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Adaptive Covariance Estimation with model selection

Rolando Biscay, Hélène Lescornel and Jean-Michel Loubes

Abstract

We provide in this paper a fully adaptive penalized procedure to select a covari-
ance among a collection of models observing i.i.d replications of the process at fixed
observation points. For this we generalize the results of [3] and propose to use a
data driven penalty to obtain an oracle inequality for the estimator. We prove that
this method is an extension to the matricial regression model of the work by Baraud
in [1].

Keywords: covariance estimation, model selection, adaptive procedure.

1 Introduction

Estimating the covariance function of stochastic processes is a fundamental issue in statis-
tics with many applications, ranging from geostatistics, financial series or epidemiology
for instance (we refer to [10], [8] or [5] for general references). While parametric methods
have been extensively studied in the statistical literature (see [5] for a review), nonpara-
metric procedures have only recently received attention, see for instance [6, 3, 4, 2] and
references therein.

In [3], a model selection procedure is proposed to construct a non parametric estima-
tor of the covariance function of a stochastic process under mild assumptions. However
their method heavily relies on a prior knowledge of the variance. In this paper, we extend
this procedure and propose a fully data driven penalty which leads to select the best
covariance among a collection of models. This result constitutes a generalization to the
matricial regression model of the selection methodology provided in [1].

Consider a stochastic process (X (t))t∈T taking its values in R and indexed by T ⊂ Rd,
d ∈ N. We assume that E [X (t)] = 0 ∀t ∈ T and we aim at estimating its covariance
function σ (s, t) = E [X (s)X (t)] <∞ for all t, s ∈ T . We assume we observeXi (tj) where
i ∈ {1 . . . n} and j ∈ {1 . . . p}. Note that the observation points tj are fixed and that the
Xi’s are independent copies of the process X. Set xi = (Xi (t1) , . . . , Xi (tp)) ∀i ∈ {1 . . . n}
and denote by Σ the covariance matrix of X at the observations points Σ =E

(
xix
>
i

)
=

(σ (tj, tk))1≤j≤p,1≤k≤p .

Following the methodology presented in [3], we approximate the process X by its
projection onto some finite dimensional model. For this, consider a countable set of
functions (gλ)λ∈Λ which may be for instance a basis of L2 (T ) and choose a collection
of models M ⊂ P (Λ). For m ⊂ M, a finite number of indices, the process can be
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approximated by
X (t) ≈

∑
λ∈m

aλgλ (t) .

Such an approximation leads to an estimator which depends on the collection of functions
m, denoted by Σ̂m. Our objective is to select in a data driven way, the best model, i.e.
the one close to an oracle m0 defined as the minimizer of the quadratic risk, namely

m0 ∈ arg min
m∈M

R (m) = arg min
m∈M

E
[∥∥∥Σ− Σ̂m

∥∥∥2
]
.

This result is achieved using a model selection procedure.

The paper falls into the following parts. The description of the statistical framework
of the matrix regression is given in Section 2. Section 3 is devoted to the main statistical
results. Namely we recall the results of the estimate given in [3] and prove an oracle
inequality with a fully data driven penalty. Section 4 states technical results which are
used in all the paper, while the proofs are postponed to the Appendix.

2 Statistical model and notations
We consider an R-valued process X (t) indexed by T a subset of Rd with expectation equal
to 0. We are interested in its covariance function denoted by σ (s, t) = E [X (s)X (t)].

We have at hand the observations xi = (Xi (t1) , . . . , Xi (tp)) for 1 6 i 6 n where Xi

are independent copies of the process and tj are deterministic points. We note Σ ∈ Rp×p
the covariance matrix of the vector xi.

Hence we observe
xix
>
i = Σ + Ui, 1 6 i 6 n (1)

where Ui are i.i.d. error matrices with expectation 0. We denote by S the empirical
covariance of the sample : S = 1

n

∑n
i=1 xix

>
i .

We use the Frobenius norm ‖ ‖ defined by ‖A‖2 = Tr
(
AA>

)
for all matrix A. Recall

that for a given matrix A ∈ Rp×q, vec(A) is the vector in ∈ Rpq obtained by stacking the
columns of A on top of one another. We denote by A− the reflexive generalized inverse
of the matrix A, see for instance in [9] or [7].

The idea is to consider that we have a quite good approximation of the process in the
following form

X (t) ≈
∑
λ∈m

aλgλ (t) , (2)

where m is a finite subset of a countable set Λ , (aλ)λ∈Λ are random coefficients in R and
(gλ)λ∈Λ are real valued functions. We will consider models m among a finite collection
denoted byM .

We note Gm ∈ Rp×|m| where (Gm)jλ = gλ (tj) and am the random vector of R|m| with
coefficients (aλ)λ∈m.

Hence, we obtain the following approximations :

x = (X (t1) , .., X (tp))
> ≈ Gmam
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xx> ≈ Gmama
>
mG

>
m

Σ ≈ GmE
[
ama

>
m

]
G>m

Thus, this point of view leads us to approximate Σ by a matrix in the subset

S (Gm) =
{
GmΨG>m/Ψ symmetric in R|m|×|m|

}
⊂ Rp×p. (3)

Hence, for a model m, a natural estimator for Σ is given by the projection of S onto
S (Gm). We can prove using standard algebra (see in [3] for a general proof) that it has
the following form :

Σ̂m = ΠmSΠm m ∈M ∈ Rp×p, (4)

where

Πm = Gm

(
G>mGm

)−
G>m ∈ Rp×p (5)

are orthogonal projection matrices. Set

Dm = Tr (Πm ⊗ Πm)

which is the dimension of S (Gm) assumed to be positive, and Σm = ΠmΣΠm the
projection of Σ onto this subspace.

