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Introduction

Estimating the covariance function of stochastic processes is a fundamental issue in statistics with many applications, ranging from geostatistics, financial series or epidemiology for instance (we refer to [START_REF] Stein | Interpolation of spatial data[END_REF], [START_REF] Journel | Kriging in terms of projections[END_REF] or [START_REF] Cressie | Statistics for spatial data[END_REF] for general references). While parametric methods have been extensively studied in the statistical literature (see [START_REF] Cressie | Statistics for spatial data[END_REF] for a review), nonparametric procedures have only recently received attention, see for instance [START_REF] Elogne | Non parametric estimation of smooth stationary covariance functions by interpolation methods[END_REF][START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF][START_REF] Bigot | Adaptive estimation of spectral densities via wavelet thresholding and information projection[END_REF][START_REF] Bigot | Group lasso estimation of high-dimensional covariance matrices[END_REF] and references therein.

In [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF], a model selection procedure is proposed to construct a non parametric estimator of the covariance function of a stochastic process under mild assumptions. However their method heavily relies on a prior knowledge of the variance. In this paper, we extend this procedure and propose a fully data driven penalty which leads to select the best covariance among a collection of models. This result constitutes a generalization to the matricial regression model of the selection methodology provided in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF].

Consider a stochastic process (X (t)) t∈T taking its values in R and indexed by T ⊂ R d , d ∈ N. We assume that E [X (t)] = 0 ∀t ∈ T and we aim at estimating its covariance function σ (s, t) = E [X (s) X (t)] < ∞ for all t, s ∈ T . We assume we observe X i (t j ) where i ∈ {1 . . . n} and j ∈ {1 . . . p}. Note that the observation points t j are fixed and that the X i 's are independent copies of the process X. Set x i = (X i (t 1 ) , . . . , X i (t p )) ∀i ∈ {1 . . . n} and denote by Σ the covariance matrix of X at the observations points Σ =E x i x i = (σ (t j , t k )) 1≤j≤p,1≤k≤p .

Following the methodology presented in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF], we approximate the process X by its projection onto some finite dimensional model. For this, consider a countable set of functions (g λ ) λ∈Λ which may be for instance a basis of L 2 (T ) and choose a collection of models M ⊂ P (Λ). For m ⊂ M, a finite number of indices, the process can be approximated by

X (t) ≈ λ∈m a λ g λ (t) .
Such an approximation leads to an estimator which depends on the collection of functions m, denoted by Σm . Our objective is to select in a data driven way, the best model, i.e. the one close to an oracle m 0 defined as the minimizer of the quadratic risk, namely

m 0 ∈ arg min m∈M R (m) = arg min m∈M E Σ -Σm 2 .
This result is achieved using a model selection procedure.

The paper falls into the following parts. The description of the statistical framework of the matrix regression is given in Section 2. Section 3 is devoted to the main statistical results. Namely we recall the results of the estimate given in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] and prove an oracle inequality with a fully data driven penalty. Section 4 states technical results which are used in all the paper, while the proofs are postponed to the Appendix.

Statistical model and notations

We consider an R-valued process X (t) indexed by T a subset of R d with expectation equal to 0. We are interested in its covariance function denoted by σ (s

, t) = E [X (s) X (t)].
We have at hand the observations x i = (X i (t 1 ) , . . . , X i (t p )) for 1 i n where X i are independent copies of the process and t j are deterministic points. We note Σ ∈ R p×p the covariance matrix of the vector x i .

Hence we observe

x i x i = Σ + U i , 1 i n (1) 
where U i are i.i.d. error matrices with expectation 0. We denote by S the empirical covariance of the sample : S = 1 n n i=1 x i x i . We use the Frobenius norm defined by A 2 = Tr AA for all matrix A. Recall that for a given matrix A ∈ R p×q , vec(A) is the vector in ∈ R pq obtained by stacking the columns of A on top of one another. We denote by A -the reflexive generalized inverse of the matrix A, see for instance in [START_REF] Seber | A matrix handbook for statisticians[END_REF] or [START_REF] Engl | Regularization of inverse problems[END_REF].

The idea is to consider that we have a quite good approximation of the process in the following form

X (t) ≈ λ∈m a λ g λ (t) , (2) 
where m is a finite subset of a countable set Λ , (a λ ) λ∈Λ are random coefficients in R and (g λ ) λ∈Λ are real valued functions. We will consider models m among a finite collection denoted by M .

