N
N

N

HAL

open science

Estimating the unmeasured membrane potential of

neuronal populations from the EEG using a class of

deterministic nonlinear filters

Michelle Chong, Romain Postoyan, Dragan Nesic, Levin Kuhlmann, Andrea

Varsavsky

» To cite this version:

Michelle Chong, Romain Postoyan, Dragan Nesic, Levin Kuhlmann, Andrea Varsavsky.
ing the unmeasured membrane potential of neuronal populations from the EEG using a class of
deterministic nonlinear filters. Journal of Neural Engineering, 2012, 9 (2), pp.026001. 10.1088/1741-

2560/9/2/026001 . hal-00675256

HAL Id: hal-00675256
https://hal.science/hal-00675256
Submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Estimat-


https://hal.science/hal-00675256
https://hal.archives-ouvertes.fr

Estimating the unmeasured membrane potential of
neuronal populations from the EEG using a class of
deterministic nonlinear observers

Michelle Chong', Romain Postoyan?}, Dragan Nesié!,
Levin Kuhlmann!? and Andrea Varsavsky!

I Department of Electrical and Electronic Engineering, The University of
Melbourne, Australia.

2 Centre de Recherche en Automatique de Nancy, UMR 7039, Nancy-Université,
CNRS, France.

3 Department of Optometry and Vision Science, The University of Melbourne,
Australia.

E-mail: chongms@unimelb.edu.au, romain.postoyan@cran.uhp-nancy.fr,
dnesic@unimelb.edu.au, levink@unimelb.edu.au, ava@unimelb.edu.au

Abstract. We present a model-based estimation method to reconstruct the
unmeasured membrane potential of neuronal populations from a single channel
electroencephalographic (EEG) measurement. We consider a class of neural mass
models that share a general structure, specifically the models by Stam et. al. in
[1], Jansen et. al. in [2] and Wendling et. al. in [3]. Under idealised assumptions,
we prove the global exponential convergence of our observer. Then, under more
realistic assumptions, we investigate the robustness of our observer against model
uncertainties and disturbances. Analytic proofs are provided for all results and
our analyses are further illustrated via simulations.

PACS numbers: 87.19.1e, 87.19.1j, 87.19.11, 87.19.1r

Submitted to: Journal of Neural Engineering

1 This work was carried out while the author was in the Department of Electrical and Electronics
Engineering, The University of Melbourne, Australia.



A class of nonlinear observers for the activity of neuronal populations 2
1. Introduction

Brain studies involving the EEG typically employ signal processing strategies, which
can be categorised into measure-based or model-based methods. The measure-based
method involves extracting key measures from the EEG signal to classify brain
phenomena. This approach is prevalent for the purpose of seizure detection (e.g.
[4, 5]) and prediction (e.g. [6, 7]) in epilepsy. These methods are continuously under
development due to the strict conditions in which they can be considered successful
8]

On the other hand, model-based estimation methods can provide insight into the
complex nature of the brain via mathematical models (e.g. [9, 10, 11, 12] to name a
few). These models describe brain activity at different scales, from a single neuron to
populations of neurons and these activities are captured by states of a dynamical
system. These states can be physiologically relevant and most are unmeasurable
by conventional means. The model-based approach of estimating the unmeasured
brain activity is called state estimation. In systems theory literature, the algorithm
to estimate states from a measurement is commonly known as ‘observer’, ‘filter’ or
‘estimator’ [13, 14]. We will use the term ‘observer’ in this paper.

The objective of this study is to propose a model-based algorithm to estimate
online the hidden states of neural mass models formulated as deterministic ordinary
differential equations in continuous time. As such, this scheme similar in flavour to
Dynamic Causal Modelling [15, 16, 17, 18, 19, 20], which aims to recover the hidden
states and parameters of an underlying dynamical system from observed time series.
In this paper, we focus on estimating hidden states, noting that this is useful for
model identification or parameter estimation. The ability to recover hidden states
and parameters from electrophysiological data is of clear importance; for example, in
the diagnosis, classification and anticipation of seizures in epilepsy.

Most of the work in state estimation for neuroscientific and neurological studies
are developed under the stochastic framework, using the Kalman filter and its variants,
or by employing the expectation maximisation algorithm [21, 22, 23, 24, 25, 26].
However, the usage of stochastic observers on a nonlinear model such as [9] and [3]
requires that the observer be initialised close to the true initial condition, which is
realistically unknown. Moreover, the convergence of the estimates to the true states
is not guaranteed for every trajectory.

Deterministic state estimation circumvents these issues. Nevertheless, the main
difficulty lies in that there exists no generic method of designing deterministic observers
for nonlinear models. As existing techniques do not apply to the models we consider,
we developed our own observer and provide analytical proofs for the convergence of
state estimates to the true states.

Deterministic state estimation methods at the microscopic level (single neuron)
include works by Tokuda et. al. in [27], Totoki et. al. in [28], Tyukin et. al. in [29]
and Mao et. al. in [30]. As our measurement of choice is the EEG, which is known to
reflect the average behaviour of populations of neurons [31], our work differs by taking
a macroscopic view. We focus on designing deterministic observers for estimating the
unmeasured mean membrane potential of neuronal populations. At present, it is only
possible to measure the membrane potential of neuronal populations through invasive
implantation of electrodes. The positioning and size of electrodes need to be accurate
enough such that the measurements are not influenced by nearby populations. To this
end, we consider physiologically relevant models that describe the interaction between
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neuronal populations, known as neural mass models (see [32] for review), that are
known to replicate patterns typically seen in the EEG (e.g. [9, 10, 11, 3, 1, 2] to name
a few). We consider three neural mass models available in the literature that share
a general mathematical structure, they describe: (i) alpha rhythms [1], (ii) alpha
rhythms in the cerebral cortex [2] and (iii) epileptic activity in the hippocampus
[3]. We rewrite these neural mass models in state space form, specifically, in state
coordinates that are amenable for observer design. We also identify the common
model features that allow us to prove convergence of state estimates to the true states
in a unified manner.

In the development of our observer, we first assume that there are no uncertainties
and external disturbances that affect our model. We later relax these assumptions
and show that the proposed class of observers is robust to uncertainty in parameters,
additive disturbance, as well as noise and artefacts in the input and EEG measurement.
The robustness of this class of observers to parameter uncertainty provides a starting
point in the final aim of building an online observer for both the states and parameters
of the model that will form the further work of this study. The contributions of this
paper are:

e The design of a class of deterministic nonlinear observers for neural mass models
that guarantee convergence of the estimated states to the true states for any
initial condition and any known input. Analytical proofs using system theoretic
methods are provided in the Appendix.

e Robustness analysis of our proposed observers towards common issues faced in
estimating brain activity. These include measurement noise, uncertainty in the
parameters and the measured input. Simulation studies confirm the analyses
performed.