Hence we obtain the model selection procedure defined in [3]. The estimation error
for a model m ∈M is given by

E
(∥∥∥Σ− Σ̂m

∥∥∥2
)

= ‖Σ− ΠmΣΠm‖2 +
δ2
mDm

n
, (6)

where

δ2
m =

Tr ((Πm ⊗ Πm) Φ)

Dm

,

Φ=V
(
vec
(
x1x

>
1

))
.

Given θ > 0, it is thus natural to define the penalized covariance estimator Σ̂ = Σ̂m̂

by

m̂ = arg min
m∈M

{
1

n

n∑
i=1

∥∥∥xix>i − Σ̂m

∥∥∥2

+ pen (m)

}
,

where
pen (m) = (1 + θ)

δ2
mDm

n
. (7)

The following result proved in [3] states an oracle inequality for the estimator Σ̂.

Theorem 2.1. Let q > 0 be given such that there exists κ > 2 (1 + q) satisfying E
∥∥x1x

>
1

∥∥κ <
∞. Then, for some constants K (θ) > 1 and C ′ (θ, κ, q) > 0 we have that(

E
∥∥∥Σ− Σ̂

∥∥∥2q
)1/q

≤ 2(q−1−1)
+

[
K (θ) inf

m∈M

(
‖Σ− ΠmΣΠm‖2 +

δ2
mDm

n

)
+

∆κ

n
δ2

sup

]
,
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where

∆q
κ = C ′ (θ, κ, q)E

∥∥x1x
>
1

∥∥κ(∑
m∈M

δ−κm D−(κ/2−1−q)
m

)
and

δ2
sup = max

{
δ2
m : m ∈M

}
.

However the penalty defined here depends on the quantity δm which is unknown in
practice since it relies on the matrix Φ = V

(
vec
(
xx>

))
. Our objective is to study a

covariance estimator built with a new penalty involving an estimator of Φ.
More precisely, we will replace pen(m) by an empirical version p̂en(m), where

p̂en (m) = (1 + θ)
δ̂2
mDm

n
, (8)

and

δ̂2
m =

Tr
(

(Πm ⊗ Πm) Φ̂
)

Dm

,

with Φ̂ an estimator of Φ.
The objective is to generalize Theorem 2.1 and to construct a fully adaptive penalized

procedure to estimate the covariance function.

3 Main result : adaptive penalized covariance estima-
tion

Here we state the oracle inequality obtained for the new covariance estimator introduced
previously.

Set
yi = vec

(
xix
>
i

)
, 1 6 i 6 n,

which are vectors in Rp2 and denote by Svec = 1
n

∑n
i=1 yi their empirical mean. Consider

the following constant Cinf = infm∈MTr ((Πm ⊗ Πm) Φ), and assume that the collection
of models is chosen such that Cinf > 0. Set

Φ̂ =
1

n

n∑
i=1

(
yiy
>
i − SvecS>vec

)
,

δ̂2
m =

Tr
(

(Πm ⊗ Πm) Φ̂
)

Dm

.

4



Given θ > 0, we consider the covariance estimator Σ̃ = Σ̂m̃ with

m̃ = arg min
m∈M

{
1

n

n∑
i=1

∥∥∥xix>i − Σ̂m

∥∥∥2

+ p̂en (m)

}
,

where

p̂en (m) = (1 + θ)
δ̂2
mDm

n
. (9)

Theorem 3.1. Let 1 > q > 0 be given such that there exists β > max (2 (1 + 2q) , 3 + 2q)

satisfying E
∥∥xx>∥∥β <∞.

Then, for a constant C depending on θ, β and q, we have for n > n(β, θ, Cinf ,Σ), and
∀κ ∈ ]2 (1 + 2q) ; min (β, 2β − 4)[ :

(
E
[∥∥∥Σ− Σ̃

∥∥∥2q
])1/q

6 C inf
m∈M

(
‖Σ− Σm‖2 +

δ2
mDm

n

)
(10)

+
C

n

[
∆̃β

[
E
[∥∥xx>∥∥β] 2

β
+ ‖Σ‖2

]
+ δ2

sup∆κ

]
(11)

where

∆̃q
β = c (θ, β, q)

(
E
[∥∥xx>∥∥β] ∑

m∈M

δ−βm D−β/2m

)1− 2q
κ

∆q
κ = C (θ, κ, q)E

∥∥xx>∥∥κ(∑
m∈M

δ−κm D−(κ/2−1−q)
m

)
and

δ2
sup = max

{
δ2
m : m ∈M

}
.

We have obtained in Theorem 3.1 an oracle inequality since the estimator Σ̃ has the
same quadratic risk as the “oracle” estimator except for an additive term of order O

(
1
n

)
and a constant factor. Hence, the selection procedure is optimal in the sense that it
behaves as if the true model were at hand.

The proof of this theorem is divided into two parts. First, as in the of Theorem 2.1
proved in [3], we will consider a vectorized version of the model (1). In this technical
part we will obtain an oracle inequality under some particular assumptions for a gen-
eral penalty. In a second part, we will prove that our particular penalty verifies these
assumptions by using properties of the estimator Φ̂.

4 Technical results

4.1 Vectorized model

Here we consider the vectorized version of model (1). In this case, we observe the following
vectors in Rp2 :

yi = fi + εi 1 6 i 6 n. (12)
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Here yi corresponds to vec
(
xix
>
i

)
in the model (1), fi to vect (Σ) and εi to vec (Ui). We

set f =
(
f>1 , . . . , f

>
n

)>
, y =

(
y>1 , . . . , y

>
n

)> and ε =
(
ε>1 , . . . , ε

>
n

)>, which are vectors in
Rnp2 .

