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Using a 3D fully-vectorial coupled Bloch-mode method, we present a systematic study of the transport of
slow-light pulses in single-mode photonic-crystal waveguides (PhCW) with a realistic disordermodel. For
the intermediate regime corresponding to waveguide lengths of the order of the mean-free path (3dB
attenuation), we show that the group-velocity has a strong impact on the pulse broadening and distortion,
limiting the practical use of PhCW to group indices below ≈50. For smaller group velocities, the pulse
experiences an additional delay and the group-velocity is no longer a meaningful quantity. © 2011
Optical Society of America
OCIS codes: 130.5296, 030.5770, 290.4210, 320.5550.

1. Introduction

Photonic-crystal (PhC) structures offer a rich degree
of control over light-matter interactions, leading to
trapped and slow-light modes buried within a forbid-
den photonic band gap. In the more practical planar
PhC semiconductor systems, waveguide modes can
be completely bound below the light line and thus
can be theoretically lossless. However, manufactur-
ing imperfections result in fabrication disorder that
break the translational invariance of a nominally
perfect lattice and cause scattering of the bound
modes. Despite great initial premises [1–3], disorder
is presently believed to be a severe limitation for the
deployment of slow-light PhC waveguides (PhCW)
For instance, recent studies have shown that the
waveguide attenuation quadratically increases with
the group index [4–6], that the transmission prob-

ability distribution rapidly broadens as the group-
velocity decreases even for modest waveguide
lengths of a few tens of wavelengths [7]. In addition,
in agreement with earlier works [8], direct measure-
ments of the dispersion curve in k-space [9] have also
shown that, for group velocities vg < c=25, the group-
velocity concept loses its relevance. Finally, it has
been predicted that the light transport is no longer
dominated by a single propagative Bloch-mode for
slow-light, but by a complex standing-wave superpo-
sition formed only by the fundamental backward and
forward Bloch-modes. These modes are Fabry–Perot
extended resonances assisted by a series of more lo-
calized quasi-states, similar to coupled cavity states
[7,10] at a given wavelength, which are remnant of
light localization in these waveguides, as has been
observed for intentionally large disorders [11,12].

Although for on-chip optical processing applica-
tions the information is encoded on high repetition-
rate pulses, slow-light transport in PhCW has been
mainly studied in the frequency-domain up to now,
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either theoretically with frequency methods or ex-
perimentally with tunable lasers to our knowledge.
Exceptions however arise for recent studies on delay
lines [13] and on various nonlinearities of slow-light
pulse propagation in PhCW [14–16]. However, even
in these studies, fabrication imperfections are as-
sumed to impact only the effective linear attenua-
tion. This assumption is made theoretically in the
so-called nonlinear Schrödinger equation [14] and
is used to exploit experimental data, but no systema-
tic discussion is ever provided on any eventual pulse
distorsion.

In contrast, the present work provides a direct
study of the impact of fabrication imperfections on
the propagation of slow-light pulses in PhCWs. It is
not devoted to the extreme regime of pulse localiza-
tion, but rather to intermediate regimes that are re-
levant for practical situations. Hereafter, referring to
the terminology classically used for the electronic
transport in 1D systems [17], we distinguish the bal-
listic regime that is obtained for waveguide lengths L
much smaller than the mean-free-path ℓ (defined as
the waveguide length corresponding to a 3dB at-
tenuation) and the localization regime obtained for
L ≫ ℓ. More specifically, we will be concerned by
the intermediate regime, L ≈ ℓ, which offers a good
compromise between loss and delays. Section 2 pre-
sents the PhC waveguide under study, the disorder
model and the numerical method used to calculate
pulse propagation and to collect statistics on ensem-
ble average. In Section 3, the broadening, damping,
and dispersion of picosecond pulses is analyzed for
several group velocities, keeping the waveguide
lengths of the order of the mean-free path. Section 4
offers a summary of the main results.

2. Disorder Model and Numerical Method

Hereafter, we consider a PhC waveguide obtained by
removing a single row of holes in the ΓK direction of a
hexagonal lattice of air holes in a 220nm-thick
silicon layer (refractive index 3.45), see Fig. 1(a).
For a lattice constant a � 420nm and a hole radius

r � 0:3a, the PhC waveguide supports a single pro-
pagating TE-like Bloch-mode with a group-velocity
that gradually decreases as the wavelength in-
creases up to the cutoff wavelength λc≈1560nm at
the boundary of the first-Brillouin zone
(a=λ ≈ 0:27). The dispersion curve, calculated as
dω=dkz with a 3D fully-vectorial modal method
[18], is shown with the black curve in Fig. 1(b).