The rest of the paper is organised as follows. We start by introducing the
notations and formally state the problem in Section 2. Section 3 contains a more
detailed exposition on the three neural mass models of interest. Then in Section 4,
we show how to convert these neural mass models into a state space form that is
amenable for observer design and error convergence analysis. Section 5 contains the
main simplifying assumptions. Section 6 contains the main result of the paper that
states the exponential convergence properties of the state estimates to the true states.
We then relax some of the earlier strong assumptions and show that the observer is
robust under a more realistic set of assumptions. We present simulation results in
Section 7. In Section 8, We provide some discussions and conclude the paper.

Notation
Ay 0 ... 0
e The matrix 0 : where A; for i € {1,...,n} are m x m
: -0
o ... 0 A,
matrices, is denoted as diag(A1, ..., A,).

e The set L, denotes the set of functions f : R — R™, for some n € Z, such that for
any 0 < t; <ty < oo there exists r > 050 that || f[|z,¢,) 1= esssup ¢p, 4,1 [f(7)] <
T
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e A vector u € R"™, where each element is drawn from a Gaussian distribution
with mean p € R and variance 02 € R is denoted u ~ N(M,o?l), where
M = (p,...,u) € R" and I € R"*" is an identity matrix.

2. Problem statement

We consider several classes of neural mass models described in [1], [2] and [3]. These
models have some common features and can all be represented by the same general
functional block diagram that is shown in Figure 1. The input to the model u
represents all the external influences from afferent neuronal populations or structures.
The output of the model y is taken to be the EEG measurement, which is proportional
to the aggregated average postsynaptic potentials of the pyramidal neurons. The
state x is a vector whose entries are the afferent population specific contributions to
the mean membrane potential of each neuronal population and its derivative. The
parameter 6 is a vector whose entries are the connectivity strengths and the synaptic
gain of each neuronal population. The state x, output y and parameter 6 have subtly
different meaning for each model we consider and these differences are discussed in
more detail in the following sections.

Neural mass
Model input, U model Model output, y >
x, 0
Figure 1. Block diagram of the neural mass model.
Neural mass
Model input, U Model output, )
> model
(EEG measurement)
x,0
State
estimate, X Observer
 &—

Figure 2. Block diagram of the neural mass model with our observer.

Our goal is to design a model-based algorithm (observer) which uses
measurements from v and y to compute the state estimate & as illustrated in Figure
2. We show how to design the observer for a general class of systems in state space
form that covers many neural mass models. The observer is designed to provide a
state estimate & that converges to the real state x in exponential time, for any initial
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condition and any input. In the next section, we describe the neural mass models
considered in more detail.

3. Neural mass models

We consider several classes of neural mass models that describe the interconnection
between neuronal populations as shown in Figures 3-5. These block diagrams describe
a functional relationship between various neuronal populations. They are developed
by: (i) Stam et. al. in [1], (ii) Jansen and Rit in [2] and (iii) Wendling et. al. in
[3]. These models are based on the models by Wilson and Cowan in [33] as well as
Lopes da Silva in [34]. In the following sections, the classes of neural mass models are
introduced with increasing level of complexity. Noting that the models by Stam et.
al. as well as Jansen and Rit can be obtained from the model by Wendling et. al. by
omitting certain neuronal populations, a detailed block diagram is presented only for
the Wendling et. al. model in Section 3.3.

3.1. Neural mass model by Stam et. al.

We begin with the model by Stam et. al., which includes an excitatory and inhibitory
population to replicate alpha rhythms as seen in Figure 3. The emergence of alpha
rhythms in the EEG is related to the human subject being in a relaxed state with
eyes closed. Our observer is used to estimate the membrane potential of each
population and its derivatives from the EEG and input measurements. Estimating
the unmeasured membrane potential of neuronal populations when alpha rhythms are
seen on the EEG measurement could allow for the better understanding of the visual
pathway while in an idle state.

Neural mass model

Output,
(0
(EEG)

Input,

Excitatory
population

Inhibitory
Interneurons

Figure 3. Neural mass model by Stam et. al. in [1]

3.2. Neural mass model by Jansen and Rit

The interconnections between the pyramidal neurons, excitatory and inhibitory
populations are described in this model to investigate the generation of visual evoked
potentials in the cerebral cortex, as illustrated in Figure 4. We design observers to
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estimate the unmeasured membrane potential of neuronal populations, which could
give insight into the stimulation of a sensory pathway.

Neural mass model Output,

()
(EEG)

Input,

u(t) Pyramidal

Neurons

G

G G
Excitatory Inhibitory
Interneurons Interneurons

Figure 4. Neural mass model by Jansen and Rit in [2]

3.3. Neural mass model by Wendling et. al.

Wendling et. al. built upon the Jansen and Rit model described in Section 3.2.
Four neuronal populations (with one population being a subset of another) are
included in this model as shown in Figure 5. They are the pyramidal neurons, the
excitatory population (included in the pyramidal neurons), the slow and fast inhibitory
populations. The fast somatic projection of the inhibitory population is introduced in
this model as it is hypothesised to play a role in the fast oscillatory pattern seen in the
EEG during epileptic seizure onsets. Estimating the membrane potential contribution
of one population to another could provide insight into the underlying dynamics of
seizure activity.

Neural mass model

G G
Pyramidal I
Input, Neurons Output,
u(?) N BL0)]
(EEG)

+

S G
Inhibitory Inhibitory
INterneurons G, '« Interneurons
(fast somatic = (slow dendritic
projection) projection)

Figure 5. Neural mass model by Wendling et. al. in [3].

Figure 6 describes the interaction between populations of neurons in greater
detail, which consists of postsynaptic membrane potential (PSP) kernels h., h; and
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hg, sigmoid functions S : R = R and connectivity constants C; to C7.

Neural mass model

Pyramidal neurons

S

Model input, #(?)

Model output, y(t))

() <—<]<:|
ho [ e<olet— S0 él— <

Inhibitory interneurons
(fast somatic projection)

Inhibitory interneurons
(slow dendritic
projection)

Figure 6. Detailed block diagram of the Wendling et. al. model. Reproduced
from Figure 4 in [3].

The firing rate of the afferent population is converted into an excitatory, slow or
fast inhibitory postsynaptic membrane potential via the following kernels, for ¢ > 0:

e The excitatory population:

he(t) = 0 aat exp(—at). (1)
e The slow inhibitory population:

h;(t) = Opbt exp(—bt). (2)
e The fast inhibitory population:

hg(t) = Ocgt exp(—gt). 3)

Parameters 6,4, 0 and ¢ in (1)-(3) correspond to the synaptic gains of the excitatory,
slow and fast inhibitory populations respectively. These parameters characterise
the observed pattern in the EEG. For example, the values of 64, g and 0 that
distinguish between seizure and non-seizure activities have been identified in [3].

Internal variables x11,..., 71 are introduced as shown in Figures 3-6. They
describe the membrane potential contribution from one population to another. For
example as seen in Figure 6, the mean membrane potential of the pyramidal neurons is
11 —x21 —T31, which reflects the membrane potential contribution from the excitatory,
slow and fast inhibitory populations respectively. The mean membrane potential of a
population is converted into the average firing rate of all the neurons in that population
using a sigmoid function S:

as

M e (W)

where as is the maximum firing rate of the population, ry is the slope of the sigmoid
and V5 is the threshold of the population’s mean membrane potential.

