= R and E
(

ZT
i Zi

)

= C

where C (resp. R) is the diagonal matrix with Ck (resp. Rj) on the diagonal.
This and the fact that Xi are i.i.d. implies that

σ2
Z = max

i,j
(Ci, Rj) ≤ L/m.

Note that max
i,j

(Ci, Rj) ≥ 1/m which implies that log (K/σZ) ≤ log (Km) and

the statement of Lemma 5 follows.

5.2 Proof of Lemma 6

The proof follows the lines of the proof of Lemma 7 in [14]. For sake of com-

pleteness we give it here. Set t∗ =
Ln

m log2(m)
− log(d). t∗ is the value of t such

that the two terms in (6) are equal. Note that Lemma 5 implies that

P

(∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

> t

)

≤ d exp{−t2 nm/
(

(C∗)2L
)

} for t ≤ t∗ (16)

and

P

(∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

> t

)

≤ d exp{−t n/(C∗ log(m))} for t ≥ t∗. (17)

We set ν1 = nm/
(

(C∗)2L
)

, ν2 = n/(C∗ log(m)). By Hölder’s inequality we get

E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

≤



E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

2 log(d)




1/(2 log(d))

.
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The inequalities (16) and (17) imply that



E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

2 log(d)




1/2 log(d)

=





+∞
∫

0

P

(∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

> t1/(2 log(d))

)

dt





1/2 log(d)

≤



d

+∞
∫

0

exp{−t1/ log(d)ν1}dt+ d

+∞
∫

0

exp{−t1/(2 log(d)ν2}dt





1/2 log(d)

≤
√
e
(

log(d)ν
− log(d)
1 Γ(log(d)) + 2 log(d) ν

−2 log(d)
2 Γ(2 log(d))

)1/(2 log(d))

.

(18)

The Gamma-function satisfies the following bound:

for x ≥ 2, Γ(x) ≤
(x

2

)x−1

(19)

(see e.g. [14] ). Plugging this into (18) we compute

E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

≤
√
e
(

(log(d))log(d)ν
− log(d)
1 21−log(d)

+ 2(log(d))2 log(d)ν
−2 log(d)
2

)1/(2 log(d))

.

Observe that n > n∗ implies ν1 log(d) ≤ ν22 and we obtain

E

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ζiXi

∥

∥

∥

∥

∥

≤
√

2e log(d)

ν1
. (20)

We conclude the proof by plugging ν1 = nm/
(

(C∗)2L
)

into (20).

A Proof of Theorem 3

It follows from the definition of the estimator Â that

1

n

n
∑

i=1

(

Yi −
〈

Xi, Â
〉)2

+ λ‖Â‖1 ≤ 1

n

n
∑

i=1

(Yi − 〈Xi, A0〉)2 + λ‖A0‖1

which, using (1), implies

1

n

n
∑

i=1

(

〈Xi, A0〉+ σξi −
〈

Xi, Â
〉)2

+ λ‖Â‖1 ≤ σ2

n

n
∑

i=1

ξ2i + λ‖A0‖1.

Hence,

1

n

n
∑

i=1

〈

Xi, A0 − Â
〉2

+ 2
〈

Σ, A0 − Â
〉

+ λ‖Â‖1 ≤ λ‖A0‖1

11



where Σ =
σ

n

n
∑

i=1

ξiXi. Then, by the duality between the nuclear and the operator

norms, we obtain

1

n

∥

∥

∥O
(

A0 − Â
)∥

∥

∥

2

2
+ λ‖Â‖1 ≤ 2 ‖Σ‖ ‖A0 − Â‖1 + λ‖A0‖1. (21)

Note that from (38) we get

‖A0‖1 −
∥

∥

∥Â
∥

∥

∥

1
≤
∥

∥

∥PA0
(A0 − Â)

∥

∥

∥

1
−
∥

∥

∥P⊥
A0

(A0 − Â)
∥

∥

∥

1
. (22)

This, the triangle inequality and λ ≥ 3 ‖Σ‖ lead to

1

n

∥

∥

∥O
(

A0 − Â
)∥

∥

∥

2

2
≤ 2 ‖Σ‖

∥

∥

∥PA0

(

A0 − Â
)∥

∥

∥

1
+ λ

∥

∥

∥PA0

(

A0 − Â
)∥

∥

∥

1

≤ 5

3
λ
∥

∥

∥PA0

(

A0 − Â
)∥

∥

∥

1
.