We estimate f by an estimator of the form

f̂m = Pmy m ∈M,

where Pm is the orthogonal projection onto a subspace Sm of dimensionDm. We note fm =
Pmf and we consider the empirical norm ‖f‖2

n = 1
n

∑n
i=1 f

>
i fi with the corresponding

scalar product 〈·, ·〉n.
First we state the vectorized form of Theorem 2.1. Write

δ2
m =

Tr (Pm (In ⊗ Φ))

Dm

,

δ2
sup = max

{
δ2
m : m ∈M

}
.

Given θ > 0, define the penalized estimator f̂ = f̂m̂ , where

m̂ = arg min
m∈M

{∥∥∥y−f̂m∥∥∥2

n
+ pen (m)

}
,

with
pen (m) = (1 + θ)

δ2
mDm

n
.

Then, the proof of Theorem 2.1 relies on the following proposition proved in [3]:

Proposition 4.1. : Let q > 0 be given such that there exists κ > 2 (1 + q) satisfying
E ‖ε1‖κ <∞. Then, for some constants K (θ) > 1 and C (θ, κ, q) > 0 we have that(

E
∥∥∥f − f̂∥∥∥2q

n

)1/q

≤ 2(q−1−1)
+

[
K (θ) inf

m∈M

(
‖f − Pmf‖

2
n +

δ2
mDm

n

)
+

∆κ

n
δ2

sup

]
, (13)

where

∆q
κ = C (θ, κ, q)E ‖ε1‖κ

(∑
m∈M

δ−κm D−(κ/2−1−q)
m

)
.

The new estimator Σ̃ defined previously corresponds here to the estimator f̃ = f̂m̃ ,
where

m̃ = arg min
m∈M

{∥∥∥y−f̂m∥∥∥2

n
+ p̂en (m)

}
,

with

p̂en (m) = (1 + θ)
δ̂2
mDm

n
,

and δ̂2
m is some estimator of δ2

m.
Next Proposition gives an oracle inequality for this estimator under new assumptions

on the model. As Proposition 4.1, it is inspired by the paper [1].
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Proposition 4.2. Let 1 > q > 0 be given such that there exists κ > 2 (1 + 2q) satisfying
E ‖ε1‖κ <∞.

For α ∈ ]0; 1[, set Ω = ∩m∈M
{
δ̂2
m > (1− α) δ2

m

}
.

Assume that

A1. E
[
δ̂2
m

]
6 δ2

m.

A2. P (Ωc) 6 C̃ (α) 1
nγ

for some γ > q
1−2q/κ

.

Then, for a constant C depending on κ, θ and q, and we have

(
E
[∥∥∥f − f̃∥∥∥2q

n

])1/q

6 C inf
m∈M

(
‖f − Pmf‖2

n +
δ2
mDm

n

)
(14)

+
C

n

[
∆̃κ

[
E [‖ε1‖κ]

2
κ + ‖f‖2

n

]
+ δ2

sup∆κ

]
(15)

where

∆̃q
κ =

(
C̃ (α)

)(1− 2q
κ )

with α = α (θ) is fixed in ]0; 1[

and

∆q
κ = C (θ, κ, q)E ‖ε1‖κ

(∑
m∈M

δ−κm D−(κ/2−1−q)
m

)
Theorem 3.1 is thus a direct application of Proposition 4.2. Hence only remain to be

checked the two assumptions A1 and A2.

4.2 Auxiliary concentration type lemmas

Here we state some propositions required in the proofs of the previous results.
To our knowledge, the first is due to von Bahr and Esseen in [11].

Lemma 4.3. Let U1, . . . , Un independent centred variables with values in R. For any
1 6 κ 6 2 we have :

E

[∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
κ]

6 8
n∑
i=1

E [|Ui|κ]

The next proposition is proved in [3].

Proposition 4.4. Given N, k ∈ N, let Ã ∈ RNk×Nk� {0} be a non-negative definite
and symmetric matrix and ε1, ..., εN i.i.d random vectors in Rk with E (ε1) = 0 and

V (ε1) = Φ. Write ε =
(
ε>1 , ..., ε

>
N

)>, ζ (ε) =
√
ε>Ãε, and δ2 =

Tr(Ã(IN⊗Φ))
Tr(Ã)

. For all β ≥ 2

such that E ‖ε1‖β <∞ it holds that, for all x > 0,

P

(
ζ2 (ε) ≥ δ2Tr

(
Ã
)

+ 2δ2

√
Tr
(
Ã
)
ρ
(
Ã
)
x+ δ2ρ

(
Ã
)
x

)
≤ C2 (β)

E ‖ε1‖β Tr
(
Ã
)

δβρ
(
Ã
)
xβ/2

,

(16)
where the constant C2 (β) depends only on β.
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5 Appendix

5.1 Proof of Proposition 4.2

This proof follows the guidelines of the proof of Theorem 6.1 in [1]. The following lemma
will be helpful for the proof of this proposition

Lemma 5.1. Choose η = η (θ) > 0 and α = α (θ) ∈ ]0; 1[ such that (1 + θ) (1− α) >

(1 + 2η). Set Hm (f) =

{∥∥∥f − f̃∥∥∥2

n
− κ̃ (θ)

[
‖f − fm‖2

n + Dm
n
δ̂2
m

]}
+

where κ̃ (θ) =
(

2 + 4
η

)
(1 + θ).

