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ABSTRACT 

Power dissipation levels in mobile phones continue to increase due to gaming, higher power 

applications, and increased functionality associated with the internet. The current cooling 

methodologies of natural convection and radiation limit the power dissipation within a mobile 

phone to between 1-2 W depending on size. As power dissipation levels increase, products such 

as mobile phones will require active cooling to ensure that the devices operate within an 

acceptable temperature envelop from both user comfort and reliability perspectives. In this 

paper, we focus on the applied thermal engineering problem of an active cooling solution 

within a typical mobile phone architecture by implementing a custom centrifugal fan within the 

mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable 

phone heat dissipation and maximum phone surface temperature as this is the user constraint 

for a variety of simulated PCB architectures in the mobile phone. Perforated plates with 

varying porosity through different size orifices are used to simulate these architectures. The 

results show that the power level dissipated by a phone for a constant surface temperature may 

be increased by ~50 - 75% depending on pressure drop induced by the internal phone 

architecture. Hence for successful implementation and efficient utilization of active cooling 

will require chip layout to be considered at the design stage.   

 

KEY WORDS: mobile phone, active cooling, portable electronics, fan, forced convection. 
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NOMENCLATURE 

Symbol Description Unit 
A Area m2 
e Estimated error in allowable heat dissipation % 
g Acceleration due to gravity m/s2 

Gr Grashof number - 
h Heat transfer coefficient W/m2K 
k Thermal conductivity W/mK 
L Length m 

Nu Nusselt number - 
Pr Prandtl number - 

Q&  Heat dissipation W 

R Thermal resistance  °C/W 
T Temperature °C 
   

β Coefficient of volume expansion °C-1 
∆T Temperature difference °C 
ν Kinematic viscosity m2/s 
σ Stefan Boltzmann constant W/m2K4 
∈  Emissivity - 

 

Subscripts 

Symbol Description 

A Conditions of maximum allowable case to ambient temperature difference 
c Phone case 

∞−c  Case to ambient 
FC Forced convection 

∞−h  Heater to ambient 
NC Natural convection 
PCB Printed circuit board 
R Radiation 
T Total heater to ambient quantity 
t Quantity under test conditions 
∞  Ambient 
 

INTRODUCTION 

The mobile phone market continues to ship vast quantities, in the hundreds of millions, each 

year. As users continue to demand more functionality, and small size the issues of cooling 

become more critical. The thermal design of any electronic system is undertaken to meet the 
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system operating thermal constraints. For the case of the mobile phone in particular, user 

comfort requires case temperature to be typically less than fifty degrees Celsius, which requires 

that the phone to ambient temperature difference is typically of the order of fifteen degrees 

Celsius. To achieve a satisfactory thermal management solution a number of cooling 

methodologies can be implemented and are dependant upon a number of factors, which include 

the level of heat to be dissipated, the operating environment, the maximum allowable 

component temperatures, the available space, acoustic levels, reliability and ultimately cost. 

From a cooling perspective a fundamental challenge in the mobile phone market place is the 

consumer demand for low profile, pocket sized devices. This has many new challenges, 

whereas in traditional active cooling in desktop computers can employ relatively large scale 

heat sinks and fans, and may be used to directly cool heat generating components as space is 

not assigned a high value. Even in the laptop fans are typically around fifteen millimeters, or 

greater in height. The use of large scale fans and heat sinks results in high heat transfer 

coefficients, particularly when mounted directly on the components to be cooled. Much work 

has been done in recent years to characterize and optimize the performance of fan heat sink 

modules, Lin and Chou [1] and Loh, et al. [2] are examples. However this work has focused on 

large scale applications, with little effort, to date, focused on scales appropriate to handheld 

electronic devices such as mobile phones. For low profile scales the design of cooling solutions 

becomes more difficult and new ideas and approaches should be considered. Examples of 

technologies under development for thermal management of portable electronic devices are 

phase change materials Tan and Tso [3], micro heat pipes Launay, et al. [4] and high 

conductivity materials such as carbon substrates. The focus of these technologies is upon heat 

spreading and transport within a device rather than active removal of heat from the device. For 

example, the phase change materials store heat to be dissipated over time, while liquid cooling, 

heat pipes and high conductivity materials only provide paths of reduced thermal resistance to 

the flow of heat within devices. Hence, heat is ultimately removed by some combination of 

natural convection, conduction and radiation. Novel, low profile finless heat sink designs with 

active cooling and heights of less than five millimeters have been studied in terms of heat sink 

designs by Walsh et al. [5], Walsh and Grimes [6], and the importance of flow field at the exit 

of small scale fans of low profile, Egan et al. [7,8] and the position of chip placement in the 

case of axial flow fans, Stafford et al. [9].  
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Currently the larger scale phone and palm computer devices typically have dimensions of 100, 