We note G m ∈ R p×|m| where (G m ) jλ = g λ (t j ) and a m the random vector of R |m| with coefficients (a λ ) λ∈m .

Hence, we obtain the following approximations :

x = (X (t 1 ) , .., X (t p )) ≈ G m a m xx ≈ G m a m a m G m Σ ≈ G m E a m a m G m
Thus, this point of view leads us to approximate Σ by a matrix in the subset

S (G m ) = G m ΨG m /Ψ symmetric in R |m|×|m| ⊂ R p×p . (3) 
Hence, for a model m, a natural estimator for Σ is given by the projection of S onto S (G m ). We can prove using standard algebra (see in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] for a general proof) that it has the following form :

Σ m = Π m SΠ m m ∈ M ∈ R p×p , (4) 
where

Π m = G m G m G m -G m ∈ R p×p (5) 
are orthogonal projection matrices. Set

D m = T r (Π m ⊗ Π m )
which is the dimension of S (G m ) assumed to be positive, and Σ m = Π m ΣΠ m the projection of Σ onto this subspace.

Hence we obtain the model selection procedure defined in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF]. The estimation error for a model m ∈ M is given by

E Σ -Σ m 2 = Σ -Π m ΣΠ m 2 + δ 2 m D m n , (6) 
where

δ 2 m = Tr ((Π m ⊗ Π m ) Φ) D m , Φ=V vec x 1 x 1 .
Given θ > 0, it is thus natural to define the penalized covariance estimator Σ = Σ m by

m = arg min m∈M 1 n n i=1 x i x i -Σ m 2 + pen (m) , where pen (m) = (1 + θ) δ 2 m D m n . (7) 
The following result proved in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] states an oracle inequality for the estimator Σ.

Theorem 2.1. Let q > 0 be given such that there exists κ > 2 (1 + q) satisfying E x 1 x 1 κ < ∞. Then, for some constants K (θ) > 1 and C (θ, κ, q) > 0 we have that

E Σ -Σ 2q 1/q ≤ 2 (q -1 -1) + K (θ) inf m∈M Σ -Π m ΣΠ m 2 + δ 2 m D m n + ∆ κ n δ 2 sup ,
where

∆ q κ = C (θ, κ, q) E x 1 x 1 κ m∈M δ -κ m D -(κ/2-1-q) m and δ 2 sup = max δ 2 m : m ∈ M .
However the penalty defined here depends on the quantity δ m which is unknown in practice since it relies on the matrix Φ = V vec xx . Our objective is to study a covariance estimator built with a new penalty involving an estimator of Φ.

More precisely, we will replace pen(m) by an empirical version pen(m), where

pen (m) = (1 + θ) δ 2 m D m n , (8) 
and

δ 2 m = Tr (Π m ⊗ Π m ) Φ D m ,
with Φ an estimator of Φ.

The objective is to generalize Theorem 2.1 and to construct a fully adaptive penalized procedure to estimate the covariance function.

Main result : adaptive penalized covariance estimation

Here we state the oracle inequality obtained for the new covariance estimator introduced previously.

Set

y i = vec x i x i , 1 i n,
which are vectors in R p 2 and denote by S vec = 1 n n i=1 y i their empirical mean. Consider the following constant C inf = inf m∈M Tr ((Π m ⊗ Π m ) Φ), and assume that the collection of models is chosen such that C inf > 0. Set

Φ = 1 n n i=1 y i y i -S vec S vec , δ 2 m = Tr (Π m ⊗ Π m ) Φ D m .
Given θ > 0, we consider the covariance estimator Σ = Σ m with

m = arg min m∈M 1 n n i=1 x i x i -Σ m 2 + pen (m) ,
where

pen (m) = (1 + θ) δ 2 m D m n . (9) 
Theorem 3.1. Let 1 q > 0 be given such that there exists

β > max (2 (1 + 2q) , 3 + 2q) satisfying E xx β < ∞.
Then, for a constant C depending on θ, β and q, we have for n n(β, θ, C inf , Σ), and ∀κ ∈ ]2 (1 + 2q) ; min (β, 2β -4)[ :