Then, for m0 minimizing m 7→ ‖f − fm‖2
n + Dm

n
δ2
m in m ∈M

E [Hm0 (f)q 1Ω] 6 ∆q
κδ

2q
sup

1

nq
. (17)

where ∆κ was defined in Proposition 4.2.

Proof. Lemma 5.1
First, remark that on the set Ω, for all m ∈M

p̂en (m) > (1− α) (1 + θ)
δ2
mDm

n
> (1 + 2η)

δ2
mDm

n
.

Set pen(m) = (1 + 2η) δ
2
mDm
n

, which corresponds to the penalty of Proposition 4.1.
The proof of this lemma is based on the proof of Proposition 4.1 in [3]. In fact, it is

sufficient to prove that for each x > 0 and κ ≥ 2

P
(
H (f)1Ω ≥

(
1 +

2

η

)
x

n
δ2
m

)
≤ c (κ, η)E ‖ε1‖κ

∑
m∈M

1

δκm

Dm ∨ 1

(ηDm + x)κ/2
, (18)

where we have set

H (f) =

[∥∥∥f − f̃∥∥∥2

n
−
(

2 +
4

η

){
‖f − fm0‖

2
n + p̂en (m0)

}]
+

.

Indeed, for each m ∈M,

‖f − fm0‖
2
n + p̂en (m0) = ‖f − fm0‖

2
n + (1 + θ)

δ̂2
m0

n
Dm0

≤ (1 + θ)

(
‖f − fm0‖

2
n +

δ̂2
m0

n
Dm0

)

then we get that for all q > 0,

Hq (f)1Ω ≥ Hq
m0

(f)1Ω (19)

Using the equality

E [Hq (f)1Ω] =

∫ ∞
0

quq−1P (Hq (f)1Ω > u) du

8



and following the proof of Propositon 4.1 in [3] we obtain the upper bound (17) of Lemma
5.1.

Now we turn to the proof of (18). For any g ∈ Rnp2 we define the empirical quadratic
loss function by

γn (g) = ‖y − g‖2
n .

Using the definition of γn we have that for all g ∈ Rnp2 ,

‖f − g‖2
n = γn (g) + 2 〈g − y, ε〉n + ‖ ε‖2

n

and therefore∥∥∥f − f̃∥∥∥2

n
− ‖f − Pm0f‖

2
n = γn

(
f̃
)
− γn (Pm0f) + 2

〈
f̃ − Pm0f, ε

〉
n
. (20)

Using the definition of f̃ , we know that

γn

(
f̃
)

+ p̂en (m̃) ≤ γn (g) + p̂en (m0)

for all g ∈ Sm0 . Then

γn

(
f̃
)
− γn (Pm0f) ≤ p̂en (m0)− p̂en (m̃) . (21)

So we get from (20) and (21) that∥∥∥f − f̃∥∥∥2

n
≤‖f − Pm0f‖

2
n + p̂en (m0)− p̂en (m̃)

+ 2 〈f − Pm0f, ε〉n + 2 〈Pm̃f − f, ε〉n + 2
〈
f̃ − Pm̃f, ε

〉
n
. (22)

In the following we set for each m′ ∈M,

Bm′ = {g ∈ Sm′ : ‖g‖n ≤ 1} ,
Gm′ = sup

t∈Bm′
〈g, ε〉n = ‖Pm′ ε‖n ,

um′ =

{
Pm′f−f
‖Pm′f−f‖n

if ‖Pm′f − f‖n 6= 0

0 otherwise.

Since f̃ = Pm̃ f+ Pm̃ ε, (22) gives∥∥∥f − f̃∥∥∥2

n
≤ ‖f − Pm0f‖

2
n + p̂en (m0)− p̂en (m̃)

+2 ‖f − Pm0f‖n |〈um0 , ε〉n|+ 2 ‖f − Pm̃f‖n |〈um̃, ε〉n|+ 2G2
m̃. (23)

Using repeatedly the following elementary inequality that holds for all positive numbers
ν, x, z

2xz ≤ νx2 +
1

ν
z2 (24)

9



we get for any m′ ∈M

2 ‖f − Pm′f‖n |〈um′ , ε〉n| ≤ ν ‖f − Pm′f‖2
n +

1

ν
|〈um′ , ε〉n|

2 . (25)

By Pythagora’s Theorem we have∥∥∥f − f̃∥∥∥2

n
= ‖f − Pm̃f‖2

n +
∥∥∥Pm̃f − f̃∥∥∥2

n

= ‖f − Pm̃f‖2
n +G2

m̃. (26)

We derive from (23) and (25) that for any ν > 0∥∥∥f − f̃∥∥∥2

n
≤ ‖f − Pm0f‖

2
n + ν ‖f − Pm0f‖

2
n +

1

ν
〈um0 , ε〉

2
n

+ν ‖f − Pm̃f‖2
n +

1

ν
〈um̃, ε〉2n + 2G2

m̃ + p̂en (m0)− p̂en (m̃) .