80 and 20 mm for length, width and depth respectively. Using this surface area combined with 

the assumptions of an isothermal surface with an allowable temperature rise above ambient of 

15 °C (45 °C in 30 °C environment) and an average heat transfer coefficient of 8 W/m2K, the 

maximum power dissipated would be around 2 W, the value being about 1 W for smaller 

phones such as that investigated here. Importantly the isothermal phone is not a reality and 

hence the actual cooling potential is reduced further for the more realistic non isothermal 

handset. Given that many such devices are striving towards laptop performance which 

dissipates several multiples of the mobile phone power levels, it is clear that thermal 

management of such devices is impeding the enhancement of performance and the need for 

active cooling solutions is evident. Recently, studies addressing the effects of geometrical 

scaling in both axial and radial fans has provided guidelines for some of the limitation of low 

profile fans in terms of aerodynamics, Grimes, et al. [10] and Walsh, et al. [11], and acoustics 

by Walsh et al. [12] to the development of low profile fans for potential use in small scale 

electronics cooling applications. 

This short paper addresses the applied problem of integration of a custom designed fan 

technology into low profile portable electronics. Previous work by Walsh et al [13] was limited 

to thermal measurements only, and this work provides a more complete analysis which can be 

used for benchmarking of numerical models. The fan is firstly aerodynamically characterized. 

It is then integrated within handset architectures and its performance is characterized in terms 

of flow rate, pressure drop and temperature rise above ambient. This results in estimation of the 

increased power dissipation that is possible through implementation of fans in handsets. 

Various chip layout configurations are simulated through different levels of blockage in the 

phone using perforated plates with varying porosity. This is important, as all layout 

configurations are different and the methodology taken herein is not specific to any particular 

phone architecture. The results show that the power level dissipated by a phone for a constant 

surface temperature may be increased by ~50 - 75% depending on pressure drop induced by the 

internal phone architecture. The importance of reducing fan rotational speed to conserve battery 

power is also highlighted.  
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EXPERIMENTAL 

A Nokia 3120 illustrated in figure 1 was used as the handset to perform the experimental tests. 

This phone has external dimensions of 102x43x20 mm. Figure 2(a) shows a populated PCB 

within the phone. In the original form of the phone these components faced towards the battery 

at the back of the phone, and were covered by the metal sheet also shown in figure 2(a). In 

order to provide space for the inclusion of a fan and a heater, all the components on this PCB, 

and the metal cover sheet were removed, and the heater and fan were placed on the PCB as 

illustrated in figure 2(b). The heater enabled the dissipation of a known power level in the 

phone. Figure 2(c) schematically illustrates the layout of the phone, showing the location of 

inlet and outlet vents which were machined into the casing of the phone, and the positions of 

the fan, heater and battery. 

 

To assess the effects of blockage on the performance of the fans, varying degrees of blockage 

were placed in the flow path. These blockages were provided by perforated plates spanning the 

width of the phone, and the height of the gap between the PCB and the back cover, downstream 

of the fan, as illustrated in figure 2(c). The perforations took the form of eight holes, spaced 

8mm apart across the width of the plate. To vary the degree of the blockage, holes of diameter 

1, 1.6 and 2.5 mm were used.  