(23)

Since PA(B) = PS⊥

1
(A)BPS2(A) + PS1(A)B and rank(PSi(A)B) ≤ rank(A) we

have that rank(PA(B)) ≤ 2rank(A). From (23) we compute

1

n

∥

∥

∥O
(

A0 − Â
)∥

∥

∥

2

2
≤ 5

3
λ
√

2rank(A0)
∥

∥

∥Â−A0

∥

∥

∥

2
. (24)

For a 0 < r ≤ m we consider the following constrain set

C(r) =
{

A ∈ R
m1×m2 : ‖A‖∞ = 1, ‖A‖2L2(Π) ≥

√

64 log(d)

log (6/5) n
, ‖A‖1 ≤

√
r ‖A‖2

}

.

(25)
Note that the condition ‖A‖1 ≤ √

r ‖A‖2 is satisfied if rank(A) ≤ r.
The following lemma shows that for matrices A ∈ C(r) the observation op-

erator O satisfies some approximative restricted isometry. Its proof is given in
Appendix B.

Lemma 12. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 2 and 1. Then, for all A ∈ C(r)

1

n
‖O(A)‖22 ≥ 1

2
‖A‖2L2(Π) − 44µ rm1m2 (E (‖ΣR‖))2

with probability at least 1− 2

d
.

We need the following auxiliary lemma which is proven in Appendix E.

Lemma 13. If λ > 3 ‖Σ‖
∥

∥

∥P⊥
A0

(Â−A0)
∥

∥

∥

1
≤ 5

∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1
.

12



Lemma 13 implies that

∥

∥

∥Â−A0

∥

∥

∥

1
≤ 6

∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1
≤
√

72 rank(A0)
∥

∥

∥Â−A0

∥

∥

∥

2
.

Set a =
∥

∥

∥
Â−A0

∥

∥

∥

∞
. By definition of Â we have that a ≤ 2a. We now consider

two cases, depending on whether the matrix
1

a

(

Â−A0

)

belongs to the set

C (72 rank(A0)) or not.

Case 1: Suppose first that
∥

∥

∥Â−A0

∥

∥

∥

2

L2(Π)
< a2

√

64 log(d)

log (6/5) n
, then (3)

implies that
∥

∥

∥Â−A0

∥

∥

∥

2

2

m1m2
≤ 4a2 µ

√

64 log(d)

log (6/5) n
(26)

and we get the statement of the Theorem 3 in this case.

Case 2: It remains to consider the case
∥

∥

∥Â−A0

∥

∥

∥

2

L2(Π)
≥ a2

√

64 log(d)

log (6/5) n
.

Lemma 13 implies that
1

a

(

Â−A0

)

∈ C (72 rank(A0)) and we can apply Lemma

12. From Lemma 12 and (24) we obtain that with probability at least 1 − 2

d
one has

1

2
‖Â−A0‖2L2(Π) ≤

5

3
λ
√

2rank(A0)
∥

∥

∥
Â−A0

∥

∥

∥

2
+ 3168µa2rank(A0)m1m2 (E (‖ΣR‖))2

≤ 6λ2µm1m2rank(A0) +
1

4
(m1m2µ)

−1
∥

∥

∥Â−A0

∥

∥

∥

2

2

+ 3168µa2rank(A0)m1m2 (E (‖ΣR‖))2 .

