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ABSTRACT  
The visionary objective of this work is to “open to people 
connected to the internet, an access to ocean depths anytime, 
anywhere.” Today these people can just perceive the changing 
surface of the sea from the shores, but ignore almost everything 
on what is hidden. If they could explore seabed and become 
knowledgeable, they would get eventually involved in finding 
alternative solutions for our vital terrestrial problems – pollution, 
climate changes, and destruction of biodiversity and exhaustion of 
Earth resources. The introduction of Mixed Reality and Internet in 
aquatic activities constitutes a technological rupture when 
compared with the status of existing related technologies. 
Through Internet, anyone, anywhere, at any moment will be 
naturally able to dive in real-time using a Remote Operated 
Vehicle (ROV) in the most remarkable sites around the world. 
The heart of this work is focused on Mixed Reality. The main 
challenge is to reach real time display of digital video stream to 
web users, by mixing 3D entities (objects or pre-processed 
underwater terrain surfaces), with 2D videos of live images 
collected in real time by a teleoperated ROV.  

Categories and Subject Descriptors 
D.2.11 [SOFTWARE ENGINEERING ]: Software 
architectures—Domain specific architectures. H.5.1 
[INFORMATION INTERFACES AND PRESENTATION ]: 
Multimedia Information Systems—Artificial, augmented, and 
virtual realities. C.2.1 [NETWORK ARCHITECTURE AND 
DESIGN]: Distributed networks 

General Terms 
Design, Experimentation 

Keywords 
Augmented Reality, Mixed Reality, Distributed Architecture, 
Underwater, Telerobotics. 

1. INTRODUCTION 
Oceans represent 70% of earth surface, while those who have 
some knowledge of oceans and seas depths – divers and marine 
scientists- represent less than 0.5 % of world’s population. Virtual 
diving in real time through web teleoperation of a ROV and 
Mixed Reality is a new, innovative way to discover the undersea 

world on-line, complementing or replacing scuba diving, giving 
access to knowledge and discovery of seabed. 

The challenge is to mix 3D pre-processed underwater terrain 
surfaces of distant sites with the ROV video camera. ROVs are 
presently operated through an umbilical cable by a distant 
operator. Nevertheless it appears that technologies and experience 
already acquired in the field of teleoperation via internet of 
robots, in general, and more specifically, in the field of operation 
of underwater robots is now mature enough to seriously consider 
the development of ROVs teleoperation by Internet ([1], [2], [3] 
and [4]), which may constitute a technical and technological 
breakthrough. 

In addition to teleoperation as it is meant classically, the main 
objective of this work is to enrich the user’s experience with 
reliable, real time generated, graphical and textual entities helping 
to understand the situation in a relatively unfamiliar environment 
and to ease and speed-up decision taking in such environment. 

As an additional feature, the whole architecture is designed to be 
distributable on several sites. This makes the application more 
flexible and allows the involvement of multiple users. 

2. ROV Teleoperation 
In addition to exploration, a lot of commercial operational 

tasks require to dive (ex. underwater inspection tasks). Industry 
has already tried to ease these tasks in a variety of technological 
and functional ways, providing the diver with special suits, 
detailed seabed map. 

 Even if these improvements helped the divers there still were 
in-situ communication problems, no ability to automate the tasks 
and physiological effects on the divers. Effects of working in such 
a high pressure, viscous and weightless environment are very 
numerous. Beside the disorientation and affection of tactile-
kinesthetic and vestibular systems, some serious medical issues 
may appear.  

We can quote Nitrogen Narcosis, Pulmonary Oxygen Toxicity, 
decompression Sickness (DCS), Arterial Gas Embolism (AGE), 
Hypothermia, Barotraumas, etc. Those are discussed in [5], [6] 
and [7]. The use of ROV (Remote Operated Vehicle) allows 
avoiding the largest part of these issues (especially on exploration 
[8] and inspection tasks [3] and [4]). In addition, the ability to 
operate distantly in a human friendly environment with all 
necessary information from a set of sensors also improves the 
speed and the quality of decisions. 