 

The fan which was custom designed and manufactured to cool the phone is illustrated in figure 

2(b). This fan has dimensions of 24 x 23 x7 mm. With a volume of approximately 2.5 cc the 

fan occupies approximately 2.8% of the volume of the phone. When operated at 4,000 RPM the 

fan consumed approximately 26 mW, approximately 1.3% of the typical maximum power 

consumption of a phone of the type investigated here. Measurements of acoustic noise were not 

performed in this investigation, however Walsh et al 2009[12] measured equivalent sound 

levels of 27 and 35 dBA for a fan of similar design and diameter at speeds of 4000 and 7500 

RPM respectively at five centimeters distance from the fan inlet. This sound level is low 

enough not to affect call quality, and moreover the fan would typically only operate when the 

mobile phone is performing power hungry applications such as gaming or internet usage; in 

both instances the user would be at a much greater distance than five centimeters.  
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To determine the aerodynamic characteristics of the fan, it was tested in the authors’ fan 

performance characterization facilities described by Grimes et al. [8]. These measurements are 

presented in the results and discussion section. To prevent recirculation of flow from the fan 

outlet to the fan inlet a gasket was placed at the fan inlet as illustrated in figure 2(c). Initial tests 

performed in the absence of this gasket showed significantly higher thermal resistances than in 

the presence of the gasket, and highlighted the importance of prevention of recirculation from 

fan outlet to fan inlet. 

 

Temperature measurements were performed using thermocouples mounted on the front and 

back surfaces of the phone. These were located at the points of maximum temperature on each 

surface, as identified from IR images of the surfaces of the phone. Such an IR image is 

illustrated in figure 3. On the front cover, the thermocouple was located 42 mm from the base 

of the phone on the centre line of the phone. On the back cover, the thermocouple was located 

46 mm from the base of the phone, again on the centre line. Ambient temperature was also 

monitored using a thermocouple. A thermocouple was also located on the PCB at the location 

indicated in figure 2(b) All thermocouples were connected to a Labview data logging system. 

All temperatures were recorded under steady state conditions. The heat dissipated by the heater 

was set at 2 W. To minimize the effects of external air currents on the heat dissipated by the 

phone, the phone was placed in an enclosure measuring approximately 0.5x0.5x0.5 m.  

 

Table 1 describes the range of phone configurations which were investigated. These 

configurations will be referred to by the number designated here henceforth. In all 

configurations the heater power is set at 2 W. Configuration 1 has no active cooling. 

Configuration 2 is cooled by the fan at 7500 RPM. Configurations 3 to 5 are also cooled by the 

fan at 7500 RPM, but with increasing levels of blockage. Configuration 6 is cooled by the fan 

at 4000 RPM, with a perforated plate with 1.6mm holes. 

 

In the results and discussion section the data is presented in terms of the temperature rise of the 

phone above ambient (
tcT ∞−∆ ) per unit heat dissipated by the heater (tQ& ). The other measure of 

the performance of the cooling solutions is the heat which may be dissipated by the phone (
AQ& ) 
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for a given allowable surface temperature rise (
AcT ∞−∆ ) of the phone’s casing above ambient.  

This is defined as: 

t

A

c

c
tA
∆T

∆T
QQ

∞−

∞−= &&  (1) 

where 
tcT ∞−∆  is the maximum measured surface temperature rise above ambient of the phone 

for a heat dissipation of tQ& . The maximum allowable temperature rise above ambient for the 

surface of a handheld device is typically regarded to be 15 °C, and this is the value of 
AcT ∞−∆  

used here. As will be shown in the next subsection, testing the phone at case temperatures other 

than the allowable case temperature causes a variation in case to ambient thermal resistance, 

and therefore results in a small error in the allowable heat dissipation estimated by eq. 1. 

 

Influence of case temperature on quantification of allowable heat dissipation 

The flow of heat within the handset from source to ambient may be represented in a simplified 

manner by the thermal resistance network illustrated in figure 4. There are two primary heat 

flow paths, as follows: 

� Passive dissipation, CQ& : conduction from heater to case, and natural convection and 

radiation from case to ambient 

� Forced dissipation, FCQ& : forced convection from the heated surfaces directly into the 

forced air stream 

As discussed above, the tests in this investigation were performed at a fixed total heat 

dissipation, tQ&  of 2 W, and the allowable heat dissipation was calculated based on the 

assumption of fixed case to ambient thermal resistance. However, because the case to ambient 

thermal resistance is the result of a natural convection component and a radiation component, 

its value varies with case temperature. In the tests which were performed, the maximum case to 

ambient temperature difference was at all times greater than the allowable value, 
AcT ∞−∆ . 