Now taking into account that by equation (26) ‖f − Pm̃f‖2
n =

∥∥∥f − f̃∥∥∥2

n
−G2

m̃ the above
inequality is equivalent to

(1− ν)
∥∥∥f − f̃∥∥∥2

n
≤ (1 + ν) ‖f − Pm0f‖

2
n +

1

ν
〈um0 , ε〉

2
n

+
1

ν
〈um̃, ε〉2n + (2− ν)G2

m̃ + p̂en (m0)− p̂en (m̃) . (27)

We choose ν = 2
2+η
∈ ]0, 1[, but for sake of simplicity we keep using the notation ν. Let

p̃1 and p̃2 be two functions depending on ν mappingM into R+. They will be specified
as in [3] to satisfy

pen (m′) ≥ (2− ν) p̃1 (m′) +
1

ν
p̃2 (m′) ∀(m′) ∈M. (28)

Remember that on Ω, p̂en(m) > pen(m) ∀m ∈ M. Since 1
ν
p̃2 (m′) ≤ pen (m′) and

1 + ν ≤ 2, we get from (27) and (28) that on the set Ω

(1− ν)
∥∥∥f − f̃∥∥∥2

n
≤ (1 + ν) ‖f − Pm0f‖

2
n + p̂en (m0) +

1

ν
p̃2 (m0) + (2− ν)

(
G2
m̃ − p̃1 (m̃)

)
+

1

ν

(
〈um̃, ε〉2n − p̃2 (m̃)

)
+

1

ν

(
〈um0 , ε〉

2
n − p̃2 (m0)

)
≤ 2

(
‖f − Pm0f‖

2
n + p̂en (m0)

)
+ (2− ν)

(
G2
m̃ − p̃1 (m̃)

)
+

1

ν

(
〈um̃, ε〉2n − p̃2 (m̃)

)
+

1

ν

(
〈um0 , ε〉

2
n − p̃2 (m0)

)
. (29)

As 2
1−ν = 2 + 4

η
we obtain that

(1− ν)H (f)1Ω =

{
(1− ν)

∥∥∥f − f̃∥∥∥2

n
− (1− ν)

(
2 +

4

η

)(
‖f − Pm0f‖

2
n + p̂en (m0)

)}
+

1Ω

=

{
(1− ν)

∥∥∥f − f̃∥∥∥2

n
− 2

(
‖f − Pm0f‖

2
n + p̂en (m0)

)}
+

1Ω

≤
{

(2− ν)
(
G2
m̃ − p̃1 (m̃)

)
+

1

ν

(
〈um̃, ε〉2n − p̃2 (m̃)

)
+

1

ν

(
〈um, ε〉2n − p̃2 (m0)

)}
+

10



For any x > 0,

P
(

(1− ν)H (f)1Ω ≥
xδ2

m

n

)
≤ P

(
∃m′ ∈M : (2− ν)

(
G2
m′ − p̃1 (m′)

)
≥ xδ2

m′

3n

)
+ P

(
∃m′ ∈M :

1

ν

(
〈um′ , ε〉2n − p̃2 (m′)

)
≥ xδ2

m′

3n

)
≤
∑
m′∈M

P
(

(2− ν)
(
‖Pm′ε‖2

n − p̃1 (m′)
)
≥ xδ2

m′

3n

)
+
∑
m′∈M

P
(

1

ν

(
〈um′ , ε〉2n − p̃2 (m′)

)
≥ xδ2

m′

3n

)
:=

∑
m′∈M

P1,m′ (x) +
∑
m′∈M

P2,m′ (x) . (30)

From now on, the proof of Lemma 5.1 is exactly the same as the end of the proof of
Proposition 4.1 in [3] with Lm = ν.

Proof. Proposition 4.2

We first provide an upper bound for E
[∥∥∥f − f̃∥∥∥2q

n
1Ω

]
, where the set Ω depends on α

chose as in Lemma 5.1.
As q 6 1, we have (a+ b)q 6 aq + bq. Together with Lemma 5.1 we deduce that

E
[∥∥∥f − f̃∥∥∥2q

n
1Ω

]
6 ∆q

κδ
2q
sup

1

nq
+ E

[
κ̃ (θ)q

[
‖f − fm0‖

2
n +

Dm0

n
δ̂2
m0

]q]
.

Using the convexity of x 7→ x
1
q together with the Jensen inequality, we obtain(

E
[∥∥∥f − f̃∥∥∥2q

n
1Ω

]) 1
q

6 21/q−1∆κδ
2
sup

1

n
+ 21/q−1E

[
κ̃ (θ)

[
‖f − fm0‖

2
n +

Dm0

n
δ̂2
m0

]]
,

and by using the assumption A1 we have that(
E
[∥∥∥f − f̃∥∥∥2q

n
1Ω

]) 1
q

6 21/q−1∆κδ
2
sup

1

n
+ 21/q−1κ̃ (θ)

[
‖f − fm0‖

2
n +

Dm0

n
δ2
m0

]
. (31)

Now we need to find an upper bound for the quantity E
[∥∥∥f − f̃∥∥∥2q

n
1Ωc

]
.

First, remark that∥∥∥f − f̃∥∥∥2

n
= ‖f − Pm̃y‖2

n = ‖f − Pm̃f‖2
n + ‖Pm̃ (f − y)‖2

n

6 ‖f − Pm̃f‖2
n + ‖ε‖2

n = ‖f‖2
n − ‖Pm̃f‖

2
n + ‖ε‖2

n

And thus ∥∥∥f − f̃∥∥∥2

n
6 ‖f‖2

n + ‖ε‖2
n .

11



So we have

E
[∥∥∥f − f̃∥∥∥2q

n
1Ωc

]
6 ‖f‖2q

n P (Ωc) + E
[
‖ε‖2q

n 1Ωc
]
.

Using Hölder’s inequality with κ
2q
> 1 we obtain

E
[
‖ε‖2q

n 1Ωc
]
6 E [‖ε‖κn]

2q
κ P (Ωc)(1− 2q

κ ) .

But

E [‖ε‖κn] =
1

n
κ
2

E

( n∑
i=1

‖εi‖2

)κ
2

 ,
and as κ > 2, we can use Minkowsky’s inequality to obtain

E [‖ε‖κn] 6
1

n
κ
2

(
n∑
i=1

(E [‖εi‖κ])
2
κ

)κ
2

=
1

n
κ
2

(
n (E [‖ε1‖κ])

2
κ

)κ
2
,

that is
E [‖ε‖κn] 6 E [‖ε1‖κ] .