3. Augmented Reality Component System 
Practically, AR applications which objective is assisting the users 
often share several common components used in different ways. 
Due to heterogeneous input devices providing data at different 
rates and due to different processing algorithms requiring different 
computation times, research efforts were initiated to offer 
common frameworks aiming at offering flexible, reusable and 
customizable components to build AR applications. These efforts 
have allowed the emergence of component based AR dedicated 
frameworks.  

Amongst the most remarkable ones, we cite Studierstube [9]. It is 
based on the concept of distributed scene graphs. Each user has a 
local scene graph which modifications are propagated through the 
network to maintain the graph consistency.  

One of the most accomplished state of the art frameworks is 
DWARF [10] (Distributed Wearable Augmented Reality 
Framework). It is based on interdependent CORBA (Common 
Object Request Broker Architecture) services. The architecture is 
decentralized and several applications proving efficiency of the 
framework have been developed. Some other frameworks are 
based on the same main concepts such as AMIRE [12] (Authoring 
Mixed Reality) and MORGAN [11]. 

The framework on which our application is built is called ARCS 
[14] (Augmented Reality Component System). ARCS is a 
component-based framework dedicated to AR. Its components, as 
classical components [15], can be configured and composed with 
other components.  ARCS uses the signal/slot paradigm 
(borrowed from user interface libraries) to connect components to 
each other in order to make them communicate. 

Tinmith [13], is a library written to develop mobile AR systems. 
The communication between modules is made possible by client-
server style architecture. A module providing data is the server 
that listens to clients that request a subscription. When data on the 
server is changed, the new values are sent to all clients that have 
registered their interest to this message. The clients can then use 
the new data to perform the task of the module (e.g. refresh the 
display). The system is asynchronous and data driven. If there is 
no new data, no new message will be generated and no action 
performed by any software module. 

In ARCS, every application is described as a set of threads. 
Basically, a finite state machine, which states represent a specific 
configuration of the application’s data flow controls each thread. 
Such a configuration is called a sheet and contains configuration 
values for components as well as a list of signal/slot connections. 
Each change of state in the state machine results in a change of 
global configuration of components and hence reconfigures 
connection between components, that is to say the dataflow. 

A simple example would be an application with one automaton 
(one thread), with a given number of sheets (eg. each sheet 
representing a given scenario). Here, the state machine’s role 
would be to switch from a scenario to another. 

From the technical point of view, ARCS is written in C++ and is 
based on Qt Library, which already implements the signal/slot 
concept. ARCS supports XML and JavaScript as scripting 
languages to describe applications behavior. 

 

4. ROV Teleoperation System  

A. System architecture 
The system is constituted of five main types of sites (network 
nodes) that are: 

- ROV site (usually in the sea / pool); 
- ARCS main application site; 
- 3D repository site where are stored 3D content (e.g: 

fauna and flora models); 
- Web server which hosts the web application; 
- User site (can be several users on different sites). 

 

The figure 1 illustrates the relation and data streams between the 
five sites. Except the ROV site, all the other sites may be 
regrouped depending on the application scenario. 

 

Internet

ROV Intructions 

MR Video

Web 

Application

Sensors, Video

ROV

ARCS

Sensors, Video

3D content

ROV Intructions 

MR Video

Web server

3D repository

3D 

content

 

Figure 1. Data streams between the five sites 
 

Basically, the system works as follows. The user controls the 
robot via the web user interface. The robot equipped with a set of 
sensors (including two cameras, but only one can be used) sends a 
continuous data stream to the ARCS main application, which 
creates the augmented scene and sends out the final output data 
(video stream and other information) that is then available to the 
user who can build a custom view of the scene. 