Therefore, under test conditions, the case to ambient thermal resistance was lower than it would 

be under allowable conditions, and the allowable heat transfer as calculated using eq. 1 is over 

estimated by a small amount. To estimate the error associated with eq. 1 caused by this effect, 

eq. 2 was derived from a simple analysis of the thermal resistance network presented in figure 
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4. Unlike eq. 1, eq. 2 takes account of the variation in case to ambient thermal resistance with 

varying case to ambient temperature difference. 
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Where the total heater to ambient thermal resistance under conditions of 
AcT ∞−∆  can be evaluated 

from: 

A

A

A

cPCBFC

cPCBFC
T RRR

)RR(R
R

∞−

∞−

++
+

=  (3) 

Therefore, by combining eq. 1 and 2, the percentage error incurred through the assumption of 

fixed case to ambient thermal resistance may be estimated from eq. 4 as: 

100
)RRR(Q)RTRT(R

TRR
1e

tAAtttA

tt

ccTtchFCcc

ccFC ×












−∆+∆
∆

−=
∞−∞−∞−∞−∞−∞−

∞−∞−  (4) 

 

As 
tcT ∞−∆  approaches 

AcT ∞−∆ , 
tcR ∞−  approaches 

AcR ∞−  and the error approaches zero.  

As defined in eq. 4, the case to ambient thermal resistance is a function of the radiative and 

convective heat transfer coefficients, and so for each configuration the case to ambient thermal 

resistance was calculated from: 

A)hh(

1
R

NCr
c +

=∞−  (5) 

The radiative heat transfer coefficient may be calculated from eq. 6 [14]: 

)TT)(TT(h c
22

ccr ∞∞ ++σ=∈  (6) 

And the convective heat transfer coefficient may be calculated from [14]: 

m
NC Pr)Gr(C

L

k
h =  (7) 

The values used for C and m were 0.53 and 0.25 respectively. The Grashof number may be 

calculated from: 

2

3
c LTg

Gr
ν

∆β= ∞−  (8) 
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The PCB thermal resistance, which was assumed not to vary between configurations, was 

calculated using measured values from configuration 1. As no heat was dissipated through 

forced convection in this configuration, the total thermal resistance in configuration 1 was 

assumed to be the sum of the PCB resistance, RPCB, and the case to ambient thermal resistance, 

∞−cR . Using the measured case temperature and eq. 5 to 8, ∞−cR  was calculated. The total 

thermal resistance was calculated by dividing the heater to ambient temperature difference by 

the heater power. RPCB was then calculated from RT - ∞−cR . This value of RPCB was 

subsequently used for all other configurations. The forced convection thermal resistance for 

configurations 2 to 6 was calculated from: 

tt

tt

TcPCB

cPCBT
FC RRR

)RR(R
R

−+
+

=
∞−

∞−  (9) 

Again, the case to ambient thermal resistance, 
tcR ∞−  was calculated for each of these 

configurations using measured case and ambient temperatures, and eq. 5 to 8. The total thermal 

resistance from heater to ambient under test conditions (
tTR ) was found using the measured 

heater and ambient temperatures and the heater power. 

Table 2 lists the values which were used in eq. 3 to 9 in order to evaluate e for configurations 1 

and 3. These configurations had the highest and lowest values of e respectively. Table 1 also 

shows the estimated error to vary from 9% for configuration 1 to 0% for configuration 3. It 

should be noted that the error which is calculated through this analysis is only approximate due 

to the simplifications involved in the thermal resistance network coupled with difficulties in 

quantifying the emissivity of the casing of the phone and difficulty in defining nodal 

temperatures, particularly the case node temperature as the case is highly non-isothermal. 

However the implication of this analysis is that the over estimation of allowable heat 

dissipation is greatest for configuration 1, and the over estimation reduces as the fan induced 

flow rate is increased. 