Now (3) and a ≤ 2a imply that, there exist numerical constants c1 such that

‖Â−A0‖22 ≤ c1 (µm1m2)
2
rank(A0)

(

λ2 + a2 (E (‖ΣR‖))2
)

,

which, together with (26), leads to the statement of the Theorem 3.

B Proof of Lemma 12

The main lines of this proof are close to those of the proof of Theorem 1 in
[20]. Set E = 44µ rm1m2 (E (‖ΣR‖))2. We will show that the probability of the
following “bad” event is small

B =

{

∃A ∈ C(r) such that

∣

∣

∣

∣

1

n
‖O(A)‖22 − ‖A‖2L2(Π)

∣

∣

∣

∣

>
1

2
‖A‖2L2(Π) + E

}

.

Note that B contains the complement of the event that we are interested in.

13



In order to estimate the probability of B we use a standard peeling argument.

Let ν =

√

64 log(d)

log (6/5) n
and α =

6

5
. For l ∈ N set

Sl =
{

A ∈ C(r) : αl−1ν ≤ ‖A‖2L2(Π) ≤ αlν
}

.

If the event B holds for some matrix A ∈ C(r), then A belongs to some Sl and
∣

∣

∣

∣

1

n
‖O(A)‖22 − ‖A‖2L2(Π)

∣

∣

∣

∣

>
1

2
‖A‖2L2(Π) + E

>
1

2
αl−1ν + E

=
5

12
αlν + E .

(27)

For each T > ν consider the following set of matrices

C(r, T ) =
{

A ∈ C(r) : ‖A‖2L2(Π) ≤ T
}

and the following event

Bl =

{

∃A ∈ C(r, αlν) :

∣

∣

∣

∣

1

n
‖O(A)‖22 − ‖A‖2L2(Π)

∣

∣

∣

∣

>
5

12
αlν + E

}

.

Note that A ∈ Sl implies that A ∈ C(r, αlν). Then (27) implies that Bl holds
and we get B ⊂ ∪Bl. Thus, it is enough to estimate the probability of the
simpler event Bl and then apply the union bound. Such an estimation is given
by the following lemma. Its proof is given in Appendix C. Let

ZT = sup
A∈C(r,T )

∣

∣

∣

∣

1

n
‖O(A)‖22 − ‖A‖2L2(Π)

∣

∣

∣

∣

.

Lemma 14. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 2 and 1. Then,

P

(

ZT >
5

12
T + 44µ rm1m2 (E (‖ΣR‖))2

)

≤ exp(−c5 nT 2)

where c5 =
1

128
.

Lemma 14 implies that P (Bl) ≤ exp(−c5 nα2lν2). Using the union bound
we obtain

P (B) ≤
∞
Σ
l=1

P (Bl)

≤
∞
Σ
l=1

exp(−c5 nα2l ν2)

≤
∞
Σ
l=1

exp
(

−
(

2 c5 n log(α) ν2
)

l
)

14



where we used ex ≥ x. We finally compute for ν =

√

64 log(d)

log (6/5) n

P (B) ≤ exp
(

−2 c5 n log(α) ν2
)

1− exp (−2 c5 n log(α) ν2)
=

exp (− log(d))

1− exp (− log(d))
.

This completes the proof of Lemma 12.

C Proof of Lemma 14

Our approach is standard: first we show that ZT concentrates around its ex-
pectation and then we upper bound the expectation.