The internal architecture (see figure 2) of the Web 
Application is divided into three parts. The internal architecture 
involves as well: a webpage written with HTML5, CSS 3 and 
JavaScript (JS), a PHP script in order to communicate with the 
ROV using Modbus TCP protocol and a PHP controller. Modbus 
is a serial communications protocol published in 1979. The 
controller is designed to manage all data streams between 
modules: 

- Robot instructions, which are high level commands, 
created by users by clicking on the interfaces buttons 
(e.g. go forward, turn left, etc.). The PHP Modbus script 
will convert those high level commands to Modbus 
commands (e.g.: ROV Address + Read/Write code + 
First memory registry code + Number of bytes + Data to 
send + CRC16); 

- Robot data, which is sent by the ROV (e.g. sensors 
status, error, etc.). 

 



A specific module called Robot Computer Interface (RCI) permits 
to link the ROV to the network (see figure 3). It is composed by 
four components: 

• Power manager; 
• Battery; 
• Control and video module: convert LAN/WLAN data 

into RS485 data; 
• Video demodulation: convert PAL/NTSC video signal 

into a numeric video signal. 
 

 
Figure 2. Robot and Computer Interface – Electronic design 

 
The web application can also receive data from ARCS. This is 

a specific data stream which contains data computed by ARCS 
application in order to allow a local augmentation if many users 
are viewing the live video (e.g. add sensors information on the 
video).  The web application will communicate with ARCS 
through the network (eventually internet). ARCS will allow 
mixing live video from ROV with 3D content. The 3D content is 
stored in a MySQL database. 

B. Web application user interface 
The Web Application is written with PHP, HTML5, 

JavaScript and CSS3. The user interface (see figure 4 below) is a 
human machine interface in order to send commands to the ROV 
(teleoperation), supervise sensors data from ROV (virtual 
dashboard) or enable a user to interact with other features (chat 
with other divers or get more information via web services, such 
as weather, maps…) in the web page. 

 

The web application is divided in six parts: 

1) Mixed Reality live video from ARCS application; 
2) Navigation panel to control the ROV (Moves, ROV lights, 

front or back cameras and Mixed Reality On/Off switches); 
3) HTML5 2D canvas to plot a virtual trajectory; 
4) A chat to communicate with others users; 
5) Data panel which displays data from ROV sensors; 
6) Web services panel which displays or shares data from 

diving site. 
 

 

Figure 3. Software architecture of the web application – Data 
stream between modules 

 

 

Figure 4. Web application – Graphical User Interface 
 

 
 

 

 

 

 



C. ARCS main application 
Built following the standard ARCS application pattern which 

itself is based on the generic Augmented Reality application 
pattern introduced by Asa McWilliams [17], the application is 
thought to support multiple distant users.  

The architecture of the middleware that has been designed for 
ARCS can be found in [16]. 

The model of the application is data driven. Video stream coming 
from the ROV implies that for each new frame processed by the 
video stream reader, the tracking component recalculates visible 
3D entities and their position (3D registration). ARCS offers a 
framework to support several 3D rendering engines and already 
supports OGRE 3D and OpenInventor. Depending on the chosen 
rendering engine, the corresponding component creates then the 
final representation blending the raw input with 3D content taken 
from a distant database. This final output is then converted to a 
video stream, which is sent to the users. It is important to notice 
that the output manager supports different kind of data that can be 
sent separately to users who will chose different display modes 
and who are interested in different textual information.  

Figure 5 illustrates an example with OGRE as a rendering engine 
ad video stream as the unique input. We also assume in this 
example that the user site hosts the webserver. 

The state machine is a specific component of the general 
automaton (written in XML or built via the application designer 
that generates the XML description), it manages the connections 
between the other components and is initialized by the profile (a 
file containing given values to application constants). 

 

Figure 5. ARCS main application architecture 

D. Mixed Reality video streaming 
In order to transmit the MR video over the Internet the ARCS 

output manager needs to digitalize the created MR video (ROV 
video + 3D content). For encoding and delivering, we have 
chosen Ogg format. Ogg is an open standard, open source–
friendly, and unencumbered by any known patents. Ogg is based 
on three technologies: a container (Ogg), a video codec (Theora) 
and an audio codec (Vorbis). The output manager will stream over 
the Internet using the HTTP protocol on 8080 port. This protocol 

is capable of traversing any firewall or proxy server that lets 
through standard HTTP traffic. 

