
HAL Id: hal-00675319
https://hal.science/hal-00675319v1

Submitted on 29 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Mixed Reality for remote underwater
telerobotics exploration

Mehdi Chouiten, Christophe Domingues, Jean-Yves Didier, Samir Otmane,
Malik Mallem

To cite this version:
Mehdi Chouiten, Christophe Domingues, Jean-Yves Didier, Samir Otmane, Malik Mallem. Distributed
Mixed Reality for remote underwater telerobotics exploration. 14th Virtual Reality International
Conference (VRIC 2012), Mar 2012, Laval, France. (elec. proc), �10.1145/2331714.2331716�. �hal-
00675319�

https://hal.science/hal-00675319v1
https://hal.archives-ouvertes.fr

Distributed Mixed Reality for remote underwater
telerobotics exploration

Mehdi Chouiten, Christophe Domingues

Jean-Yves Didier, Samir Otmane, Malik Mallem
RATC Team, IBISC Laboratory

University of Evry, France

mehdi.chouiten@ibisc.fr - christophe.domingues@ibisc.fr

ABSTRACT
The visionary objective of this work is to “open to people
connected to the internet, an access to ocean depths anytime,
anywhere.” Today these people can just perceive the changing
surface of the sea from the shores, but ignore almost everything
on what is hidden. If they could explore seabed and become
knowledgeable, they would get eventually involved in finding
alternative solutions for our vital terrestrial problems – pollution,
climate changes, and destruction of biodiversity and exhaustion of
Earth resources. The introduction of Mixed Reality and Internet in
aquatic activities constitutes a technological rupture when
compared with the status of existing related technologies.
Through Internet, anyone, anywhere, at any moment will be
naturally able to dive in real-time using a Remote Operated
Vehicle (ROV) in the most remarkable sites around the world.
The heart of this work is focused on Mixed Reality. The main
challenge is to reach real time display of digital video stream to
web users, by mixing 3D entities (objects or pre-processed
underwater terrain surfaces), with 2D videos of live images
collected in real time by a teleoperated ROV.

Categories and Subject Descriptors
D.2.11 [SOFTWARE ENGINEERING]: Software
architectures—Domain specific architectures. H.5.1
[INFORMATION INTERFACES AND PRESENTATION]:
Multimedia Information Systems—Artificial, augmented, and
virtual realities. C.2.1 [NETWORK ARCHITECTURE AND
DESIGN]: Distributed networks

General Terms
Design, Experimentation

Keywords
Augmented Reality, Mixed Reality, Distributed Architecture,
Underwater, Telerobotics.

1. INTRODUCTION
Oceans represent 70% of earth surface, while those who have
some knowledge of oceans and seas depths – divers and marine
scientists- represent less than 0.5 % of world’s population. Virtual
diving in real time through web teleoperation of a ROV and
Mixed Reality is a new, innovative way to discover the undersea

world on-line, complementing or replacing scuba diving, giving
access to knowledge and discovery of seabed.

The challenge is to mix 3D pre-processed underwater terrain
surfaces of distant sites with the ROV video camera. ROVs are
presently operated through an umbilical cable by a distant
operator. Nevertheless it appears that technologies and experience
already acquired in the field of teleoperation via internet of
robots, in general, and more specifically, in the field of operation
of underwater robots is now mature enough to seriously consider
the development of ROVs teleoperation by Internet ([1], [2], [3]
and [4]), which may constitute a technical and technological
breakthrough.

In addition to teleoperation as it is meant classically, the main
objective of this work is to enrich the user’s experience with
reliable, real time generated, graphical and textual entities helping
to understand the situation in a relatively unfamiliar environment
and to ease and speed-up decision taking in such environment.

As an additional feature, the whole architecture is designed to be
distributable on several sites. This makes the application more
flexible and allows the involvement of multiple users.

2. ROV Teleoperation
In addition to exploration, a lot of commercial operational

tasks require to dive (ex. underwater inspection tasks). Industry
has already tried to ease these tasks in a variety of technological
and functional ways, providing the diver with special suits,
detailed seabed map.