E Σ -Σ 2q 1/q C inf m∈M Σ -Σ m 2 + δ 2 m D m n (10) 
+ C n ∆ β E xx β 2 β + Σ 2 + δ 2 sup ∆ κ ( 11 
)
where

∆ q β = c (θ, β, q) E xx β m∈M δ -β m D -β/2 m 1-2q κ ∆ q κ = C (θ, κ, q) E xx κ m∈M δ -κ m D -(κ/2-1-q) m and δ 2 sup = max δ 2 m : m ∈ M .
We have obtained in Theorem 3.1 an oracle inequality since the estimator Σ has the same quadratic risk as the "oracle" estimator except for an additive term of order O 1 n and a constant factor. Hence, the selection procedure is optimal in the sense that it behaves as if the true model were at hand.

The proof of this theorem is divided into two parts. First, as in the of Theorem 2.1 proved in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF], we will consider a vectorized version of the model [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]. In this technical part we will obtain an oracle inequality under some particular assumptions for a general penalty. In a second part, we will prove that our particular penalty verifies these assumptions by using properties of the estimator Φ.

Technical results

Vectorized model

Here we consider the vectorized version of model [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]. In this case, we observe the following vectors in R p 2 :

y i = f i + ε i 1 i n. ( 12 
)
Here y i corresponds to vec x i x i in the model (1), f i to vect (Σ) and ε i to vec (U i ). We set f = f 1 , . . . , f n , y = y 1 , . . . , y n and ε = ε 1 , . . . , ε n , which are vectors in

R np 2 .
We estimate f by an estimator of the form

f m = P m y m ∈ M,
where P m is the orthogonal projection onto a subspace S m of dimension D m . We note f m = P m f and we consider the empirical norm

f 2 n = 1 n n i=1 f i f i with the corresponding scalar product •, • n .
First we state the vectorized form of Theorem 2.1. Write

δ 2 m = Tr (P m (I n ⊗ Φ)) D m , δ 2 sup = max δ 2 m : m ∈ M .
Given θ > 0, define the penalized estimator f = f m , where

m = arg min m∈M y-f m 2 n + pen (m) , with pen (m) = (1 + θ) δ 2 m D m n .
Then, the proof of Theorem 2.1 relies on the following proposition proved in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF]:

Proposition 4.1. : Let q > 0 be given such that there exists κ > 2 (1 + q) satisfying E ε 1 κ < ∞. Then, for some constants K (θ) > 1 and C (θ, κ, q) > 0 we have that

E f -f 2q n 1/q ≤ 2 (q -1 -1) + K (θ) inf m∈M f -P m f 2 n + δ 2 m D m n + ∆ κ n δ 2 sup , (13) 
where

∆ q κ = C (θ, κ, q) E ε 1 κ m∈M δ -κ m D -(κ/2-1-q) m .
The new estimator Σ defined previously corresponds here to the estimator f = f m , where

m = arg min m∈M y-f m 2 n + pen (m) , with pen (m) = (1 + θ) δ 2 m D m n ,
and δ 2 m is some estimator of δ 2 m . Next Proposition gives an oracle inequality for this estimator under new assumptions on the model. As Proposition 4.1, it is inspired by the paper [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]. Proposition 4.2. Let 1 q > 0 be given such that there exists κ

> 2 (1 + 2q) satisfying E ε 1 κ < ∞. For α ∈ ]0; 1[, set Ω = ∩ m∈M δ 2 m (1 -α) δ 2 m . Assume that A1. E δ 2 m δ 2 m .
A2. P (Ω c ) C (α) 1 n γ for some γ q 1-2q/κ . Then, for a constant C depending on κ, θ and q, and we have

E f -f 2q n 1/q C inf m∈M f -P m f 2 n + δ 2 m D m n (14) + C n ∆ κ E [ ε 1 κ ] 2 κ + f 2 n + δ 2 sup ∆ κ ( 15 
)
where

∆ q κ = C (α) (1-2q κ ) with α = α (θ) is fixed in ]0; 1[ and 
∆ q κ = C (θ, κ, q) E ε 1 κ m∈M δ -κ m D -(κ/2-1-q) m
Theorem 3.1 is thus a direct application of Proposition 4.2. Hence only remain to be checked the two assumptions A1 and A2.