So we have

E
[∥∥∥f − f̃∥∥∥2q

n
1Ωc

]
6
[
E [‖ε1‖κ]

2q
κ + ‖f‖2q

n

]
P (Ωc)(1− 2q

κ ) ,

and with assumption A2

E
[∥∥∥f − f̃∥∥∥2q

n
1Ωc

]
6
[
E [‖ε1‖κ]

2q
κ + ‖f‖2q

n

](
C̃(α)

1

nγ

)(1− 2q
κ )
.

As γ > q
1−2q/κ

, we deduce that

(
E
[∥∥∥f − f̃∥∥∥2q

n
1Ωc

]) 1
q

6 2
1
q
−1
[
E [‖ε1‖κ]

2
κ + ‖f‖2

n

]
C̃(α)

1− 2q
κ
q

1

n
(32)

To conclude, we use again the convexity of x 7→ x
1
q and the inequality (31) to get

(
E
[∥∥∥f − f̃∥∥∥2q

n

]) 1
q

6 4
1
q
−1
[
E [‖ε1‖κ]

2
κ + ‖f‖2

n

]
C̃(α)

1− 2q
κ
q

1

n

+41/q−1∆κδ
2
sup

1

n

+41/q−1κ̃ (θ)

[
‖f − fm0‖

2
n +

Dm0

n
δ2
m0

]

12



5.2 Proof of Theorem 3.1

Recall that β > max (2 (1 + 2q) , 3 + 2q) and κ ∈ ]2 (1 + 2q) ; min (β, 2β − 4)[. In order to
use Proposition 4.2 , we need to prove the following inequalities :

A1. E
[
δ̂2
m

]
6 δ2

m

A2. P (Ωc) 6 C̃ (α) 1
nγ

for γ > q
1−2q/κ

.

First we prove A1.

Remember that δ̂2
m =

Tr((Πm⊗Πm)Φ̂)
Dm

. By using the linearity of the trace and the equal-

ity E
[
Φ̂
]

= n−1
n

Φ, we obtain that E
[
δ̂2
m

]
= n−1

n
δ2
m which proves the result.

For the second, write Ωc = ∪m∈M
{
δ̂2
m 6 (1− α) δ2

m

}
. We bound up the quantity

P
(
δ̂2
m 6 (1− α) δ2

m

)
in the following Proposition.

Proposition 5.2. For all m ∈ M , α ∈]0; 1[ and n > n(κ, β, α, Cinf ,Σ) we have for
some constants C1 (β), C2 (β) :

P
(
δ̂2
m 6 (1− α) δ2

m

)
6

1

nγ

(
C2(β)2β+1 + C1 (β)

1

α
β
2

)
E
[∥∥xx>∥∥β] δ−βm D

−β
2

m ,

for γ > q
1−2q/κ

.

This Proposition concludes the proof of A2 with

C̃ (α) =

(
C2(β)2β+1 + C1 (β)

1

α
β
2

)
E
[∥∥xx>∥∥β] ∑

m∈M

δ−βm D
−β

2
m .

Proof. Proposition 5.2
We start by dividing Pm = P

(
δ̂2
m 6 (1− α) δ2

m

)
into two parts with one of them

involving a sum of independent variables with expectation equal to 0.

Pm = P
(

Tr
(

(Πm ⊗ Πm) Φ̂
)
6 (1− α) Tr ((Πm ⊗ Πm) Φ)

)

Pm = P
(

Tr
(

(Πm ⊗ Πm)
(

Φ̂−
(
Φ + µµ>

)
+ µµ>

))
6 −αTr ((Πm ⊗ Πm) Φ)

)

Pm 6 P

(∣∣∣∣∣Tr

(
(Πm ⊗ Πm)

(
1

n

n∑
i=1

(
yiy

T
i − Φ− µµ>

)
+ µµ> − SvecS>vec

))∣∣∣∣∣ > αTr ((Πm ⊗ Πm) Φ)

)

Pm 6 P

(∣∣∣∣∣Tr

(
(Πm ⊗ Πm)

(
1

n

n∑
i=1

(
yiy

T
i − Φ− µµ>

)))∣∣∣∣∣ > α

2
Tr ((Πm ⊗ Πm) Φ)

)
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+P
(∣∣Tr

(
(Πm ⊗ Πm)

(
µµ> − SvecS>vec

))∣∣ > α

2
Tr ((Πm ⊗ Πm) Φ)

)
Set

Q1 = P

(∣∣∣∣∣Tr

(
(Πm ⊗ Πm)

(
1

n

n∑
i=1

(
yiy

T
i − Φ− µµ>

)))∣∣∣∣∣ > α

2
Tr ((Πm ⊗ Πm) Φ)

)

and
Q2 = P

(∣∣Tr
(
(Πm ⊗ Πm)

(
µµ> − SvecS>vec

))∣∣ > α

2
Tr ((Πm ⊗ Πm) Φ)

)
Study of Q1
First we use Markov’s inequality to obtain

A1 6
2
β
2E
[∣∣Tr

(
(Πm ⊗ Πm)

(
1
n

∑n
i=1

(
yiy

T
i − Φ− µµ>

)))∣∣β2 ]
(αTr ((Πm ⊗ Πm) Φ))

β
2

.