By definition, ZT = sup
A∈C(r,T )

∣

∣

∣

∣

1

n

n
∑

i=1

〈Xi, A〉2 − E

(

〈X,A〉2
)

∣

∣

∣

∣

. Massart’s con-

centration inequality (see e.g. [3, Theorem 14.2]) implies that

P

(

ZT ≥ E (ZT ) +
1

9

(

5

12
T

))

≤ exp
(

−c5 nT 2
)

(28)

where c5 =
1

128
. Next we bound the expectation E (ZT ). Using a standard

symmetrization argument (see e.g. [16, Theorem 2.1]) we obtain

E (ZT ) = E

(

sup
A∈C(r,T )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

〈Xi, A〉2 − E

(

〈X,A〉2
)

∣

∣

∣

∣

∣

)

≤ 2E

(

sup
A∈C(r,T )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi 〈Xi, A〉2
∣

∣

∣

∣

∣

)

where {ǫi}ni=1 is an i.i.d. Rademacher sequence. The assumption ‖A‖∞ = 1
implies |〈Xi, A〉| ≤ 1. Then, the contraction inequality (see e.g. [16]) yields

E (ZT ) ≤ 8E

(

sup
A∈C(r,T )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi 〈Xi, A〉
∣

∣

∣

∣

∣

)

= 8E

(

sup
A∈C(r,T )

|〈ΣR, A〉|
)

where ΣR =
1

n

n
∑

i=1

ǫiXi. For A ∈ C(r, T ) we have that

‖A‖1 ≤
√
r ‖A‖2

≤ √
µ rm1m2 ‖A‖L2(Π)

≤
√

µm1m2 r T

where we have used (3). Then, by the duality between nuclear and operator
norms, we compute

E (ZT ) ≤ 8E

(

sup
‖A‖

1
≤
√
µm1m2rT

|〈ΣR, A〉|
)

≤ 8
√

µm1m2rT E (‖ΣR‖) .

15



Finally, using

1

9

(

5

12
T

)

+8
√

µm1m2rT E (‖ΣR‖) ≤
(

1

9
+

8

9

)

5

12
T +44µ rm1m2 (E (‖ΣR‖))2

and the concentration bound (28) we obtain that

P

(

ZT >
5

12
T + 44µ rm1m2 (E (‖ΣR‖))2

)

≤ exp(−c5 nT 2)

with c5 =
1

128
as stated.

D Proof of Theorem 8

Let us set ∆ = A0 − ÂSQ. We have that

Q2(ÂSQ)−Q2(A0) =
1

n
‖O(∆)‖22 + 2

〈

σ

n

n
∑

i=1

ξiXi,∆

〉

=
1

n
‖O (∆)‖22 + 2 〈Σ,∆〉

where Σ =
σ

n

n
∑

i=1

ξiXi. This implies

1

n
‖O (∆)‖22 = −2 〈Σ,∆〉+

(

Q(ÂSQ)−Q(A0)
)(

Q(ÂSQ) +Q(A0)
)

. (29)

We need the following auxiliary lemma which is proven in the appendix F.

Lemma 15. If λ > 3 ‖Σ‖ /Q(A0), then
∥

∥P⊥
A0

(∆)
∥

∥

1
≤ 2 ‖PA0

(∆)‖1
where ∆ = ÂSQ −A0.

Note that from (38) we get

‖A0‖1 −
∥

∥

∥ÂSQ

∥

∥

∥

1
≤ ‖PA0

(∆)‖1 −
∥

∥P⊥
A0

(∆)
∥

∥

1
. (30)

The definition of ÂSQ and (30) imply that

Q(A0) +Q(ÂSQ) ≤ 2Q(A0) + λ
(

‖A0‖1 −
∥

∥

∥
ÂSQ

∥

∥

∥

1

)

≤ 2Q(A0) + λ
(

‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1

)

(31)

and

Q(ÂSQ)−Q(A0) ≤ λ
(

‖A0‖1 −
∥

∥

∥ÂSQ

∥

∥

∥

1

)

≤ λ
(

‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1

)

≤ λ
(

2 ‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1

)

.