Auxiliary concentration type lemmas

Here we state some propositions required in the proofs of the previous results.

To our knowledge, the first is due to von Bahr and Esseen in [START_REF] Bahr | Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF].

Lemma 4.3. Let U 1 , . . . , U n independent centred variables with values in R. For any 1 κ 2 we have :

E n i=1 U i κ 8 n i=1 E [|U i | κ ]
The next proposition is proved in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF]. . For all β ≥ 2 such that E ε 1 β < ∞ it holds that, for all x > 0,

P ζ 2 (ε) ≥ δ 2 Tr A + 2δ 2 Tr A ρ A x + δ 2 ρ A x ≤ C 2 (β) E ε 1 β Tr A δ β ρ A x β/2
, (16) where the constant C 2 (β) depends only on β.

Appendix

Proof of Proposition 4.2

This proof follows the guidelines of the proof of Theorem 6.1 in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]. The following lemma will be helpful for the proof of this proposition

Lemma 5.1. Choose η = η (θ) > 0 and α = α (θ) ∈ ]0; 1[ such that (1 + θ) (1 -α) (1 + 2η). Set H m (f ) = f -f 2 n -κ (θ) f -f m 2 n + Dm n δ 2 m + where κ (θ) = 2 + 4 η (1 + θ). Then, for m 0 minimizing m → f -f m 2 n + Dm n δ 2 m in m ∈ M E [H m 0 (f ) q 1 Ω ] ∆ q κ δ 2q sup 1 n q . ( 17 
)
where ∆ κ was defined in Proposition 4.2.

Proof. Lemma 5.1 First, remark that on the set Ω, for all m ∈ M

pen (m) (1 -α) (1 + θ) δ 2 m D m n (1 + 2η) δ 2 m D m n . Set pen(m) = (1 + 2η) δ 2 m Dm
n , which corresponds to the penalty of Proposition 4.1. The proof of this lemma is based on the proof of Proposition 4.1 in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF]. In fact, it is sufficient to prove that for each x > 0 and κ ≥ 2

P H (f ) 1 Ω ≥ 1 + 2 η x n δ 2 m ≤ c (κ, η) E ε 1 κ m∈M 1 δ κ m D m ∨ 1 (ηD m + x) κ/2 , ( 18 
)
where we have set

H (f ) = f -f 2 n -2 + 4 η f -f m 0 2 n + pen (m 0 ) + . Indeed, for each m ∈ M, f -f m 0 2 n + pen (m 0 ) = f -f m 0 2 n + (1 + θ) δ 2 m 0 n D m 0 ≤ (1 + θ) f -f m 0 2 n + δ 2 m 0 n D m 0
then we get that for all q > 0,

H q (f ) 1 Ω ≥ H q m 0 (f ) 1 Ω (19) 
Using the equality

E [H q (f ) 1 Ω ] = ∞ 0 qu q-1 P (H q (f ) 1 Ω > u) du
and following the proof of Propositon 4.1 in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] we obtain the upper bound (17) of Lemma 5.1. Now we turn to the proof of (18). For any g ∈ R np 2 we define the empirical quadratic loss function by γ n (g) = y -g 2 n . Using the definition of γ n we have that for all g ∈ R np 2 ,

f -g 2 n = γ n (g) + 2 g -y, ε n + ε 2 n and therefore f -f 2 n -f -P m 0 f 2 n = γ n f -γ n (P m 0 f ) + 2 f -P m 0 f, ε n . ( 20 
)
Using the definition of f , we know that

γ n f + pen ( m) ≤ γ n (g) + pen (m 0 )
for all g ∈ S m 0 . Then

γ n f -γ n (P m 0 f ) ≤ pen (m 0 ) -pen ( m) . (21) 
So we get from (20) and (21) that

f -f 2 n ≤ f -P m 0 f 2 n + pen (m 0 ) -pen ( m) + 2 f -P m 0 f, ε n + 2 P m f -f, ε n + 2 f -P m f, ε n . (22) 
In the following we set for each m ∈ M,