 Even if these improvements helped the divers there still were
in-situ communication problems, no ability to automate the tasks
and physiological effects on the divers. Effects of working in such
a high pressure, viscous and weightless environment are very
numerous. Beside the disorientation and affection of tactile-
kinesthetic and vestibular systems, some serious medical issues
may appear.

We can quote Nitrogen Narcosis, Pulmonary Oxygen Toxicity,
decompression Sickness (DCS), Arterial Gas Embolism (AGE),
Hypothermia, Barotraumas, etc. Those are discussed in [5], [6]
and [7]. The use of ROV (Remote Operated Vehicle) allows
avoiding the largest part of these issues (especially on exploration
[8] and inspection tasks [3] and [4]). In addition, the ability to
operate distantly in a human friendly environment with all
necessary information from a set of sensors also improves the
speed and the quality of decisions.

3. Augmented Reality Component System
Practically, AR applications which objective is assisting the users
often share several common components used in different ways.
Due to heterogeneous input devices providing data at different
rates and due to different processing algorithms requiring different
computation times, research efforts were initiated to offer
common frameworks aiming at offering flexible, reusable and
customizable components to build AR applications. These efforts
have allowed the emergence of component based AR dedicated
frameworks.

Amongst the most remarkable ones, we cite Studierstube [9]. It is
based on the concept of distributed scene graphs. Each user has a
local scene graph which modifications are propagated through the
network to maintain the graph consistency.

One of the most accomplished state of the art frameworks is
DWARF [10] (Distributed Wearable Augmented Reality
Framework). It is based on interdependent CORBA (Common
Object Request Broker Architecture) services. The architecture is
decentralized and several applications proving efficiency of the
framework have been developed. Some other frameworks are
based on the same main concepts such as AMIRE [12] (Authoring
Mixed Reality) and MORGAN [11].

The framework on which our application is built is called ARCS
[14] (Augmented Reality Component System). ARCS is a
component-based framework dedicated to AR. Its components, as
classical components [15], can be configured and composed with
other components. ARCS uses the signal/slot paradigm
(borrowed from user interface libraries) to connect components to
each other in order to make them communicate.

Tinmith [13], is a library written to develop mobile AR systems.
The communication between modules is made possible by client-
server style architecture. A module providing data is the server
that listens to clients that request a subscription. When data on the
server is changed, the new values are sent to all clients that have
registered their interest to this message. The clients can then use
the new data to perform the task of the module (e.g. refresh the
display). The system is asynchronous and data driven. If there is
no new data, no new message will be generated and no action
performed by any software module.

In ARCS, every application is described as a set of threads.
Basically, a finite state machine, which states represent a specific
configuration of the application’s data flow controls each thread.
Such a configuration is called a sheet and contains configuration
values for components as well as a list of signal/slot connections.
Each change of state in the state machine results in a change of
global configuration of components and hence reconfigures
connection between components, that is to say the dataflow.

A simple example would be an application with one automaton
(one thread), with a given number of sheets (eg. each sheet
representing a given scenario). Here, the state machine’s role
would be to switch from a scenario to another.

From the technical point of view, ARCS is written in C++ and is
based on Qt Library, which already implements the signal/slot
concept. ARCS supports XML and JavaScript as scripting
languages to describe applications behavior.

4. ROV Teleoperation System

A. System architecture
The system is constituted of five main types of sites (network
nodes) that are:

- ROV site (usually in the sea / pool);
- ARCS main application site;
- 3D repository site where are stored 3D content (e.g:

fauna and flora models);
- Web server which hosts the web application;
- User site (can be several users on different sites).

The figure 1 illustrates the relation and data streams between the
five sites. Except the ROV site, all the other sites may be
regrouped depending on the application scenario.

Internet

ROV Intructions

MR Video

Web

Application

Sensors, Video

ROV

ARCS

Sensors, Video

3D content

ROV Intructions

MR Video

Web server

3D repository

3D

content

Figure 1. Data streams between the five sites

Basically, the system works as follows. The user controls the
robot via the web user interface. The robot equipped with a set of
sensors (including two cameras, but only one can be used) sends a
continuous data stream to the ARCS main application, which
creates the augmented scene and sends out the final output data
(video stream and other information) that is then available to the
user who can build a custom view of the scene.