(32)
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Lemma 15 implies that 2 ‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1
≥ 0. From (31) and (32) we

compute
(

Q(ÂSQ)−Q(A0)
)(

Q(ÂSQ) +Q(A0)
)

≤

λ
(

2 ‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1

) (

2Q(A0) + λ
(

‖PA0
(∆)‖1 −

∥

∥P⊥
A0

(∆)
∥

∥

1

))

=

4λQ(A0) ‖PA0
(∆)‖1 − 2λQ(A0)

∥

∥P⊥
A0

(∆)
∥

∥

1

+ 2λ2 ‖PA0
(∆)‖21 + λ2

∥

∥P⊥
A0

(∆)
∥

∥

2

1
− 3λ2 ‖PA0

(∆)‖1
∥

∥P⊥
A0

(∆)
∥

∥

1
.

(33)

Lemma 15 implies that λ2
∥

∥P⊥
A0

(∆)
∥

∥

2

1
− 3λ2 ‖PA0

(∆)‖1
∥

∥P⊥
A0

(∆)
∥

∥

1
≤ 0 and we

obtain from (33)
(

Q(ÂSQ)−Q(A0)
)(

Q(ÂSQ) +Q(A0)
)

≤ 4λQ(A0) ‖PA0
(∆)‖1

− 2λQ(A0)
∥

∥P⊥
A0

(∆)
∥

∥

1
+ 2λ2 ‖PA0

(∆)‖21 .
(34)

Plugging (34) into (29) we get

1

n
‖O (∆)‖22 ≤ −2 〈Σ,∆〉+ 4λQ(A0) ‖PA0

(∆)‖1
− 2λQ(A0)

∥

∥P⊥
A0

(∆)
∥

∥

1
+ 2λ2 ‖PA0

(∆)‖21 .

Then, by the duality between the nuclear and the operator norms, we obtain

1

n
‖O (∆)‖22 ≤ 2 ‖Σ‖ ‖PA0

(∆)‖1 + 2 ‖Σ‖
∥

∥P⊥
A0

(∆)
∥

∥

1

+ 4λQ(A0) ‖PA0
(∆)‖1 − 2λQ(A0)

∥

∥P⊥
A0

(∆)
∥

∥

1

+ 2λ2 ‖PA0
(∆)‖21 .

Using λQ(A0) ≥ 3 ‖Σ‖ we compute

1

n
‖O (∆)‖22 ≤ 14

3
λQ(A0) ‖PA0

(∆)‖1 + 2λ2 ‖PA0
(∆)‖21

which leads to

1

n
‖O (∆)‖22 ≤ 14

3
λQ(A0)

√

2rank(A0) ‖∆‖2 + 4λ2rank(A0) ‖∆‖22 .

The condition 4µm1m2λ
2rank(A0) ≤ 1/4 implies that

1

n
‖O (∆)‖22 ≤ 14

3
λQ(A0)

√

2rank(A0) ‖∆‖2 +
‖∆‖22

4µm1m2
. (35)

Set a =
∥

∥

∥ÂSQ −A0

∥

∥

∥

∞
. By the definition of ÂSQ we have that a ≤ 2a.

We now consider two cases, depending on whether the matrix
1

a

(

ÂSQ −A0

)

belongs or not to the set C (18rank(A0)).
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Case 1: Suppose first that
∥

∥

∥ÂSQ −A0

∥

∥

∥

2

L2(Π)
< a2

√

64 log(d)

log (6/5) n
, then (3)

implies that
∥

∥

∥ÂSQ −A0

∥

∥

∥

2

2

m1m2
≤ 4a2µ

√

64 log(d)

log (6/5) n
(36)

and we get the statement of of the Theorem 8 in this case.

Case 2: It remains to consider the case
∥

∥

∥ÂSQ −A0

∥

∥

∥

2

L2(Π)
≥ a2

√

64 log(d)

log (6/5) n
.

Lemma 15 implies that
1

a

(

ÂSQ −A0

)

∈ C (18rank(A0)) and we can apply

Lemma 12. From Lemma 12, (3) and (35) we obtain that, with probability at

least 1− 2

d
one has

‖∆‖22
2µm1m2

≤ 14

3
λQ(A0)

√

2rank(A0) ‖∆‖2 +
‖∆‖22

4µm1m2

+ 792 a2µm1m2rank(A0) (E (‖ΣR‖))2 .