B m = {g ∈ S m : g n ≤ 1} , G m = sup t∈B m g, ε n = P m ε n , u m = P m f -f P m f -f n if P m f -f n = 0 0 otherwise. Since f = P m f + P m ε, (22) gives f -f 2 n ≤ f -P m 0 f 2 n + pen (m 0 ) -pen ( m) +2 f -P m 0 f n | u m 0 , ε n | + 2 f -P m f n | u m , ε n | + 2G 2 m . (23) 
Using repeatedly the following elementary inequality that holds for all positive numbers ν, x, z

2xz ≤ νx 2 + 1 ν z 2 (24)
we get for any m ∈ M

2 f -P m f n | u m , ε n | ≤ ν f -P m f 2 n + 1 ν | u m , ε n | 2 . ( 25 
)
By Pythagora's Theorem we have

f -f 2 n = f -P m f 2 n + P m f -f 2 n = f -P m f 2 n + G 2 m . (26) 
We derive from ( 23) and ( 25) that for any ν > 0

f -f 2 n ≤ f -P m 0 f 2 n + ν f -P m 0 f 2 n + 1 ν u m 0 , ε 2 n +ν f -P m f 2 n + 1 ν u m , ε 2 n + 2G 2 m + pen (m 0 ) -pen ( m) .
Now taking into account that by equation ( 26)

f -P m f 2 n = f -f 2 n -G 2 m the above inequality is equivalent to (1 -ν) f -f 2 n ≤ (1 + ν) f -P m 0 f 2 n + 1 ν u m 0 , ε 2 n + 1 ν u m , ε 2 n + (2 -ν) G 2 m + pen (m 0 ) -pen ( m) . (27) 
We choose ν = 2 2+η ∈ ]0, 1[, but for sake of simplicity we keep using the notation ν. Let p 1 and p 2 be two functions depending on ν mapping M into R + . They will be specified as in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] to satisfy

pen (m ) ≥ (2 -ν) p 1 (m ) + 1 ν p 2 (m ) ∀(m ) ∈ M . ( 28 
)
Remember that on Ω, pen(m) pen(m) ∀m ∈ M. Since 1 ν p 2 (m ) ≤ pen (m ) and 1 + ν ≤ 2, we get from ( 27) and (28) that on the set

Ω (1 -ν) f -f 2 n ≤ (1 + ν) f -P m 0 f 2 n + pen (m 0 ) + 1 ν p 2 (m 0 ) + (2 -ν) G 2 m -p 1 ( m) + 1 ν u m , ε 2 n -p 2 ( m) + 1 ν u m 0 , ε 2 n -p 2 (m 0 ) ≤ 2 f -P m 0 f 2 n + pen (m 0 ) + (2 -ν) G 2 m -p 1 ( m) + 1 ν u m , ε 2 n -p 2 ( m) + 1 ν u m 0 , ε 2 n -p 2 (m 0 ) . ( 29 
)
As 2 1-ν = 2 + 4 η we obtain that

(1 -ν) H (f ) 1 Ω = (1 -ν) f -f 2 n -(1 -ν) 2 + 4 η f -P m 0 f 2 n + pen (m 0 ) + 1 Ω = (1 -ν) f -f 2 n -2 f -P m 0 f 2 n + pen (m 0 ) + 1 Ω ≤ (2 -ν) G 2 m -p 1 ( m) + 1 ν u m , ε 2 n -p 2 ( m) + 1 ν u m , ε 2 n -p 2 (m 0 ) + For any x > 0, P (1 -ν) H (f ) 1 Ω ≥ xδ 2 m n ≤ P ∃m ∈ M : (2 -ν) G 2 m -p 1 (m ) ≥ xδ 2 m 3n + P ∃m ∈ M : 1 ν u m , ε 2 n -p 2 (m ) ≥ xδ 2 m 3n ≤ m ∈M P (2 -ν) P m ε 2 n -p 1 (m ) ≥ xδ 2 m 3n + m ∈M P 1 ν u m , ε 2 n -p 2 (m ) ≥ xδ 2 m 3n := m ∈M P 1,m (x) + m ∈M P 2,m (x) . ( 30 
)
From now on, the proof of Lemma 5.1 is exactly the same as the end of the proof of Proposition 4.1 in [START_REF] Bigot | Nonparametric estimation of covariance functions by model selection[END_REF] with L m = ν.

Proof. Proposition 4.2

We first provide an upper bound for E f -f 2q n 1 Ω , where the set Ω depends on α chose as in Lemma 5.1.