The internal architecture (see figure 2) of the Web
Application is divided into three parts. The internal architecture
involves as well: a webpage written with HTML5, CSS 3 and
JavaScript (JS), a PHP script in order to communicate with the
ROV using Modbus TCP protocol and a PHP controller. Modbus
is a serial communications protocol published in 1979. The
controller is designed to manage all data streams between
modules:

- Robot instructions, which are high level commands,
created by users by clicking on the interfaces buttons
(e.g. go forward, turn left, etc.). The PHP Modbus script
will convert those high level commands to Modbus
commands (e.g.: ROV Address + Read/Write code +
First memory registry code + Number of bytes + Data to
send + CRC16);

- Robot data, which is sent by the ROV (e.g. sensors
status, error, etc.).

A specific module called Robot Computer Interface (RCI) permits
to link the ROV to the network (see figure 3). It is composed by
four components:

• Power manager;
• Battery;
• Control and video module: convert LAN/WLAN data

into RS485 data;
• Video demodulation: convert PAL/NTSC video signal

into a numeric video signal.

Figure 2. Robot and Computer Interface – Electronic design

The web application can also receive data from ARCS. This is

a specific data stream which contains data computed by ARCS
application in order to allow a local augmentation if many users
are viewing the live video (e.g. add sensors information on the
video). The web application will communicate with ARCS
through the network (eventually internet). ARCS will allow
mixing live video from ROV with 3D content. The 3D content is
stored in a MySQL database.

B. Web application user interface
The Web Application is written with PHP, HTML5,

JavaScript and CSS3. The user interface (see figure 4 below) is a
human machine interface in order to send commands to the ROV
(teleoperation), supervise sensors data from ROV (virtual
dashboard) or enable a user to interact with other features (chat
with other divers or get more information via web services, such
as weather, maps…) in the web page.

The web application is divided in six parts:

1) Mixed Reality live video from ARCS application;
2) Navigation panel to control the ROV (Moves, ROV lights,

front or back cameras and Mixed Reality On/Off switches);
3) HTML5 2D canvas to plot a virtual trajectory;
4) A chat to communicate with others users;
5) Data panel which displays data from ROV sensors;
6) Web services panel which displays or shares data from

diving site.

Figure 3. Software architecture of the web application – Data
stream between modules

Figure 4. Web application – Graphical User Interface

C. ARCS main application
Built following the standard ARCS application pattern which

itself is based on the generic Augmented Reality application
pattern introduced by Asa McWilliams [17], the application is
thought to support multiple distant users.

The architecture of the middleware that has been designed for
ARCS can be found in [16].

The model of the application is data driven. Video stream coming
from the ROV implies that for each new frame processed by the
video stream reader, the tracking component recalculates visible
3D entities and their position (3D registration). ARCS offers a
framework to support several 3D rendering engines and already
supports OGRE 3D and OpenInventor. Depending on the chosen
rendering engine, the corresponding component creates then the
final representation blending the raw input with 3D content taken
from a distant database. This final output is then converted to a
video stream, which is sent to the users. It is important to notice
that the output manager supports different kind of data that can be
sent separately to users who will chose different display modes
and who are interested in different textual information.

Figure 5 illustrates an example with OGRE as a rendering engine
ad video stream as the unique input. We also assume in this
example that the user site hosts the webserver.

The state machine is a specific component of the general
automaton (written in XML or built via the application designer
that generates the XML description), it manages the connections
between the other components and is initialized by the profile (a
file containing given values to application constants).