 

RESULTS AND DISCUSSION 

Figure 5 presents the measured performance characteristics for the fan at 7500 RPM. Here it is 

seen that the fan has a zero flow pressure rise of approximately 19 Pa, and a zero pressure rise 

flow rate of approximately 0.00018 m3/s. These values compare favorably with commercially 
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available fan of similar dimensions. Figure 6 shows the flow forced by this fan through 

configurations 2 to5, and the corresponding handset pressure drop. Here, as expected, it can be 

seen that increasing the level of blockage reduces the flow rate through the handset and 

increases the pressure drop. The introduction of the 2.5 mm perforated plate in configuration 3 

causes a 14% reduction in flow rate compared to configuration 2, whilst replacing the 2.5 mm 

perforations with 1.6 mm perforations causes further flow rate reduction of 34%. However, for 

configurations 4 and 5, when using 1 mm rather than 1.6 mm diameter perforations, the 

reduction in flow rate is small at only 5%. 

 

Figure 7 shows the transient response characteristics of the phone, firstly to the heater being 

turned on with no fan on, and then to the fan being turned on. The time constants vary across 

the phone, as illustrated on the graph. The PCB and front cover had time constants of 400 s and 

530 s respectively during the initial heating phase, with similar time constants during the 

cooling phase. During the heating phase, the back cover had a significantly longer time 

constant than the other locations, possibly as a result of the large thermal mass of the battery 

which is in close thermal contact with the temperature measurement point. The back cover time 

constant was significantly reduced during the cooling phase as a result of the close proximity of 

the forced air stream to the back cover. 

 

Figure 8 shows the temperature rise of the phone when cooled by the fan, and also when no fan 

was present. The configurations considered here are numbers 1 and 2 as defined in Table 1. 

From figure 8 it is clear that the fan reduces the highest temperature of the phone by 

approximately 40%. This causes the allowable heat dissipation to increase from 1.2 W for the 

no fan case, to 1.9 W when cooled by the fan.  

 

Figure 9 presents the temperature rise of the phone for varying degrees of blockages, 

corresponding to configurations 2, 3, 4 and 5 as defined in table 1. These blockages may be 

considered to correspond to minimum flow areas induced by the presence of components on the 

PCB. With the exception of the 2.5 mm perforations of configuration 3, it is evident that as 

expected, increasing the degree of blockage causes the temperature rise of the phone to 

increase. The increase in the allowable heat dissipation from configuration 2 to 3 may be 

explainable by experimental error, but could also be a result of increased thermal mixing as a 
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result of the formation of jet structures downstream of the holes in the perforated plates. Any 

gains which ensue from this thermal mixing are offset by reduced flow rate which results from 

the increased blockage in configurations 4 and 5. The change in allowable heat dissipation 

between configurations 4 and 5 is small, and this is a result of the small change in flow rate 

between the two configurations which was observed in figure 6. 

 

Figure 10 looks at the effect of fan rotational speed on the temperature rise of the phone and the 

maximum allowable heat dissipation. The rotational speed is important in terms of power 

dissipation, as the power consumed by the fan is proportional to the fan speed raised to the 

power of three. Hence any reductions in fan speed can greatly reduce the demand on the 

battery. The reduction of rotational speed from 7500 to 4000 RPM resulted in a reduction in fan 

power consumption of approximately 15% the higher speed, whilst the reduction in the 

maximum allowable phone power dissipation is only 14% as it goes from 1.7 to 1.5 W, as 

indicated in figure 10. Hence the penalty in terms of fan power consumption of over cooling 

the handset is evident. Reducing rotational speed also has major benefits in terms of acoustics 

and reliability, two other factors that are critical to the mobile phone industry if fans are to be 

implemented in handsets. 

 

The data presented in figures 8, 9 and 10 is summarized in figure 11, which presents the 

percentage increases in allowable heat dissipation which can be achieved by the cooled 

configurations 2 to 6, compared to the no fan configuration 1. From this figure it is clear that 

for the best case scenario of low blockage and even heat dissipation over the PCB, increases of 

~ 75% can be achieved, and that for higher levels of blockage this value is likely to be in the 

region of 40 to 60%. It should be noted that as a result of the relatively large over estimation of 

the allowable heat dissipation for configuration 1 which is discussed at the end of the 

Experimental section, the percentage improvements in reality will be greater than those 

presented in figure 11. 