A simple calculation yields

( ‖∆‖2
2
√
µm1m2

− 14

3
λQ(A0)

√

2rank(A0)µm1m2

)2

≤
(

14

3
λQ(A0)

√

2rank(A0)µm1m2

)2

+ 792 a2µm1m2rank(A0) (E (‖ΣR‖))2

and

‖∆‖2
2
√
µm1m2

≤ 28

3
λQ(A0)

√

2rank(A0)µm1m2+

√

792 a2µm1m2rank(A0) (E (‖ΣR‖))2.
(37)

This and a ≤ 2a imply that, there exist numerical constant c′1 such that

‖ÂSQ −A0‖22
m1m2

≤ c′1µ
2 m1m2

(

Q2(A0)λ
2rank(A0) + a2 rank(A0) (E (‖ΣR‖))2

)

,

which, together with (36), leads to the statement of the Theorem 8.

E Proof of Lemma 13

By definition of P⊥
A0

, for any matrix B the singular vectors of P⊥
A0

(B) are or-
thogonal to the space spanned by the singular vectors of A0. This implies that

18



∥

∥

∥
A0 +P⊥

A0
(Â−A0)

∥

∥

∥

1
= ‖A0‖1 +

∥

∥

∥
P⊥

A0
(Â−A0)

∥

∥

∥

1
. Then

∥

∥

∥
Â
∥

∥

∥

1
=
∥

∥

∥
A0 + Â−A0

∥

∥

∥

1

=
∥

∥

∥A0 +P⊥
A0

(Â−A0) +PA0
(Â−A0)

∥

∥

∥

1

≥
∥

∥

∥A0 +P⊥
A0

(Â−A0)
∥

∥

∥

1
−
∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1

= ‖A0‖1 +
∥

∥

∥P⊥
A0

(Â−A0)
∥

∥

∥

1
−
∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1
.

(38)

By the convexity of Q2(A) and using λ ≥ 3∆ we have

Q2(Â)−Q2(A0) ≥ − 2

n

n
∑

i=1

(Yi − 〈Xi, A0〉) 〈Xi, Â−A0〉

= −2
〈

Σ, Â−A0

〉

≥ −2‖Σ‖‖Â−A0‖1

≥ −2

3
λ‖Â−A0‖1.

Using the definition of Â, we compute

λ
∥

∥

∥Â
∥

∥

∥

1
− λ ‖A0‖1 ≤ Q2(A0)−Q2(Â)

≤ 2

3
λ‖Â−A0‖1.

This implies that
∥

∥

∥P⊥
A0

(Â−A0)
∥

∥

∥

1
≤ 5

∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1

as stated.

F Proof of Lemma 15

By the convexity of Q(A) we have

Q(ÂSQ)−Q(A0) ≥
− 1

n

n
∑

i=1

(Yi − 〈Xi, A0〉) 〈Xi, ÂSQ −A0〉

Q(A0)

=
−
〈

Σ, ÂSQ −A0

〉

Q(A0)

≥ − ‖Σ‖
Q(A0)

‖ÂSQ −A0‖1

≥ −1

3
λ‖ÂSQ −A0‖1.
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Using the definition of ÂSQ, we compute

λ
∥

∥

∥ÂSQ

∥

∥

∥

1
− λ ‖A0‖1 ≤ Q(A0)−Q(ÂSQ)

≤ 1

3
λ‖ÂSQ −A0‖1.

Then (38) and the triangle inequality imply

∥

∥

∥P⊥
A0

(Â−A0)
∥

∥

∥

1
−
∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1
≤ 1

3

(∥

∥

∥P⊥
A0

(Â−A0)
∥

∥

∥

1
+
∥

∥

∥PA0
(Â−A0)

∥

∥

∥

1

)

and the statement of Lemma 15 follows.
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