The neuronal populations are connected with connectivity strengths C; to C7,
which represents the average number of synaptic contacts between the neuronal
populations concerned.

for z € R, (4)
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4. Neural mass models in state space form

Our observer design is most conveniently carried out using the state space form of the
neural mass models. However, some of the neural mass models of interest presented in
Section 3 were in block diagram form (e.g. Figure 6) in the given references [1, 2, 3]. In
[2] and [3], state space forms were provided but not in the convenient state coordinates
where the techniques we use for proving convergence of state estimates can be applied.
Therefore, we illustrate how this can be done on the model by Wendling et. al., whose
detailed block diagram can be found in Figure 6. The other models considered are
special cases of the model by Wendling et. al. and hence, can easily be obtained from
the derivation below.

We will show that all neural mass models from Section 3 can be written in the
following state space form:

& =Ax+ G(0)y(Hz) 4+ o(u,Cx,0), (5)
and the output of the model is:
y=Cu, (6)

where the state vector is x € R, input is u € R, output/EEG measurement is
y € R, parameter vector is § € RP, G : R? — R™ ™ nonlinearity v = (v1,...,Ym)
with v, : R — R for ¢« € {1,...,m} and nonlinearity o = (o1,...,0,) with
0; : RxRxR™ — Rfori € {1,...,n}. The number of states n, number of parameters
p and number of scalar nonlinear functions m differs for each model. These are defined
in Sections 4.3-4.5.

4.1. Essential features

We highlight the following important essential features that our neural mass models
possess. These are crucial for the applicability of the nonlinear observer proposed in
Section 6 to the neural mass models we consider in this paper:

(i) The eigenvalues of the matrix A in (5) have strictly negative real parts.

(ii) The nonlinearity v in (5) is globally Lipschitz [35, Theorem 3.2] i.e. there exists
p > 0 such that |y(u) —v(v)| < plu—v| for u, v € R. Moreover, it is also bounded:
~v(z) < @, for all z € R. For instance, this nonlinearity -y can take the form of (4),
which satisfies both properties.

(iii) The nonlinearity o in (5) is bounded, i.e. for i € {1,...,n}, there exists M > 0
such that |o;(2)| < M, for all z € R.

The subsystems z; from (10) for ¢ € {1,...,7} that make up the full model (5) are
interconnected in a unique manner as shown in Figure 6. This interconnection leads to
a ‘cascaded’ structure of the error dynamics system that is crucial in the convergence

proofs stated in Appendix A. This cascaded structure will be introduced in Appendix
A.

4.2. Physiological interpretation

Physiologically, the first term in (5) implements the postsynaptic potential (PSP)
kernels from (1), (2) and (3). This is effectively a convolution of the pre-synaptic firing
rates arriving from other populations with the appropriate PSP response functions.
These firing rates are modelled in the second and third term in (5) that incorporates
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the sigmoid firing rate function of the depolarisation of contributing populations. The
second term, G(0)y(Hz), reflects the influence of all states except the membrane
potential of pyramidal population Cx. While the third term, o(u, Cx,8), reflects the
influence of the mean membrane potential of the pyramidal cells Cz and the exogenous
input u.

In the following sections, we present the state space form for each model for ease
of observer design in Section 6. Detailed derivations are first shown for the model by
Wendling et. al., as it is the most complex model and then the subtle differences in
derivations are described for the other models.

4.3. State space form for the model by Wendling et. al.

We write the Wendling et. al. model in state space form by introducing the state
variables x;; for ¢ € {1,...,7} as the membrane potential contribution from one
population to another and z;2 for i € {1,...,7} as its derivative. The states z;; is
introduced at the outputs of all the impulse responses h., h; and h, blocks as shown in
Figure 6. Recalling that the Laplace transform of the impulse responses h., h; and hy
(as described by (1), (2) and (3)) are second order transfer functions, by performing
the inverse Laplace transform, each transfer function is represented by a second order
ordinary differential equation (ODE). We show this transformation for h. from (1)
as an example. Let the input to the h. block be % and output be §. We denote the
Laplace transform of signal v as £(v). Hence, the Laplace transform of h, is:

L(he(t)) = L(B aat exp(—at)) = (6;‘) (7)
Recalling that L£(h.) = %, we obtain:

L(7)s* + 2aL(7)s + a*L(y) = 0 1aL (). (8)
By taking the inverse Laplace transform, we obtain a second order ODE as follows:

U+ 2ai + a*y = O 4a. (9)
The ;5 states are defined as x;0 = @41 for i € {1,...,7} to rewrite the second order

ODE:s as two first order ODEs for each impulse response block.

We illustrate this for the h.(t) block in the fast inhibitory population, then the
output of that block is § = x51 and the input is @ = C55(x11 — 221 — x31). Taking
Zs2 = &51, (9) can be written as two first order ODE as follows:

T51 = Ts2
P50 = — 2axs52 — a*w51 + 04aC3S (211 — w21 — T31).

Hence, each impulse response h, h; and hg will each introduce a first order ODE

in the following general state space form by taking z; = [x;1, x;2]7 for i € {1,...,7}:

b= A+ [0,0:5(w) + @i] (10)
where p; is the input to the respective sigmoid functions, A, =

0 1 . .

_kilkﬂ _(kil+ki2):|’ fOI‘ 1 = {17,7} with kll = k41 = k51 = k@l = a,
ki2 = kgo = kso = ke2 = a, ko1 = k71 = b, koo = k7o = b, k31 = g and k32 = g.
¥; and ¢; are defined as such ¢ = 04aCs, ¥ = 0bCy, V35 = 0qgCr, ¥7 = 0bCs,
Vg = 05 = Y6 = 0 and o1 = Oaau, p2 = 93 = or = 0, o1 = 04aC15(y),
w5 = 04aC38(y), s = 04aC5S(y). Constants a, b and g are strictly positive. S
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is a sigmoid function described by (4). All constants discussed in this section are
summarised in Appendix C.

The subsystems defined in (10) are put together to be written compactly in state
space form (5)-(6) for ease of observer design in Section 6.