Hereafter, we use a hole-size disorder model, in
which we assume that the hole radii of the two inner
rows, see Fig. 1(a), are randomly varied around their
mean nominal value of r � 0:3a with a statistical
Gaussian distribution of standard deviation σ �
1:7nm. We further assume a short-range disorder,
so that two distinct etched holes have fully-indepen-
dent deformations. We neglect any potential vertical
asymmetry of the hole. Indeed, the model is likely to
be simplistic. However, we note that the two inner
rows are dominantly interacting with the waveguide
mode field; it is only for very small group velocities
(ng > 100 not considered hereafter) that the Bloch-
mode spreads into the PhC cladding and signifi-
cantly interacts with the second-inner rows. In
addition, we note that, as shown in [19], with a stan-
dard deviation σ � 1:7nm, the model quantitatively
predicts many salient features of the slow-light
transport in PhCW obtained with state-of-the-art
nanofabrication facilities.

The computation of pulse propagation in disor-
dered PhCW is challenging, because one is concerned
by very small perturbations in the nanometer range,
with long propagation distances of the order of a few
hundreds of micrometers and with high refractive in-
dex contrast. The coupled Bloch-mode method that
we use hereafter is highly accurate. It has been ela-
borated to overcome the limitations of earlier ap-
proaches based on perturbation theory [17] and as
shown by comparison with experimental data [7,19],
it is able to quantitatively predict many important
features of slow-light transport in PhCW. In brief,
the method relies on a two-step procedure. The first
step consists in calculating the elementary single-
cell scattering coefficients [ru and tu in Fig. 1(a)]
for every possible unit-cell disorder instance labeled
by u. This computation is central in the analysis and
is performed with a fully-vectorial Fourier-modal
method that allows satisfying ingoing and outgoing
wave conditions in periodic media [18]. At this level,
there is no approximation, other than the inevitable
Fourier-space sampling that is finite due to memory
requirements, and ru and tu are calculated with a
high accuracy. The second step consists in calculating
the transmittance TL�ω� � jtL�ω�j

2 (and the reflec-
tance RL) of a perturbed waveguide-section with a fi-
nite length L. For this, it is assumed that solely the
fundamental TE-like Bloch-mode participates in the
in-plane energy transport at frequency ω. Thus, it is
sufficient to consider 2 × 2 scattering matrices,

su �
�

tu ru
ru tu

�

, to model the transport properties

and R and T can be easily computed using classical
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Fig. 1. (Color online) Photonic-crystal waveguide considered in
the present work. (a) The disorder model assumes that only the
hole-size of the two inner-rows is varying with a Gaussian-random
distribution of standard deviation σ. (b) Dispersion diagram of the
TE-like Bloch-mode of the ideal waveguide, calculated with a 3D
fully-vectorial method for a 220nm thick silicon layer (refractive
index 3.45), for a lattice constant a � 420nm and a hole radius
r � 0:3a.
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2 × 2 scattering-matrix products [20]. Because of the
reduction in matrix sizes, the computational loads
are drastically reduced and statistics are straightfor-
wardly collected, even for long waveguide sections.

It is important to understand the approximations
made with the single-mode frequency-domain ap-
proach. First, we note that since su is calculated
using a fully-vectorial approach, the scattering (in-
cluding out-of-plane losses) of every elementary
event is rigorously handled at every frequency. Addi-
tionally, in-plane multiple scattering is inherently ta-
ken into consideration by 2 × 2 scattering-matrix
products. The sole approximation stems from the fact
that one disregards the potential recycling of photons
that are scattered out in the cladding by the scat-
terers. Actually, before fully leaking out of the wave-
guide, these photons may be scattered by another
nearby scatterer and a fraction of them may be re-
cycled back into the waveguide. The interested read-
er may find a discussion of the impact (generally
weak for moderate ng’s) of the multiple scattering
of radiated photons in the supplementary-informa-
tion document in [17]. All the previous calculations
are performed in the frequency-domain, they are re-
peated for many frequencies, and finally, the time-
dependent pulses are obtained by classical Fourier
decomposition techniques.