5. Scenarios 
The application being designed to be distributed and relatively 

generic, different scenario have been identified to explore the 
feasibility of the global solution. ARCS has already been assessed 
and proved to be real time capable for state of the art AR 
applications. However, applications involving network 
communications depend not only on the used framework but also 
on their consumption of network resources. 

The simplest scenario is to have a ROV that communicates with 
the operator site on which all the other sites are regrouped. Here 
we have a unique user, and no intricate network communication. 
Performance issues rely only on the operator machines 
capabilities depending on the kind of application. 

In the general case, each site is on a different machine and 
there may be several users. The only point where serious network 
performance issues emerge is when having multiple user 
terminals. This issue is avoided by multicasting the output to 
users. 

6. Preliminary Tests 

6.1 Set-up of the teleoperation system 
Tests have been performed on November 2011 at UCPA Aqua 

92 diving pit at Villeneuve-la-Garenne. Those tests were 
performed to detect potential waterproof problems in the ROV 
and also the WWW demonstrator with the use of ARCS. The 
ROV is wired (umbilical cable) to its own box (see figures 6 and 
7). This box permits to charge the ROV batteries and connect it to 
LAN/WLAN network (for control and video). For those tests, we 
have set-up a local network using a router. A computer was 
connected to this network. This computer (x86 based - Windows 
XP) was running ARCS and the web application with the use of a 
local Apache server (see figure 1). 

 

 
 

Figure 6. On the left: ROV box – On the middle: the computer 
used as a client and server – On the right: the Wifi router used 

for the test 
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Figure 7. The ROV in the UCPA Aqua 92 pit at 5 m depth 

6.2 Mixed Reality testing with ARCS  
Real-time scene augmentation has been performed following three 
custom scenarios. First is contextual scene augmenting (figure 8), 
that only consists in adding virtual entities for immersive and 
decorative goals (ex. Adding specific species of fish depending on 
the environment or adding virtual funny fish in a swimming pool, 
etc.). Second test is based on marker tracking (ex. Display 
information on a marked zone or object such as a pipe or a 
wreck). In our example (figure 9), those markers are set on buoys. 
The third and last one is based on natural features tracking (ex. 
Automatic fish classification). A preliminary test has been made 
with the SURF [18] (Speeded-Up Robust Features) component of 
ARCS (which is based on OpenSURF library). 

 
Figure 8. Markerless contextual augmentation 

 

 

Figure 9. The marker based approach. The marker is used to 
display entertainment content in the UCPA aqua 92 pool 

7. Conclusion and Future work 
We have specified and built a customizable software and network 
architecture in order to enable enriched teleoperation with a ROV 
involving Mixed Reality content. Augmented scene is computed 
on a distant site using any relevant ARCS-based application. This 
makes the system more flexible and allows the involvement of 
multiple users. We have set-up three scenarios. The first was to 
augment the distant scene by adding 3D content for decorative 
purpose. The second scenario is a marker based approach. And 
finally, a scenario based on natural features (fish classification). 
The three previously described applications are only to illustrate a 
proof of concept. The possible applications are very numerous. 
There are way more scenarios to develop. As an example, one 
useful and interesting application is the 3D reconstruction that we 
are working on. We already explored this research area using a 
monocular SLAM (Simultaneous Localization And Mapping) 
approach providing valuable feedback indoors. Taking advantage 
on the ARCS decentralized hybrid architecture [15], a 
collaborative multi-robot and multi-sensor (including sonar-based 
approach) will be explored for real-time 3D reconstruction of 
seabed and submarine natural environments.  We are also 
investigating the use of VR devices as optical tracking and haptic 
devices to control more easily and feel the distant remote ROV. 
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