We take the state vector in (5) and (6) to be x = [z1,...,27]T where x; for
i={1,...,7} satisfy (10). The states 1, z2 and x5 capture the membrane potential
contribution and its derivative of the excitatory, slow and fast inhibitory populations
to the pyramidal neurons respectively. The states x4, x5 and xg capture the membrane
potential contribution and its derivative of the pyramidal neurons to the excitatory,
slow and fast inhibitory populations respectively. The output is y = x11 — X271 — x31.
The specific matrices in (5) and (6) are denoted as:

e The parameter vector is 6 = [0, 05, 0c]7,
e The matrix A = diag(Ay, ..., A7),
v=18,5,8]" from (4), (11)

o =(0,040au,0,0,0,0,0,04aC15(y), 0,04aC55(y),0,04aC55(y),0,0), where S is
described by (4),

oCZ[lO—lO—lOOOOOOOOO], (12)
0 0 0 ]
OAan 0 0
0 0 0
0 0pbC, 0
0 0 0
0 0 9@907
0 0 0
e G = 0 0 0 (13)
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0pbCs 0
and )
000 0O0OO0OT1O0O0O0O0OO0O O O
e H=({0 0 0 0O 0O O OO0OT1TO0UO0OO0O O O
000 0O0O0OO0OO0OO0DO0OT1TTO0O -1T0

4.4. State space form for the model by Jansen and Rit in [2]

We write the model in state space form by taking the state vector in (5) to be
T = [z1, T2, T4, x5)T, where z; for i = {1,2,4,5} satisfy (10). States z; and x5 are
respectively, the membrane potential contribution and its derivative of the excitatory
and inhibitory populations to the pyramidal neurons. States x4 and x5 capture the
membrane potential contribution and its derivative of the pyramidal neurons to the
excitatory and inhibitory populations respectively. The output is y = 211 — x21. The
specific matrices in (5) and (6) are denoted as:

e The parameter vector is 6 = [04,05,C1,Co, Cs, Cy]T,
[ A = diag(Al, AQ, A4,A5),
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e v =1[S,S]" where S is defined in (4), (14)
e 0= [079Aau,070,0,9AaClS(y),O, HAa03S(y)]T,
eC=[10 -1 000 0 0], (15)
S 0
9Aa02 0
0 0
B 0 05bCy
o G = 0 0 (16)
0 0
0 0
. 0 0 -
and
[0 0 001 00 0
*H=100000010

4.5. State space form for the model by Stam et. al. in [1]

The model is written in state space form by taking the state vector in (5) as
r = [x1,22,75]7 where z; for i = {1,2,5} satisfy (10). State z; represents the
contribution and its derivative of the excitatory population’s activity to itself. States
x9 and x5 represent the contribution and its derivative of the inhibitory population
to the excitatory population and vice versa respectively. The output is y = x11 — T21.

This model differs from the models by Wendling et. al. and Jansen and Rit in
the sense that the firing rate of the population is converted to postsynaptic potential
via different kernels from (1) and (2), for ¢ > 0:

e Excitatory population:

he(t) = 0 alexp(—ait) — exp(—aat)]. (17)
e Inhibitory population:
hl(t) = 93 [exp(—blt) — exp(—bgt)]. (18)

As performed in Section 4.3, by taking Laplace transformations of (17) and (18) and
taking the inverse Laplace transform, the kernels can be written as second order
ODEs. They can then be rewritten as two first order ODEs by introducing extra state
variables, x5 for ¢ € {1,2,5}, in a similar fashion as in Section 4.3.

Also, the sigmoid function that converts the postsynaptic potential to the firing
rate of the population differs from (4) for the models by Wendling et. al. and Jansen
and Rit, as follows:

oy exp (r1(z — V1)) z < W,

Si(z) = al(Q—eXp(—ﬁ(Z—Vl))) z>W,

(19)

where a7 is the maximum firing rates of the population, r; is the slope of the sigmoid
and Vj is the threshold of the population’s mean membrane potential.

Nevertheless, rewriting (17)-(19) into state space form does not differ from the
derivation presented in Section 4. The specific matrices in (5) are denoted as:

e The parameter vector is 6 = [C3, C4]T,
o A= diag(Ala A2a A5)7
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e v =5 from (19), which still satisfies item (ii) in Section 4.1. (20)

o 0=10,04(az —ay)u,0,0,0,04(az — a1)C351(y)]7,

eC=[10 -100 0], (21)

L4 G = [Oa 070793(b2 - bl)C4a O,O]T (22)
and

eH=[0 000 1 0]

5. Assumptions

Our aim is to design a class of nonlinear observers for the neural mass models
considered in Section 3, such that the state estimates converge to the true states
in exponential time, for any initial condition and any input. We first present the
idealised assumptions in Section 5.1 that are used in Section 6.1. We then state the
relaxed assumptions in Section 5.2 and we show the robustness of the observers in
Section 6.2 under these relaxed assumptions.

5.1. Assumptions under the ideal scenario

The convergence of the state estimates provided by our observers are proven in Section
6.1 under the idealised assumptions as illustrated in Figure 2 and stated as follows:

Assumption 1. The synaptic gain of each neuronal population 64,0p,0c and the
connectivity strengths Cv, Ca, Cs, Cy are parameters that are constant and known.

These parameters are typically slowly-varying during a particular brain activity,
such that they can be considered constant over the time period observed [35, Section
9.6]. When the brain transitions from one activity to another however, the parameters
C3, Cy for the model by Stam et. al. in [1], parameters 84, 05, C1, Cy, C3 and Cjy
in for the model by Jansen and Rit in [2] and parameters 04, 65 and 6g for the
model by Wendling et. al. in [3] will change. If the goal is solely to estimate the
parameters, system identification methods such as least-squares estimation may be
used [36]. However, it remains a hard problem due to the nonlinearity of these models.
For this study, we only consider the case where the brain is in one particular brain
activity and that the parameters are known, that is for the case where the parameters
have been identified a priori. We analyse the robustness of the observer to parameter
uncertainty in Section 6.2.

Assumption 2. The input u is measured.

The input from afferent populations is hard to quantify in practice, hence this
assumption is not justified in general. In Section 6.2, we relax this assumption by
allowing the input to be uncertain. We show that good estimates can still be obtained
provided that the L., norm of the difference between the true and assumed input is
small. This is further illustrated with simulations in Section 7.2.2. It is important
to note that it is not an easy task to guarantee exponential convergence of the error
estimates without assuming that the input is known exactly. Please refer to [37] and
references therein.

Assumption 3. The measured EEG y is noise-free.
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The measured EEG considered here is recorded using intracranial electrodes,
which we first assume to be clean data such that it can be considered noise-free.
We will show later in Section 6.2 that the estimation error remains bounded despite
noisy measurements. Assuming noise-free measurements makes it easier to design a
deterministic observer and it is the first step to explain our methodology; we later
relax our assumptions and show that the designed observer is robust to measurement
noise.

Assumption 4. No external influences from other neuronal populations.

All the neuronal populations except for the pyramidal neurons or the excitatory
population receiving the input w included in the models in Section 3 are not affected
by adjacent populations. In Section 6.2, we will introduce the external influences as
an additive disturbance and show that the estimation error remains bounded with
bounded disturbance.

5.2. Relaxed assumptions

The assumptions set out in Section 5.1 are strong, but provide us with a good first
step in proving the estimation error convergence of the observers. We now relax these
assumptions to characterise their effects in Section 6.2 on the convergence property of
the class of observers we propose in Section 6. The relaxed conditions are captured in
Figure 7 and we restate our relaxed assumptions as follows:

Assumption 5 (Relaxation of Assumption 1). The parameters 04, 0p, 0, C1, Ca,
Cs and Cy of the model (5) are known with error.