Figure 5. ARCS main application architecture

D. Mixed Reality video streaming
In order to transmit the MR video over the Internet the ARCS

output manager needs to digitalize the created MR video (ROV
video + 3D content). For encoding and delivering, we have
chosen Ogg format. Ogg is an open standard, open source–
friendly, and unencumbered by any known patents. Ogg is based
on three technologies: a container (Ogg), a video codec (Theora)
and an audio codec (Vorbis). The output manager will stream over
the Internet using the HTTP protocol on 8080 port. This protocol

is capable of traversing any firewall or proxy server that lets
through standard HTTP traffic.

5. Scenarios
The application being designed to be distributed and relatively

generic, different scenario have been identified to explore the
feasibility of the global solution. ARCS has already been assessed
and proved to be real time capable for state of the art AR
applications. However, applications involving network
communications depend not only on the used framework but also
on their consumption of network resources.

The simplest scenario is to have a ROV that communicates with
the operator site on which all the other sites are regrouped. Here
we have a unique user, and no intricate network communication.
Performance issues rely only on the operator machines
capabilities depending on the kind of application.

In the general case, each site is on a different machine and
there may be several users. The only point where serious network
performance issues emerge is when having multiple user
terminals. This issue is avoided by multicasting the output to
users.

6. Preliminary Tests

6.1 Set-up of the teleoperation system
Tests have been performed on November 2011 at UCPA Aqua

92 diving pit at Villeneuve-la-Garenne. Those tests were
performed to detect potential waterproof problems in the ROV
and also the WWW demonstrator with the use of ARCS. The
ROV is wired (umbilical cable) to its own box (see figures 6 and
7). This box permits to charge the ROV batteries and connect it to
LAN/WLAN network (for control and video). For those tests, we
have set-up a local network using a router. A computer was
connected to this network. This computer (x86 based - Windows
XP) was running ARCS and the web application with the use of a
local Apache server (see figure 1).

Figure 6. On the left: ROV box – On the middle: the computer
used as a client and server – On the right: the Wifi router used

for the test

World Model Tracking

Video Stream
Reader

Marker
file

Application

3D

Content

ARCS_OGRE
Rendering
Component

Tracking
component

3D content
manager

Context

ROV

Presentation

D
B

 S
ite

R
O

V
 S

ite

U
se

r S
ite

Web GUI

Output
manager

Profile

Automaton

State machine

Figure 7. The ROV in the UCPA Aqua 92 pit at 5 m depth

6.2 Mixed Reality testing with ARCS
Real-time scene augmentation has been performed following three
custom scenarios. First is contextual scene augmenting (figure 8),
that only consists in adding virtual entities for immersive and
decorative goals (ex. Adding specific species of fish depending on
the environment or adding virtual funny fish in a swimming pool,
etc.). Second test is based on marker tracking (ex. Display
information on a marked zone or object such as a pipe or a
wreck). In our example (figure 9), those markers are set on buoys.
The third and last one is based on natural features tracking (ex.
Automatic fish classification). A preliminary test has been made
with the SURF [18] (Speeded-Up Robust Features) component of
ARCS (which is based on OpenSURF library).

Figure 8. Markerless contextual augmentation

Figure 9. The marker based approach. The marker is used to
display entertainment content in the UCPA aqua 92 pool

7. Conclusion and Future work
We have specified and built a customizable software and network
architecture in order to enable enriched teleoperation with a ROV
involving Mixed Reality content. Augmented scene is computed
on a distant site using any relevant ARCS-based application. This
makes the system more flexible and allows the involvement of
multiple users. We have set-up three scenarios. The first was to
augment the distant scene by adding 3D content for decorative
purpose. The second scenario is a marker based approach. And
finally, a scenario based on natural features (fish classification).
The three previously described applications are only to illustrate a
proof of concept. The possible applications are very numerous.
There are way more scenarios to develop. As an example, one
useful and interesting application is the 3D reconstruction that we
are working on. We already explored this research area using a
monocular SLAM (Simultaneous Localization And Mapping)
approach providing valuable feedback indoors. Taking advantage
on the ARCS decentralized hybrid architecture [15], a
collaborative multi-robot and multi-sensor (including sonar-based
approach) will be explored for real-time 3D reconstruction of
seabed and submarine natural environments. We are also
investigating the use of VR devices as optical tracking and haptic
devices to control more easily and feel the distant remote ROV.