We must consider the two following cases :

• If β
2
> 2, Rosenthal’s inequality gives

E

∣∣∣∣∣ 1n
n∑
i=1

Tr
(
(Πm ⊗ Πm)

((
yiy

T
i − Φ− µµ>

)))∣∣∣∣∣
β
2


6C

(
β

2

)
1

n
β
2
−1
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣β2 ]
+C

(
β

2

)(
1

n
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣2])β
4

.

As β
2
> 2, 1

n
β
2−1

6 1

n
β
4

and we can use Jensen’s inequality on the second term to
obtain

E

∣∣∣∣∣ 1n
n∑
i=1

Tr
(
(Πm ⊗ Πm)

((
yiy

T
i − Φ− µµ>

)))∣∣∣∣∣
β
2


6 C

(
β

2

)
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣β2 ] 2

n
β
4

.

• If 1 6 β
2
6 2, we use Lemma 4.3 of subsection 4.2 to get

E

∣∣∣∣∣ 1n
n∑
i=1

Tr
(
(Πm ⊗ Πm)

((
yiy

T
i − Φ− µµ>

)))∣∣∣∣∣
β
2


6

8

n
β
2
−1
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣β2 ]
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In both cases, we can use the fact that x 7→ x
β
2 is a convex and increasing function to

obtain
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣β2 ]
6 2

β
2
−1

[
E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1

))∣∣β2 ]+
∣∣Tr
(
(Πm ⊗ Πm)

(
Φ + µµ>

))∣∣β2 ] .
And by using the Jensen’s inequality on the second term we have that

E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1 − Φ− µµ>

))∣∣β2 ]
6 2

β
2E
[∣∣Tr

(
(Πm ⊗ Πm)

(
y1y
>
1

))∣∣β2 ] .
Now consider the following lemma.

Lemma 5.3. If Ψ is symmetric non-negative definite, then

Tr ((Πm ⊗ Πm) Ψ) ∈ [0; Tr (Ψ)] (33)

From this fact we get that∣∣Tr
(
(Πm ⊗ Πm)

(
y1y
>
1

))∣∣β2 6 Tr
(
y1y
>
1

)β
2 = ‖y1‖β =

∥∥xx>∥∥β .
In conclusion, we have

Q1 6 C1 (β)
E
[∥∥xx>∥∥β]
α
β
2 δβmD

β
2
m

1

nγ
, (34)

with γ = min
(
β
4
, β

2
− 1
)
and C1 (β) = 2C

(
β
2

)
if β > 4 where C

(
β
2

)
is the constant in

Rosenthal’s inequality and C1 (β) = 8 if 2 6 β 6 4. Remark that β
4
> κ

4
and β

2
− 1 > κ

4
,

so γ > κ
4
.

Study of Q2
Recall that

Q2 = P
(∣∣Tr

(
(Πm ⊗ Πm)

(
µµ> − SvecS>vec

))∣∣ > α

2
Tr ((Πm ⊗ Πm) Φ)

)
.

Set
B2 = Tr

(
(Πm ⊗ Πm)

(
µµ> − SvecS>vec

))
.

Using the properties of the trace, we can write

B2 = Tr
(
(Πm ⊗ Πm)

(
µµ>

))
− Tr

(
(Πm ⊗ Πm)

(
SvecS

>
vec

))
= Tr

(
µ> (Πm ⊗ Πm)µ

)
− Tr

(
S>vec (Πm ⊗ Πm)Svec

)
.

But Πm ⊗ Πm is an orthogonal projection matrix, then
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B2 = Tr
(
µ> (Πm ⊗ Πm)> (Πm ⊗ Πm)µ

)
− Tr

(
S>vec (Πm ⊗ Πm)> (Πm ⊗ Πm)Svec

)
B2 = ‖(Πm ⊗ Πm)µ‖2 − ‖(Πm ⊗ Πm)Svec‖2

B2 = (‖(Πm ⊗ Πm)µ‖ − ‖(Πm ⊗ Πm)Svec‖) (‖(Πm ⊗ Πm)µ‖+ ‖(Πm ⊗ Πm)Svec‖)

Hence

|B2| 6 ‖(Πm ⊗ Πm) (µ− Svec)‖ (‖(Πm ⊗ Πm)µ‖+ ‖(Πm ⊗ Πm)Svec‖)

|B2| 6 ‖(Πm ⊗ Πm) (µ− Svec)‖2 + 2 ‖(Πm ⊗ Πm) (µ− Svec)‖ ‖(Πm ⊗ Πm)µ‖

|B2| 6 ‖(Πm ⊗ Πm) (µ− Svec)‖2 + 2 ‖(Πm ⊗ Πm) (µ− Svec)‖ ‖µ‖

Finally

Q2 6P
(
‖(Πm ⊗ Πm) (µ− Svec)‖2 >

α

4
Tr ((Πm ⊗ Πm) Φ)

)
(35)

+P
(
‖(Πm ⊗ Πm) (µ− Svec)‖ >

α

8 ‖µ‖
Tr ((Πm ⊗ Πm) Φ)

)
Now we need to provide an upper bound for the quantities

P
(
‖(Πm ⊗ Πm) (µ− Svec)‖2 > t

)
.

For this we will use the deviation bound provided by Proposition 4.4 stated in sub-
section 4.2 .

Set

Gn =
1

n


Idp2 . . . Idp2
Idp2 . . . Idp2
... . . . ...

Idp2 . . . Idp2

 ∈ Rp2n×p2n
Then

Gn (y − f) = 1n ⊗ (Svec − µ)

Now, if

Hm = Idn ⊗ (Πm ⊗ Πm) =


Πm ⊗ Πm 0 . . . 0

0 Πm ⊗ Πm . . . 0
...