As q 1, we have (a + b) q a q + b q . Together with Lemma 5.1 we deduce that

E f -f 2q n 1 Ω ∆ q κ δ 2q sup 1 n q + E κ (θ) q f -f m 0 2 n + D m 0 n δ 2 m 0 q .
Using the convexity of x → x 1 q together with the Jensen inequality, we obtain

E f -f 2q n 1 Ω 1 q 2 1/q-1 ∆ κ δ 2 sup 1 n + 2 1/q-1 E κ (θ) f -f m 0 2 n + D m 0 n δ 2 m 0 ,
and by using the assumption A1 we have that

E f -f 2q n 1 Ω 1 q 2 1/q-1 ∆ κ δ 2 sup 1 n + 2 1/q-1 κ (θ) f -f m 0 2 n + D m 0 n δ 2 m 0 . (31) 
Now we need to find an upper bound for the quantity E f -

f 2q n 1 Ω c . First, remark that f -f 2 n = f -P m y 2 n = f -P m f 2 n + P m (f -y) 2 n f -P m f 2 n + ε 2 n = f 2 n -P m f 2 n + ε 2 n And thus f -f 2 n f 2 n + ε 2 n .
So we have

E f -f 2q n 1 Ω c f 2q n P (Ω c ) + E ε 2q n 1 Ω c .
Using Hölder's inequality with κ 2q > 1 we obtain

E ε 2q n 1 Ω c E [ ε κ n ] 2q κ P (Ω c ) (1-2q κ ) . But E [ ε κ n ] = 1 n κ 2 E   n i=1 ε i 2 κ 2   ,
and as κ 2, we can use Minkowsky's inequality to obtain

E [ ε κ n ] 1 n κ 2 n i=1 (E [ ε i κ ]) 2 κ κ 2 = 1 n κ 2 n (E [ ε 1 κ ]) 2 κ κ 2 ,
that is

E [ ε κ n ] E [ ε 1 κ ] .
So we have

E f -f 2q n 1 Ω c E [ ε 1 κ ] 2q κ + f 2q n P (Ω c ) (1-2q κ ) ,
and with assumption A2

E f -f 2q n 1 Ω c E [ ε 1 κ ] 2q κ + f 2q n C(α) 1 n γ (1-2q κ ) .
As γ q 1-2q/κ , we deduce that

E f -f 2q n 1 Ω c 1 q 2 1 q -1 E [ ε 1 κ ] 2 κ + f 2 n C(α) 1- 2q κ q 1 n (32) 
To conclude, we use again the convexity of x → x 1 q and the inequality (31) to get

E f -f 2q n 1 q 4 1 q -1 E [ ε 1 κ ] 2 κ + f 2 n C(α) 1- 2q κ q 1 n +4 1/q-1 ∆ κ δ 2 sup 1 n +4 1/q-1 κ (θ) f -f m 0 2 n + D m 0 n δ 2 m 0

Proof of Theorem 3.1

Recall that β > max (2 (1 + 2q) , 3 + 2q) and κ ∈ ]2 (1 + 2q) ; min (β, 2β -4)[. In order to use Proposition 4.2 , we need to prove the following inequalities :

A1. E δ 2 m δ 2 m A2. P (Ω c ) C (α) 1 n γ for γ q 1-2q/κ . First we prove A1. Remember that δ 2 m =
Tr((Πm⊗Πm) Φ) Dm

. By using the linearity of the trace and the equal-

ity E Φ = n-1 n Φ, we obtain that E δ 2 m = n-1 n δ 2
m which proves the result.

For the second, write

Ω c = ∪ m∈M δ 2 m (1 -α) δ 2 m .
We bound up the quantity 

P δ 2 m (1 -α) δ
P δ 2 m (1 -α) δ 2 m 1 n γ C 2 (β)2 β+1 + C 1 (β) 1 α β 2 E xx β δ -β m D -β 2 m ,
for γ q 1-2q/κ . This Proposition concludes the proof of A2 with

C (α) = C 2 (β)2 β+1 + C 1 (β) 1 α β 2 E xx β m∈M δ -β m D -β 2 m .
Proof. Proposition 5.2

We start by dividing

P m = P δ 2 m (1 -α) δ 2 m
into two parts with one of them involving a sum of independent variables with expectation equal to 0.