 

It is clear that in order to achieve the gains which have been demonstrated, a percentage of the 

volume and battery power of the phone must be dedicated to the cooler, whilst a very low 

acoustic noise emission must be tolerated. These features, although small in magnitude, are the 

primary impediments to the commercial deployment of this technology. With this in mind the 
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authors have also developed integrated fan and heat sink solutions, not presented here, in which 

the magnitudes of these features are reduced, whilst performance is improved. As an example, 

a 130x50x22 mm handset, can dissipate 5 W of heat with the assistance of this integrated fan 

and heat sink technology. Thus, the deployment of miniature fan cooling technology can enable 

enhanced processing and download capabilities in future mobile phone applications. 

 

CONCLUSIONS 

� A custom fan was designed, manufactured and characterized. Its aerodynamic performance 

characteristics were found to compare favorably with commercially available fans of 

similar dimensions.  

� When integrated into the phone the fan supplied flow rates ranging from 0.75x104 m3/s to 

1.44 m3/s, increasing with reduced blockage. 

� Thermal time constants for the handset investigated were seen to vary spatially across the 

handset, with proximity to thermal masses increasing the time constant, and proximity to 

the forced air stream reducing the time constant. 

� When integrated into a mobile phone with minimal flow blockage, the fan brought about a 

75% increase in allowable heat dissipation relative to a phone with no fan based on the 

maximum surface temperature constraint. 

� In the presence of realistic blockages the increase in allowable heat dissipation relative to a 

phone with no fan is 40 to 60%. 

� The importance of operating the fan at the lowest possible speed was observed, as reduced 

fan speed resulted in 15% of the power consumption, with only a 14% reduction in 

allowable heat dissipation.  
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Table 1. Summary of phone test configurations. 

Configuration Fan Power 

consumption (mW) 

Fan speed 

(RPM) 

Perforated plate 

1 - - None 

2 59 7,500 None 

3 59 7,500 2.5mm holes 

4 59 7,500 1.6mm holes 

5 59 7,500 1.0 mm holes 

6 26 4,000 1.6mm holes 

 

Table 2. Values used to estimate the error incurred in calculation of allowable heat dissipation 
as a result of assuming constant case to ambient thermal resistance 
Configuration ∞T (°K) 

AcT ∞− (°K) 
tcT ∞− (°K) 

thT ∞− (°K) c∈  e (%) 

1 293 15 25.6 30.8 0.9 9 
3 293 15 15 18.5 0.9 0 

 

 

Figure 1. Nokia 3120 mobile phone in which the performance active cooling solutions was 

tested. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

(a) 

  

(b) 

Battery
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(c) 

Figure 2. (a) Nokia 3210 populated PCB and metal cover sheet (b) PCB with components 

removed and replaced with fan and heater (c) schematic of phone with fan, battery, gasket, 

heater and inlet and outlet vents. Note that the inlet to the fan is machined into the back cover, 

and that the vents were machined into the original phone cover. 
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Figure 3. IR image used to locate point of maximum temperature on front surfaces of the 

phone. 

 

Th

TcRPCB

RFC

Q

QC

QFC

.

.

.
∞−cR

Q
.

∞T

 

Figure 4. Simplified thermal resistance network representing the heat flow path from source to 

ambient. 
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Figure 5. Fan performance curve measured at a rotational speed of 7500RPM. 
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Figure 6. Flow rate and pressure drop in the handset for configurations 2 to 5. 
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Figure 7. Thermal response of phone to initial step input of heat with no fan, and the response 

to the fan being turned on under the conditions of configuration 2.  
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Figure 8. Temperature rise above ambient per watt of heat dissipated, and allowable heat 

dissipation for no fan and a custom fan at rotational speed of 7500RPM. See Table 1 for 

definition of test configurations. 
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Figure 9. The effect of blockage on the temperature rise of the phone casing and the maximum 

allowable heat dissipation for the case of the custom fan design. See Table 1 for definition of 

test configurations. 
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Figure 10. The effect of rotational speed on the temperature rise of the phone casing and the 

maximum allowable heat dissipation for the case of the custom fan design. See Table 1 for 

definition of test configurations. 
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Figure 11. Percentage gains in allowable heat dissipation which are achievable compared to the 

no fan configuration 1. 

 