We characterise these uncertainties in parameters by introducing bounded, time-
varying signal €y (t) to the parameters of the model (5) as shown in (26), so that the
true parameter values in the model become 6 + €.

Assumption 6 (Relaxation of Assumption 2). The input is uncertain.

We introduce bounded, time-varying disturbances €, (t) to the input available to
the observer as shown in (27). Thus, the real input to (5) is modelled by u + €,
whereas the observer is fed by an assumed input u. The introduction of €, relaxes
Assumption 2 by allowing the real input to be unknown to the observer.

Assumption 7 (Relaxation of Assumption 3). The measured EEG is affected by
measurement noise.

Disturbance €, is introduced to characterise measurement noise. The
measurement with noise is denoted as y + €.

Assumption 8 (Relaxation of Assumption 4). The neural mass model is inaccurate.

Additive disturbance €g,5(t) characterises the possible influence from other
populations to the neuronal populations included in the model.
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Parameter Model

uncertainty, £,(f)  uncertainty, ,,(t)
Measurement
disturbance, &, ()

Neural mass
Model input, U Model output, )
> model
(noise-free EEG

X, 0 measurement)
Input
uncertainty, 7
&,(1) +

State
E estimate, X Observer
< EEG measurement

with noise

Figure 7. Model and observer setup under the relaxed assumptions.

6. Main results

We first propose a class of nonlinear observers in Theorem 1 under the ideal
Assumptions 1-4. The ideal assumptions are later relaxed as stated in Assumptions
5-8. Theorem 2 uses the relaxed assumptions and show the robustness of the designed
observers against disturbances and uncertainties.

6.1. Observer design under the ideal scenario

We propose the following class of observers:
&= A&+ GO)y(Hi+ K(C& —y)) + L(CE —y) + o(u,y,0),  (23)

where & € R" is the state estimate and observer matrices K € R™, L € R™ are
introduced via linear output injection terms K(C% — y) and L(CZ — y).

The observer matrices L and K in (23) are the choice of the user. They are
introduced to provide flexibility over the convergence rate of the estimates. We
establish in Theorem 1 that for sufficiently small norms of matrices K and L, we
obtain convergence of the estimates to the true states in exponential time, for any
initial conditions.

Theorem 1. Consider the model in general form (5) under Assumptions 1 to 4 and
observer matrices K and L for (23) are chosen such that:

1

PIEIG]+ 1Ll < v

where p is the Lipschitz constant of v, matrices G and C are from the model (5) and
v > 0 is constructed in the proof.

Specifically, v is (11) for the model by Wendling et. al., (14) for the model by

Jansen and Rit and (20) for the model by Stam et. al. Also, G is (13) and C is (12)

(24)
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for the model by Wendling et. al., G is (16) and C is (15) for the model by Jansen
and Rit, and G is (22) and C is (21) for the model by Stam et. al..

Then, the observer (23) is a global exponential observer for the model (5), i.e. for
any u € Lo, and denoting the estimation error as e := x — 2,

le(t)] < kexp(=M)[e(0)] ¥t > 0,Ve(0) € R, (25)
where constants k, A > 0.

Proof. The proof is given in Appendix A. O

Remark 1. Note that Theorem 1 applies to all neural mass models considered
in Section 3, where matrices G and C are different for each model considered.
Consequently, the obtained observer matrices K and L as well as v from (24) and
k, X from (25) will differ for each model.

The exponential convergence property of the observer is desirable in practice
because it means that the estimates are guaranteed to converge to the true states in
exponential time. Additionally, the validity of the convergence property for any initial
conditions is highly desirable because the initial conditions of the neuronal populations
are usually unknown.

Theorem 1 provides us with a condition (24) that gives a class of nonlinear
observers parameterised by observer matrices K and L. This condition (24) is
conservatively obtained in Appendix A. However, we see that the choice of L = 0
and K = 0 fulfils condition (24) and therefore, admits an open-loop observer for the
model (5) [38]. The drawback of an open-loop observer lies in that the convergence
speed of the state estimation error cannot be controlled by the user. Nevertheless,
it remains a useful observer provided that the error converges sufficiently fast. In
Section 7.1, we see in simulations that the open-loop observer for the model by
Wendling et. al. [3] provides estimates that converge to the true states in a reasonable
timeframe. Non-zero choices of K and L fulfilling condition (24) provide tuneability of
the estimation error’s convergence speed. However, condition (24) does not provide a
priori information about the convergence rate of the observer. In Section 7.1, we show
in simulations that some choices of non-zero matrices K and L that satisfy condition
(24) can lead to faster convergence rate for the state estimation error.

Remark 2. The observer structure (23) shares the same mathematical structure as
other nonlinear observers in the literature, that is, the high gain [39] (with K = 0)
and circle criterion observers [{0]. These observers employ special techniques in
obtaining observer matrices L and K that are not satisfied by the model we consider
(5). Therefore, we prove the existence of K and L matrices using a different analysis
from that in [39, 40].

6.2. Robustness Analysis

We show in Theorem 2 that under Assumptions 5-8, i.e. uncertainties in modelling,
parameters, measurement and input, the estimates provided are close to the true
states, where the ‘closeness’ is determined by the L., norm of the uncertainties €, €g,
€y and €4y,. The introduction of the uncertainties and disturbances to the ideal setup
is illustrated in Figure 7.
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Therefore, we obtain the following perturbed systems (26) and (27) from (5) and
(23) as illustrated in Figure 7:
From (5):

t=Az+ G0+ ep)y(Hx) + o(u, Cx, 0 + €g) + €sys,
y = Cuz. (26)
From (23):
&= A2+ GOy (Hi+ K(Ci— (y+ey)))
+L(CE—(y+ey)) +o(u+ey, y+ey,). (27)

Theorem 2. Consider the perturbed estimation error system (26) and (27) under
Assumptions 5 to 8. The observer (27) with observer matrices K and L are chosen
such that (24) is satisfied.

Specifically, v is (11) for the model by Wendling et. al., (14) for the model by
Jansen and Rit and (20) for the model by Stam et. al. Also, G is (13) and C is (12)
for the model by Wendling et. al., G is (16) and C is (15) for the model by Jansen
and Rit, and G is (22) and C is (21) for the model by Stam et. al..

This guarantees that for all e(0) € R™, ¢ > 0 and for all u, €,, €, €, and
€sys € Loo, the error system satisfies the following:

le(t)] < kexp(=At)|e(0)] + vy (lleylljo,6) + Yo (ll€ollo,) + Yull€wllo,g) + Vsys (lesyslo.g):

where l~€, A >0 and Yys Yor Yu» Vsys : R — R are continuous positive increasing
functions that are zero at the origin.

Proof. The proof for Theorem 2 is provided in Appendix B. O

We see that with no uncertainties and disturbance, i.e. €, =0, ¢¢ = 0 and €, = 0,
we recover the results of Theorem 1. Loosely speaking, Theorem 2 states that small
uncertainties and disturbance implies small estimation error.