P m = P Tr (Π m ⊗ Π m ) Φ (1 -α) Tr ((Π m ⊗ Π m ) Φ) P m = P Tr (Π m ⊗ Π m ) Φ -Φ + µµ + µµ -αTr ((Π m ⊗ Π m ) Φ) P m P Tr (Π m ⊗ Π m ) 1 n n i=1 y i y T i -Φ -µµ + µµ -S vec S vec αTr ((Π m ⊗ Π m ) Φ) P m P Tr (Π m ⊗ Π m ) 1 n n i=1 y i y T i -Φ -µµ α 2 Tr ((Π m ⊗ Π m ) Φ) +P Tr (Π m ⊗ Π m ) µµ -S vec S vec α 2 Tr ((Π m ⊗ Π m ) Φ) Set Q1 = P Tr (Π m ⊗ Π m ) 1 n n i=1 y i y T i -Φ -µµ α 2 Tr ((Π m ⊗ Π m ) Φ) and Q2 = P Tr (Π m ⊗ Π m ) µµ -S vec S vec α 2 Tr ((Π m ⊗ Π m ) Φ)
Study of Q1 First we use Markov's inequality to obtain

A1 2 β 2 E Tr (Π m ⊗ Π m ) 1 n n i=1 y i y T i -Φ -µµ β 2 (αTr ((Π m ⊗ Π m ) Φ)) β 2
.

We must consider the two following cases :

• If β 2 2, Rosenthal's inequality gives E   1 n n i=1 Tr (Π m ⊗ Π m ) y i y T i -Φ -µµ β 2   C β 2 1 n β 2 -1 E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ β 2 +C β 2 1 n E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ 2 β 4
.

As β 2 2, 1 n β 2 -1 1 n β 4
and we can use Jensen's inequality on the second term to obtain

E   1 n n i=1 Tr (Π m ⊗ Π m ) y i y T i -Φ -µµ β 2   C β 2 E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ β 2 2 n β 4 . • If 1 β 2 2, we use Lemma 4.3 of subsection 4.2 to get E   1 n n i=1 Tr (Π m ⊗ Π m ) y i y T i -Φ -µµ β 2   8 n β 2 -1 E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ β 2
In both cases, we can use the fact that x → x β 2 is a convex and increasing function to obtain

E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ β 2 2 β 2 -1 E Tr (Π m ⊗ Π m ) y 1 y 1 β 2 + Tr (Π m ⊗ Π m ) Φ + µµ β 2 .
And by using the Jensen's inequality on the second term we have that

E Tr (Π m ⊗ Π m ) y 1 y 1 -Φ -µµ β 2 2 β 2 E Tr (Π m ⊗ Π m ) y 1 y 1 β 2
. Now consider the following lemma.

Lemma 5.3. If Ψ is symmetric non-negative definite, then Tr ((Π m ⊗ Π m ) Ψ) ∈ [0; Tr (Ψ)] (33) 
From this fact we get that

Tr (Π m ⊗ Π m ) y 1 y 1 β 2 Tr y 1 y 1 β 2 = y 1 β = xx β .
In conclusion, we have

Q1 C 1 (β) E xx β α β 2 δ β m D β 2 m 1 n γ , ( 34 
) with γ = min β 4 , β 2 -1 and C 1 (β) = 2C β 2 if β 4 where C β 2 is the constant in Rosenthal's inequality and C 1 (β) = 8 if 2 β 4. Remark that β 4 κ 4 and β 2 -1 κ 4 , so γ κ 4 .

Study of Q2

Recall that

Q2 = P Tr (Π m ⊗ Π m ) µµ -S vec S vec α 2 Tr ((Π m ⊗ Π m ) Φ) . Set B2 = Tr (Π m ⊗ Π m ) µµ -S vec S vec .
Using the properties of the trace, we can write

B2 = Tr (Π m ⊗ Π m ) µµ -Tr (Π m ⊗ Π m ) S vec S vec = Tr µ (Π m ⊗ Π m ) µ -Tr S vec (Π m ⊗ Π m ) S vec .
But Π m ⊗ Π m is an orthogonal projection matrix, then