3. Pulse Propagation: Computational Results

Let us start by considering the transmission spectra
calculated with the coupled Bloch-mode method.
Figure 2 shows three spectra obtained for three
waveguides with lengths, L � 100a, 200a, and 500a
for σ � 1:7nm. In the absence of any disorder, TL�λ�
should be equal to 1, since the TE-like Bloch-mode is
truly guided in the spectral range of interest. The
main feature of the spectra is their oscillating behav-
ior reinforced by spikes for large ng’s. We note that
the oscillation frequency increases and that the
spikes become narrower as the waveguide length
increases. The spikes have been recently observed
experimentally and have been interpreted as
Fabry–Perot extended resonances assisted by a ser-
ies of localized states [7].

Next we consider the propagation of Gauss-
ian pulses, with an amplitude denoted by s0�t� �
B exp�−t2=2τ2�. Hereafter, we consider a pulse
duration of τ � 7:5ps, corresponding to a 25ps full-
width-half-maximum temporal width, but similar

qualitative conclusions are also obtained with
slightly shorter pulses. The duration of 7:5ps corre-
sponds to a spectral width of 0:1nm that is repre-
sented by the colored area in Fig. 2. Figure 3
summarizes the main useful results obtained for
modest waveguide lengths L � 100, 200, and 500a
and for three group indices, ng � 20, 50, and 70.
For the following discussion, it is interesting to keep
in mind the corresponding mean-free-paths, equal to
ℓ ≈ 104a, 200a and 40a, respectively. For every case,
we consider 100 instances of independent disorder
realizations and we consider the ensemble average
of the natural logarithm of the waveguide transmis-
sion hln�T�i as a function of L. This quantity is a lin-
early decreasing function of L and its slope provides
themean-free path ℓ by hln�T�i � −L=ℓ [21]. Then, for
the 100 instances, we calculate the transmitted
pulses for an incident pulse with a unit energy,
R

js0�t�j
2dt � 1. Only five typical pulses are shown

in the figure for the sake of clarity. The 100 samples
allow us to compute ensemble-averaged physical
quantities, such as the mean pulse energy I �
R

js�t�j2dt or the mean effective energy-propagation
delay [22,23]

ΔtE � I−1
Z

tjs�t�j2dt; �1�

where s�t� is the amplitude at time t of the pulse
transmitted by a PhC waveguide of length L. Note
that ΔtE is directly related to the energy velocity
vE by the relationship vEΔtE � L [23].

It should be noted that the group-velocity disper-
sion (GVD) is taken into account in the previous
calculations. As evidenced by the black-dashed
curves in Fig. 3, which represent pulses transmitted
through the disorder-free waveguides, the GVD plays
no role in the pulse broadening. This is consistent
with the fact that the waveguide lengths L consid-
ered in the study are much smaller than the disper-
sion lengths LD � jβ2j=τ

2 (β2 being the second-order
dispersion coefficient), i.e. the propagation distances
for which the pulse durations are doubled. The latter
are LD ≈ 80; 000a, 10; 000a, and 5400a for ng � 20,
50, and 70, respectively.

Let us first consider the transmitted pulses for
ng � 20 (left column in Fig. 3). In this case, the three
waveguide lengths that are considered are much
smaller than the mean-free-path (ℓ ≈ 104a) and the

Fig. 2. (Color online) Examples of calculated transmission spectra for three waveguide lengths L � 100, 200, and 500a. The pink, light-
green, and blue spectral intervals that are respectively centered at ng � 20, 50, and 70, are 0:2nm large. This corresponds to spectral
intervals twice larger than the 25ps pulse FWHM.
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transport is essentially ballistic: the pulses are only
weakly distorted as evidenced by comparison with
the black-dashed curves. The group-velocity is then
equal or close to the energy velocity as can be seen
in Table 1, which additionally shows the averaged
transmitted-pulse energy hIi.