Remark 3. By setting €, = —u, we have that the input to the observer (23) is 0,
that is we consider the proposed observer (23) as an unknown-input observer. The
estimation error of the proposed observer (23) converges with some error that depends
upon the Lo norm of €,. This result is advantageous because the mean firing rate of
the afferent neuronal populations to a particular brain region is hard to measure in
reality. We will further demonstrate this observation in Section 7.2.2 via simulations.

7. Simulation Results

We illustrate the performance of our observers using simulations. First, we perform
simulations to show the convergence of the estimates under the ideal conditions stated
in Section 5 and test the influence of the observation gains on the speed of convergence
of the estimation error. Next, we show the robustness of our observers against
uncertainties in modelling, parameters, input and measurement in Section 7.2.1. We
also show that our observers can provide estimates that are close to to the true states
when the input to the observer is unknown in Section 7.2.2. The simulation results
provided are for the model of the hippocampus by Wendling et. al. in [3]. Similar
results can be obtained for other models introduced in Section 3.

We select synaptic gains 04 = 5, 0 = 25 and 0g = 10 that correspond to
seizure activity as identified in [3]. The initial condition of the model (5) is set to
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z(0) = [6,0.5,6,0.5,6,0.5,6,0.5,6,0.5,6,0.5,6,0.5]. We initialise the observer (23)
to £(0) = 0. This choice is arbitrary as we have shown that the convergence of the
estimation error is valid for all initial conditions in Theorems 1 and 2.

In this section, we denote the observer matrices as K = k x I, and L =1 x I;
where I, = [1,1,1]T and I; = [1,1,1,1,1,1,1,1,1,1,1,1,1,1]7. We call k£ and [ the
observer gains. For each of the scenarios in the following sections, the performance of
two observers are evaluated:

(i) The open-loop observer [ =0, k = 0.
(ii) The observer with observer gains k = 0.1 and | = —0.2.

All other constants used in simulation are as specified in Appendix C.

7.1. Simulations under Assumptions 1 to 4: ideal scenario

We consider the ideal case where the parameters are constant and known, input u
and measurement y are known and unperturbed as well as no modelling errors. Both
model (5) and observer (23) are supplied with the same Gaussian noise input with
mean 90mV and variance 30mV used in [3].

As stated in Theorem 1 and illustrated in Figures 8 and 9, the state estimation
error e := x — & converges to 0 asymptotically in exponential time. We observe in
simulations that for both observers, the convergence rate is in general faster than
the duration of a specific brain activity (see [3]): by ¢ = 0.3s, all state estimation
errors have converged to 0. As seen in Figure 8, the plot of the error norm shows a
large overshoot initially (approximately 1200). However, the plots on Figures 9 show
that the estimates of the membrane potential contributions from one population to
another Z;; are reasonably close to the true values x;;. The large initial error is due
to the estimation error in the other states, i.e. the error of the time derivative of the
membrane potential contributions |z;2 — #;2|, which are not the physical quantities of
concern in practice.

As discussed in Section 6, the choice of non-zero observer gains provides flexibility
over the convergence rate of the estimation error. Figure 8 shows that for a selection
of observer gains k£ and [, the norm of the estimation error converges faster than with
the case of k =1 =0 (open-loop observer).
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k=0.1, 1 = —0.5) under the ideal scenario (Assumptions 1 to 4).
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7.2. Stmulations for the practical scenario

7.2.1. Simulations under Assumptions 5 to 8: uncertainty in parameters, input and
measurement as well as additive disturbance.

Next, we test the performance of the observers under uncertainties in the parameters
04, 0p, and 0, disturbances in the input and output of the observer, as well as
additive disturbance.

We simulate the perturbed systems (26) and (27) with the perturbations: constant
parameter uncertainty ey = (0.5,2.5,1), Gaussian input uncertainty e, ~ A(0,0.3%),
Gaussian measurement noise €, ~ N(0,0.1?) and Gaussian model uncertainty €5 ~
N(0,1%I). The performance of both observers are similar. Figures 10 and 11 show
that the estimation error converges to a neighbourhood of the origin. This observation
agrees with Theorem 2.

Figure 10 shows that the estimates for the states of interest z;; do converge
reasonably close to the true states. It can be seen in Figure 11 that the relative error
of the states is quite low (under 10%).
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7.2.2. Simulations under Assumptions 1, 3, 4 and 6: uncertain-input observer.

The input to the brain is usually hard to quantify under realistic conditions. To
gauge the performance of the observers under this condition, we perform another set
of simulations where the input is set to u = 0 for the observers with no uncertainty in
parameters and measurement noise. This case is formally stated in Remark 3.

For both observers, Figures 13 to 12 illustrate that the estimation error converges
to a neighbourhood of the origin as expected. In Figure 13, the estimation error for
subsystems (z21, %22), (31, 32), (T41, T42), (T51, T52), (w61, Te2) and (w71, x72)
converges to a reasonably small neighbourhood of the origin. However, the (z11,
x12) subsystem exhibits a much larger steady state estimation error than the other
subsystems due to the input u directly affecting it. Nevertheless, our simulations in
Figure 14 show that the states can be reasonably reconstructed when the input is
unknown.

In Figure 12, the open-loop observer outperforms the observer with k£ = 0.1
and [ = —0.5, in the sense that the open-loop observer converges to a smaller
neighbourhood around the origin e = 0 (with |e] < 35 for the open-loop observer
and |e| < 85 for the observer with [ = —0.5 and k¥ = 0.1). A decision regarding the
tradeoff between the convergence speed of the state estimation error and the accuracy
of the estimates needs to be made when employing these observers. In this simulation
scenario, the error converges to a neighbourhood in a reasonable timeframe (¢ = 0.2s)
for both observers. Hence, the open-loop observer is the observer of choice due to the
steady-state accuracy of its estimates.

1500
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O . Nl m 0t mg
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Time, ¢ (s)

Figure 12. Norm of state estimation error |e| for the open-loop observer (grey
solid line) and the observer with k = 0.1, I = —0.5 (black dashed line) under
Assumptions 1, 3, 4 and 6.
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8. Discussion and conclusion

Using a single channel EEG signal as the measurement of brain activity, we have
successfully developed a class of nonlinear observers that can reconstruct the mean
membrane potential of each neuronal population for several classes of neural mass
models. We rewrote the neural mass models considered in suitable state coordinates
and identified the essential model features that allowed us to prove that the proposed
class of observers gives estimates that converge exponentially to the true states of the
model, as stated in Theorem 1. Moreover, the global convergence property of our
proposed observers ensures that any initial estimated state will converge to the true
state of the model for any input. This result is desirable because we do not know
the initial state of the brain. Limitations of our proposed class of observers lie in the
requirement that parameters and input to the observers need to be known, both of
which are not known in a clinical or experimental setting. However, we have shown
in Theorem 2 that our observer is robust to uncertainties in parameters as well as
disturbances in the model, input and EEG measurement, in the sense that bounded
uncertainty will result in bounded estimation error.