In conclusion, with

A m = H m G n = 1 n      Π m ⊗ Π m . . . Π m ⊗ Π m Π m ⊗ Π m . . . Π m ⊗ Π m . . . . . . . . . Π m ⊗ Π m . . . Π m ⊗ Π m      ∈ R p 2 n×p 2 n , we have that A m (y -f ) = 1 n ⊗ ((Π m ⊗ Π m ) (S vec -µ)) .
Moreover, A m is an orthogonal projection matrix and we have the following equalities

A m (y -f ) 2 = n (Π m ⊗ Π m ) (S vec -µ) 2 = (y -f ) A m (y -f ) , Tr (A m ) = n n Tr (Π m ⊗ Π m ) = D m , Tr (A m (Id n ⊗ Φ)) = n n Tr ((Π m ⊗ Π m ) Φ) = Tr ((Π m ⊗ Π m ) Φ) .

Now we can use Proposition 4.4 with

A = A m , ε i = y i -µ, Tr (A m ) = D m , ρ (A m ) = 1, δ 2 = δ 2
m and β 2. This gives for all x > 0 .

P (y -f ) A m (y -f ) Tr ((Π m ⊗ Π m ) Φ) 1 + x Dm 2 C 2 (β) E[ y 1 -µ β ]D
Moreover E y 1 -µ β E ( y 1 + µ ) β ,
and by using properties of convexity we obtain

E y 1 -µ β 2 β-1 E y 1 β + µ β .
With the Jensen's inequality we get:

E y 1 -µ β 2 β E y 1 β .
In conclusion, with r = 

Proposition 4 . 4 .

 44 Given N, k ∈ N, let A ∈ R N k×N k {0} be a non-negative definite and symmetric matrix and ε 1 , ..., ε N i.i.d random vectors in R k with E (ε 1 ) = 0 andV (ε 1 ) = Φ. Write ε = ε 1 , ..., ε N , ζ (ε) = ε Aε, and δ 2 = Tr( A(I N ⊗Φ)) Tr( A)

P 1 n 2 C 2 2 . 8 µn γ with γ q 1 - 2

 1222812 (Π m ⊗ Π m ) (S vec -µ) 2 Tr ((Π m ⊗ Π m ) Φ) 1 + x Dm (β) E[ y 1 -µ β ]DIn order to use this deviation bound to obtain the inequalitiesP (Π m ⊗ Π m ) (µ -S vec ) 2 α 4 Tr ((Π m ⊗ Π m ) Φ) C 1 n γ and P (Π m ⊗ Π m ) (µ -S vec ) α Tr ((Π m ⊗ Π m ) Φ) C 1 2q/κ ,we need to find x > 0 satisfying the three following facts Tr ((Π m ⊗ Π m ) Φ) and (37) hold for the choice x = D m n r with r < 1 and if n is large enough to have 1 obtain (38) with x = D m n r , we use the inequality D m n which gives

κ 2 +2β < 1 C 2 δ 2 m( 1 -α) δ 2 m 1 n 2 m 4 > 2+2q 4 q as q 1 .

 2122112441 we obtain for n n(κ, β, α, C inf , Σ)Q2 2 β+1 C 2 (β) (β) is the constant which appears in Proposition 4.4.In conclusion, combining (34) and (41)P κ/4 C 2 (β)2 β+1 + C 1 (β) for n n(κ, β, α, C inf , Σ) .To conclude, remark that κ 4 (1 -2q/κ) = κ-2qProof. Lemma 5.3Recall that Π m ⊗Π m is an orthogonal projection matrix. Hence there exists an orthogonal matrix P m such that P m (Π m ⊗ Π m ) P m = D, with D a diagonal matrix with D ii = 1 if i D m , and D ii = 0 otherwise. Then if Ψ is symmetric non-negative definite we have :Tr ((Π m ⊗ Π m ) Ψ) = Tr DP m ΨP m

  2 m in the following Proposition. Proposition 5.2. For all m ∈ M , α ∈]0; 1[ and n n(κ, β, α, C inf , Σ) we have for some constants C 1 (β), C 2 (β) :

Now we need to provide an upper bound for the quantities

For this we will use the deviation bound provided by Proposition 4.4 stated in subsection 4.2 .

Set

Now, if

we have Indeed, P m ΨP m is non-negative definite so all its diagonal entries are non-negative.