For ng � 50 (center-column), the results are differ-
ent; the transmitted pulses are significantly attenu-
ated and broadened. They remain Gaussian-like for
L � 100a, but for L � 200a and 500a, a tail is ob-
tained for a few pulses and the pulse shapes are
no longer Gaussian-like. We additionally note that,
because of the imperfections, the pulses experience
an additional delay (ΔtE−Lng=c) that is easily notice-
able for the transmitted pulses obtained for L �
500a, since it varies between 5 and 10ps from one
pulse to another. As it corresponds to the mean-
free-path for ng � 50, the waveguide length L �
200a (central plot) is especially interesting (see
Table 1). In this case, the normalized averaged pulse
energy hIi, calculated over the 100 independent dis-
order realizations, is 0.52. However, although the
pulse attenuation corresponds to an acceptable
∼3dB loss, the transmitted-pulse energies strongly
vary from one disorder realization to another. These
statistical fluctuations can be seen in the central
window of Fig. 3. The intensity standard deviation
is σI � h�I − hIi�2i � 0:19, a rather large value that

precludes reproducible characteristics from one
waveguide to another. In addition, we note that
the averaged effective delay defined in Eq. (1) is
18ps, a value that is 4ps larger than the theoretical
delay for a perfect waveguide Lng=c � 14ps. As a
matter of fact, the energy velocity is 30% smaller
than the group-velocity.

The situation is even worse for ng � 70 (ℓ ≈ 40a).
For the same waveguide length L � 200a, hIi � 0:23,
σI � 0:6 and the averaged energy velocity is twice
smaller than the group-velocity (hΔtEi � 40ps ≈
2Lng=c). In the pure localization regime obtained
for instance for ng � 70 and L � 500a (L ≈ 10ℓ) (left
column in Table 1), pulses are highly damped and
distorted (hΔtEi � 3Lng=c and σI ∼ hIi). The pulses
are so distorted that the delay between the leading
and trailing edges of the transmitted pulses is much
larger than the mean energy-propagation delay
hΔtEi. Therefore, neither the group-velocity nor the
energy velocity are meaningful quantities.

4. Conclusion

In summary, we have studied the propagation of
pulses in PhCW in the presence of realistic disorder.
In the ballistic regime, pulses are transported vir-
tually without any deformation. The interesting re-
gime occurs for waveguide lengths approximately
equal to the mean-free-path. For this intermediate
regime, the pulse attenuation is reasonably weak,
∼3dB on average, but interestingly, we find that
for slow-down factors higher than ten, the sharp and
intense peaks observed in the spectral domain (Fig. 1)
are partly smoothed in the temporal domain (Fig. 2),
due to filtering by the spectral window associated to
the pulse width. Thus the transmitted-pulse shapes
remain Gaussian-like and the energy velocity, not
the group-velocity, is still a relevant quantity to con-
sider. It is only for larger slow-down factors or longer
waveguide lengths that the pulse distortion is so
large that both energy and group velocities are no

Fig. 3. (Color online) Pulse distorsion after propagation through a finite-length disordered PhC waveguide. The colored curves corre-
spond to typical examples obtained for different disorder realizations, calculated for σ � 1:7nm. For comparison, the black-dashed curves
correspond to the ideal case, in which the same pulse propagates into the PhC waveguide in the absence of disorder. Three lengths,
L � 100, 200, and 500a, and three group indices, ng � 20, 50, and 70 are considered.

Table 1. Statistics for the Pulses Displayed in Fig. 3
a

L 100a 200a 500a

ng 20 50 70 20 50 70 20 50 70
hIi 0.97 0.70 0.44 0.95 0.52 0.23 0.88 0.25 0.05
σI 0.02 0.18 0.20 0.05 0.19 0.14 0.07 0.13 0.05
Δt (ps) 2.8 7 10 5.6 14 20 14 35 50
hΔtEi (ps) 2.8 8.3 14 5.7 18 40 14.5 61 165

a
hIi represents the averaged transmitted-pulse energy. Δt �

Lng=c is the theoretical group delay. ΔtE is the effective energy
delay defined by Eq. (1).
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longer meaningful quantities. The same type of
calculations as those carried out in this study could
be performed for dispersion-engineered waveguides
to show that pulse distortion would still occur. How-
ever, we believe that, in principle at least, the distor-
tion will remain in these type of structures and will
not significantly change the group-velocity bound-
aries for operation.

As evidenced by our results, we believe that pulse
broadening and distortion in PhCW is due to disorder
and not to GVD of the ideal waveguide. As evidenced
by all black-dashed pulse shapes in Fig. 3, the GVD
negligibly impacts the pulse shape for waveguide
lengths equal to the mean-free-path. In addition, we
believe that a better knowledge of the pulse distor-
tion is essential for further design of slow-light PhC
experiments, especially with respect to nonlinear ex-
periments for which pulse walk-off management in
pump-probe experiments is vital.
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