8. Acknowledgements
This project (Digital Ocean - FP7 262160) is a collaborative

project funded through European Community's Framework
Program FP7.

9. References
[1] Maza M., Baselga S., Ortiz J., “Vehicle Teleoperation with a

Multisensory Driving Interface”, in Climbing and Walking Robots
Journal, Springer, p. 437-445, 2005.

[2] Roston J., Bradley C., Cooperstock JR, “Underwater window: high
definition video on VENUS and NEPTUNE”, in IEEE OCEANS
2007, p. 1-8, 2007.

[3] Sattar J., Dudek G., “Underwater Human-Robot Interaction via
Biological Motion Identification”, in Robotics: Science and Systems
V, June-July 2009, Seattle, WA, USA.

[4] Jenkyns R., “NEPTUNE Canada: Data integrity from the seafloor to
your (Virtual) Door”, in IEEE OCEANS 2010, p. 1-7, 2010.

[5] James T. Joiner, NOAA Diving Manual: Diving for Science and
Technology, 4th ed., February 2001.

[6] Stanley, J.V. Scott, C., “The effects of the underwater environment
on perception, cognition and memory,” in vol. 3, pp. 1539-1548
[OCEANS '95. MTS/IEEE, Challenges of Our Changing Global
Environment Conference Proceedings].

[7] Morales-Garcia, R., Keitler, P., Maier, P., Klinker, G.: An
Underwater Augmented Reality System for Commercial Diving
Operations. OCEANS 2009 MTS/IEEE, Conference Proceedings
(2009)

[8] Bruzzone G., Bono R., Caccia M., Coletta P., Veruggio G.,
“Internet-based teleoperation of the Romeo rov in the arctic region”,
Manoeuvring and control of marine craft 2003 (MCMC 2003): a
proceedings volume from the 6th IFAC Conference, Elsevier
Science Ltd, 2004.

[9] A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnacao, M.
Gervautz, and W. Purgathofer. “The studierstube augmented reality
project”, in Presence: Teleoperators and Virtual Environments,
volume 11, Feb 2002.

[10] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S.
Riss, C. Sandor, and M. Wagner. “Design of a component-based
augmented reality framework.”, in Proceedings of the International
Symposium on Augmented Reality (ISAR), Oct. 2001.

[11] J. Ohlenburg, W. Broll, and A.-K. Braun. Morgan: “A framework
for realizing interactive real-time AR and VR applications”, in IEEE
VR, Mar. 2008.

[12] R. Dörner, C. Geiger, M. Haller, and V. Paelke, "Authoring mixed
reality - a component and framework-based approach", in Proc.
IWEC, 2002, pp.405-413.

[13] W. Piekarski and B. H. Thomas. “Tinmith-evo5 - an architecture for
supporting mobile augmented reality environments.”, in
International Symposium on Augmented Reality, Oct. 2001.

[14] J. Didier, S. Otmane, and M. Mallem. “A component model for
augmented/mixed reality applications with reconfigurable data-
flow.”, in 8th International Conference on Virtual Reality (VRIC
2006), pages 243–252, Laval (France), April 26-28 2006.

[15] C. Szyperski, Component Software - Beyond Object-Oriented
Programming, second edn, Addison-Wesley, Harlow, England,
2002.

[16] M. Chouiten, J. Didier, and M. Mallem. “Component-based
middleware for distributed augmented reality applications.”, in
Proceedings of the 5th International Conference on Communication
System Software and Middleware (COMSWARE '11). ACM, New
York, NY, USA

[17] A. Macwilliams, T. Reicher, G. Klinker, B. Bruegge. Design
Patterns for Augmented Reality Systems. In Proc. International
Workshop Exploring the Design and Engineering of Mixed Reality
Systems - MIXER 2004

[18] H. Bay, A. Ess, T. Tuytelaars, and L.J.V. Gool, “Speeded-Up Robust
Features (SURF)”, presented at Computer Vision and Image
Understanding, 2008, pp.346-359.