... . . . ...
0 0 . . . Πm ⊗ Πm

 ∈ Rp2n×p2n,
we have

Hm (1n ⊗ (Svec − µ)) = 1n ⊗ ((Πm ⊗ Πm) (Svec − µ)) .
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In conclusion, with

Am = HmGn =
1

n


Πm ⊗ Πm . . . Πm ⊗ Πm

Πm ⊗ Πm . . . Πm ⊗ Πm
... . . . ...

Πm ⊗ Πm . . . Πm ⊗ Πm

 ∈ Rp2n×p2n,
we have that

Am (y − f) = 1n ⊗ ((Πm ⊗ Πm) (Svec − µ)) .

Moreover, Am is an orthogonal projection matrix and we have the following equalities

‖Am (y − f)‖2 = n ‖(Πm ⊗ Πm) (Svec − µ)‖2 = (y − f)>Am (y − f) ,

Tr (Am) =
n

n
Tr (Πm ⊗ Πm) = Dm,

Tr (Am (Idn ⊗ Φ)) =
n

n
Tr ((Πm ⊗ Πm) Φ) = Tr ((Πm ⊗ Πm) Φ) .

Now we can use Proposition 4.4 with Ã = Am, εi = yi−µ, Tr (Am) = Dm, ρ (Am) = 1,
δ2 = δ2

m and β > 2.
This gives for all x > 0

P
(

(y − f)>Am (y − f) > Tr ((Πm ⊗ Πm) Φ)
[
1 +

√
x
Dm

]2
)

6 C2(β)
E[‖y1−µ‖β]D

β
2 +1
m

Tr((Πm⊗Πm)Φ)
β
2 x

β
2

,

that is

P
(
‖(Πm ⊗ Πm) (Svec − µ)‖2 > 1

n
Tr ((Πm ⊗ Πm) Φ)

[
1 +

√
x
Dm

]2
)

6 C2(β)
E[‖y1−µ‖β]D

β
2 +1
m

Tr((Πm⊗Πm)Φ)
β
2 x

β
2

.

In order to use this deviation bound to obtain the inequalities

P
(
‖(Πm ⊗ Πm) (µ− Svec)‖2 >

α

4
Tr ((Πm ⊗ Πm) Φ)

)
6 C̃

1

nγ

and

P
(
‖(Πm ⊗ Πm) (µ− Svec)‖ >

α

8 ‖µ‖
Tr ((Πm ⊗ Πm) Φ)

)
6 C̃

1

nγ

with γ > q
1−2q/κ

, we need to find x > 0 satisfying the three following facts

∀m ∈M α

4
>

1

n

(
1 +

√
x

Dm

)2

(36)

∀m ∈M
(

α

8 ‖µ‖

)2

Tr ((Πm ⊗ Πm) Φ) >

(
α

8 ‖µ‖

)2

Cinf >
1

n

(
1 +

√
x

Dm

)2

(37)

D
β
2

+1
m

Tr ((Πm ⊗ Πm) Φ)
β
2 x

β
2

=
Dm

δβmx
β
2

6 C
1

nγ
. (38)
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(36) and (37) hold for the choice x = Dmn
r with r < 1 and if n is large enough to

have
1

n

(
1 +
√
nr
)2

6
α

4
(39)

and
1

n

(
1 +
√
nr
)2

6

(
α

8 ‖µ‖

)2

Cinf (40)

In order to obtain (38) with x = Dmn
r, we use the inequality Dm 6 n which gives

Dm

δβmx
β
2

6
1

δβmD
β
2
mnrβ/2−1

.

Moreover
E
[
‖y1 − µ‖β

]
6 E

[
(‖y1‖+ ‖µ‖)β

]
,

and by using properties of convexity we obtain

E
[
‖y1 − µ‖β

]
6 2β−1

(
E
[
‖y1‖β

]
+ ‖µ‖β

)
.

With the Jensen’s inequality we get:

E
[
‖y1 − µ‖β

]
6 2βE

[
‖y1‖β

]
.

In conclusion, with r =
κ
2

+2

β
< 1 we obtain for n > n(κ, β, α, Cinf ,Σ)

Q2 6 2β+1C2(β)
E
[∥∥xx>∥∥β]
δβmD

β
2
m

1

nκ/4
(41)

where C2 (β) is the constant which appears in Proposition 4.4.
In conclusion, combining (34) and (41)

P
(
δ̂2
m 6 (1− α) δ2

m

)
6

1

nκ/4

(
C2(β)2β+1 + C1 (β)

1

α
β
2

)
E
[∥∥xx>∥∥β] δ−βm D

−β
2

m

for n > n(κ, β, α, Cinf ,Σ) .
To conclude, remark that κ

4
(1− 2q/κ) = κ−2q

4
> 2+2q

4
> q as q 6 1.

Proof. Lemma 5.3
Recall that Πm⊗Πm is an orthogonal projection matrix. Hence there exists an orthogonal
matrix Pm such that P>m (Πm ⊗ Πm)Pm = D, with D a diagonal matrix with Dii = 1 if
i 6 Dm, and Dii = 0 otherwise. Then if Ψ is symmetric non-negative definite we have :

Tr ((Πm ⊗ Πm) Ψ) = Tr
(
DP>mΨPm

)
18



=

p2∑
l=1

p2∑
k=1

Dkl

(
P>mΨPm

)
kl

=

p2∑
l=1

Dll

(
P>mΨPm

)
ll

=
Dm∑
l=1

(
P>mΨPm

)
ll
∈ [0; Tr (Ψ)] .

Indeed, P>mΨPm is non-negative definite so all its diagonal entries are non-negative.
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