Given that it is difficult to measure the actual mean membrane potential of each
neuronal population, the estimates obtained serve to provide some understanding of
the underlying dynamics during a specific brain activity. This is beneficial for the
general EEG-based studies of sensory, motor and cognitive processing and can lead to
the development of clinical treatment methods for brain disorders. One such example
is in the treatment of epilepsy, where more positive outcomes of therapy may be
achieved by targeting specific seizure-causing mechanisms.

So far, we have validated the efficiency of our observer analytically and further
illustrated the results in simulation. The applicability of our observer to real EEG
data will depend heavily on how good an abstraction the models considered are of
the brain region concerned. Provided that the models are a good description of the
brain region of interest, the estimates of the unmeasured brain activity provided by the
observers from real EEG measurement are then a good depiction of real activity in the
brain. Given that the model by Wendling et. al. [3] considered in this paper has been
validated against EEG recordings obtained from depth electrodes implanted in the
hippocampus of a temporal lobe epilepsy patient, we expect the estimates provided
by our observer to be a good depiction of the underlying dynamics of a patient’s
epileptic brain. This is achieved under the assumptions stated in Section 5 and to a
satisfactory degree under the more practical assumptions stated in Section 6.2.

It is important to note that neural mass models are ‘lumped parameter’ models
that describe the properties of populations of neurons, as opposed to a single
neuron. In this construct, neurons are assumed to be spatially close, so that their
interconnections are dense enough such that the group of neurons can be considered
as one population with an aggregated activity [41, Chapter 23]. Based on these
assumptions, the model captures the temporal evolution of neuronal population
dynamics and neglects the spatial interactions. As such, the interpretation of the
estimates for the model describing epileptic seizures originating from the hippocampus
[3] for example, applies only to the genesis of seizures in a local sense and not to
the propagation of seizures from a focus. Understanding the seizure propagating
mechanisms will require distributed models, also known as neural field models such
as those in [42, 43, 44] (see [32] for a review). These distributed models are
infinite-dimensional models that would require infinite-dimensional observers for the
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estimation of states. Turning an infinite-dimensional model to a lower order model that
is finite-dimensional would allow for the development of suboptimal finite-dimensional
estimation methods, which are far easier to develop and practical to implement.
Ultimately, the choice of the model rests in the aim of the endeavour.

An alternative to using spatially distributed or continuous models is to
interconnect neural mass models, like those considered here, into spatial networks.
Such an approach has been employed in dynamic causal modelling for EEG by
coupling Jansen and Rit neural mass models [21]. Our deterministic observers apply
to a single neural mass model, but in future research could be extended to apply
to interconnected neural mass models, and therefore be applicable to the popular
dynamic causal modelling framework.

One of the motivations behind this work is to provide early detection of focal
seizures in epilepsy. It has been identified in [3] that varying the synaptic gains
of each neuronal population 64, g and 0 leads to different EEG patterns. Our
work is a starting point in tracking the transition of the brain from non-seizure to
seizure activity. To meet this objective, the simultaneous estimation of both states
and seizure-causing parameters will need to be performed. While estimating the
parameters alone should achieve the aim of detecting seizure onsets, the additional
estimation of states provides the added advantage of peeking into the hidden dynamics
of each neuronal population’s activity. The success in designing a class of nonlinear
observers for a selection of neural mass models raises hope in tackling the challenging
problem of detecting and predicting epileptic seizures. The approach presented in
this paper is also applicable in general to neuroscientific studies, where estimating the
unmeasured, or in some cases unmeasurable, activities of brain regions, from an EEG
measurement is beneficial.

Appendix A. Proof of Theorem 1

We will do all proofs for the model by Wendling et. al. described in Section 3.3,
which is the most general model that encompasses the models by Stam et. al. and
Jansen et. al. described in Sections 3.1 and 3.2 respectively. The proof for all other
models can be done by first identifying the cascade structure of the observation error
system, then showing that the subsystems satisfy certain properties to conclude the
global exponential stability of the whole observation error system. This is performed
in a similar fashion in the proof for the Wendling et. al. model that follows.

From (5), (23), the dynamics of the state estimation error e := x — & is:

¢ =Ae+ G(y(Hz) —y(Hz + KCe)) + LCe. (A1)

The main idea is to consider the estimation error system (A.1) as the nominal
error system (A.1) with L = 0 and K = 0 perturbed by the terms Gy(HzZ) —Gy(HZ +
K(C# —y)) + LCe. As such, in Lemma 1, we build a Lyapunov function W for the
nominal error system. Next, using W as a candidate Lyapunov function for (A.1), we
obtain a bound for observer matrices K and L such that e = 0 is global exponential
stable (GES) [35, Definition 4.5].

Lemma 1. There exists a continuously differentiable W : R™ — R such that the
following holds, for all e € R™:
kile < W(e) < kalef,

oW
‘% < k4|€|a
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and along solutions to (A.1) with L =0 and K = 0:
W(e) < —kslel?, (A2)
where k1, ko, k3 and k4 are strictly positive constants.

Proof. The nominal estimation error system (A.1) with L =0 and K =0 is
é=Ae+ G(y(Hzx) —v(HZ)). (A.3)

First note that system (5) has solutions that are defined for all time due to the
global Lipschitz property of function S and the fact that input u € Ly, [35, Theorem
3.2]. In view of the same arguments, the solutions of system (23) (with y and u from
system (5)) are also well-defined and exist for all time. Consequently, we have that
(A.3) have solutions that are defined for all time.

We can decompose system (A.3) into 7 subsystems .1 to X.7:

Yaa: €& = Aier +é1(za) — ¢1(2a1)
Yea: €3 = Ages+ da(w51) — P2(T51)
Yez: €3 = Asges+ ¢3(xe1,v71) — ¢3(T61, T71)
264 . é4 = A464 (A4)
Yes: €5 = Ases
Yeo: €6 = Ages
Yer: ér = Ager+ d7(xs1) — d7(Zs1),
where €; = ( €i1, €2 ) = ( Ti1 — j?il, T2 — i’ig ) S R2 for 1 = {1, . ,7} ¢1($41) =

(0,04aC252(z41)), d2(xs51) = (0,05bC4S2(x51)), d3(wer, 1) = (0,069C7S2(z61 —
x71)), ¢7(x51) = (0,05bC6S2(x51)). Matrices Ay,... Ay are as defined in Section 4
and have eigenvalues with strictly negative real parts.

We note that subsystem X.; is in cascade with Y4, subsystems Y., and .7
are in cascade with subsystem X.s5, and subsystem X3 is in cascade with Y. and
Ye7. Using this cascade structure, we show that the overall system (A.3) is GES by
constructing the desired Lyapunov function W from the Lyapunov functions of each
subsystems V.

We consider Lyapunov functions Vi, ..., V; for each subsystem X.; to ¥.7 of the
form:

V; = el Pe; forie {1,...,7},
where PI' = P; > 0 satisfies the Lyapunov equation P;A; + AT P, = —I. This is

always possible as the eigenvalues of A; have strictly negative real parts, in view of
[35, Theorem 4.6]. We will show that each subsystem X.; is input-to-state stable (ISS)
using V; [45].

For subsystems Y.4, Y¢5 and Y., taking the derivative of V; = eiTPiei along
solutions of ¥, for i € {4,5,6}, we obtain:

. 1
Vi < —lei)? < —§\€i|2~

Next, we show that V; is an ISS-Lyapunov function [45] for subsystem ¥.; w.r.t
e4. Taking the derivative of V; = elTplel along the solutions of ¥..;, we obtain:

Vl = 6,{(P1A1 + AfPl)el + 26:1TP1(¢1(£C41) — ¢1(i’41)).
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Since the function Sy is globally Lipschitz with constant ps from (4), we have that:
|p1(241) — $1(241)| < 04aCop2|241 — Za1] < peileal,
where p.1 = 04aC5ps. Therefore,
Vi < —le1|? + 2le1|| Pi|pereal.
Recalling that &y < 162 + 232, for any &, x € R and letting & = 2|Py|pe1|es| and

X = |e1|, we obtain the following;:

Vi

IN

1
— lex* + §|€1|2 + 2| Py [*p2, el

IN

1
- §|61|2 +2|P1[?p2 eal”.
With similar arguments for the remaining systems, along the solutions of >.;, for
i€{2,3, 7}h
: Lo 2
Vi< — §|6i| + il il

where p; = esq, po = e, us = (es,e7), pr = es and v = 2|P;|*p%, where
pe2 = 0BbCypa, pes = 0cgCrp2 and per = 0pbCspa.

The composite Lyapunov function for the overall system (A.4) W is constructed
using the Lyapunov function for each subsystem V; [46]. We consider the candidate
Lyapunov function that is positive definite and radially unbounded:

W =a1Vi +asVo+asVs+ Vi+ Vs + Vs + arVa, (A.5)

for ay, as, as, ay > 0, which are determined below.
The derivative of (A.5) along the solution of the overall error system (A.4) is

. 1 1
W< — ¢l1§|€1|2 + a171lea]® — a2§|€2|2
1
+ agoles|* — a3§|€3|2 + azvs(|es|® + |er|?)
1 1 1 1
- §|e4\2 - §|e5|2 - §|€6|2 - a7§|€7|2 + azyrles|*.

By taking 0 < a; < 5, 0 < ag < %(%—arw), 0<asz< ﬁ and ay; > 2a37s,

. 2717
we obtain

. 1 1 1 1
W< - —Je 2 — (== 2 _ T2
- 8’71|61| 272 (2 W) ez 8’)’3|e3‘
1 1 1 1
—§|€4\2—§|€5|2—§|€6|2—1|€7|2- (A.6)

By letting P = diag(a1 Py, asPs, asPs, Py, Ps, Ps, a7P;) as well as denoting

)\mm(]s) and Aoz (15) as the maximum and minimum eigenvalues of P respectively,
we have shown that (A.2) is fulfilled with k1 = A\pin(P) > 0, ks = Apax(P) > 0,

k‘3:min{ﬁ,i(%—’y7),$,i}>03nd ky =2|P| > 0. O
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Continuing the proof of Theorem 1:
The derivative of W along the solutions to (A.1) is:
. ow
W= ——
Oe
_ow
e

(Ae + G(v(Hz) —v(Hi + KCe)) + LC’e),

( Ae+ Gy(Hzx) — Gy(HZ)

nominal estimation error system (A.3)
+ Gy(HE) — Gy(Hi + KCe) + LC’e)

perturbation terms

From Lemma 1:

ow

W < — ksle|> + EG(’y(Hj:) —v(Hz 4+ KCe)) + %Z/LCe.

30

As 7y is globally Lipschitz, |y(Hz) —vy(HZ 4+ KCe)| < p|KCe| < p|K||C|le|. From

(A.2):
. ow oW
< — 2
W < — ksle| +' 5 '|G|p|K||C||€|+ ’8e ‘lLllcllel

< — kslef® + ka|Cllel*(p|GI| K| + |L]),
where k3 and k4 are constructed in Lemma 1.
Therefore, if K and L satisfy the following condition:
ks
K||G|+|L| < ——=,
KNG+ 1L < o
then
W < — ];3‘8‘2,
where ks = ks — k4|C|(p|G|| K| + |L]) > 0.

Therefore, the origin of the estimation error system (A.1) is GES according to

[35, Definition 4.5], i.e. for all ¢ > 0,
le(t)] < kexp(—At)[e(0)] Ve(0) € R,
for k,A > 0. O

Appendix B. Proof of Theorem 2

The proof that follows is performed for the Wendling at. al. model, where the models
by Stam et. al. as well as Jansen and Rit can be derived from. The proof for these

models can be performed in a similar fashion.
From (26) and (27), the perturbed error system is:

¢ = Ae+ G0 + eo)y(Hz) — G(Q)W(Hi" +K(Ci— (y+ ey)))

—L(CT— (y+ey))+o(u,y, 0+e€n) —o(u+ey, Y+ €y, 0)+ €sys
= (A+ LC)e+ V(x, &) + VU (z, &, €y, €u, €9, €sys),

nominal system (A.1) from Theorem 1 perturbation terms

where K = (K1,...,Kkm),

(B.1)

v = (0, 9,4&02(52(5641) — Sz(i?;ﬂ — 143106)),0, 95[)04(82(,%51) — Sg(i‘g,l —
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k2Ce), 0, 0ggCr (S2 (w61 —271)—Sa2(Z61—271—k3Ce)), 0, 0, 0, 0, 0, 0, 0, 0pbCs (S2(251)—
Sa(Z51 — KQCB))) and

v, = (O, 04aCo (SQ(.’E’41 — mCe) — SQ(QA?41 — k1Ce — €y>) + (ICQSQ(SU41)60 + auey +
QACLGU, 0, 93bC4 (Sg(i'517I<LQC€)752(12’517%2067611))4*1)0452(%51)69, 0, 9@96’7(52(@61*
52'71 7%306) 7‘92(5%61 712’71 7%306*63,)) +gC7S2(SU61 71’71)69, 0, GAaCl (Sz(y) *SQ(y‘i‘
ey)) +aC1S2(y)eg, 04aCs(S2(y) — Sa(y +€y)) +aC352(y)es, 0, 0aaCs(Sa(y) — Sa(y +
Ey)) +a0552(y)69, 0, 6bCs (Sg(.fm — KQCG) —Sg(.f?m — KQC€—€y)) +bc652(33‘51)60> +
Esys-

We will show that the solutions of the error system (B.1) is input-to-state stable
(ISS) [47] with respect to the uncertainties €,, €,, €9 and €gys. For this purpose, we
use function W as defined in (A.5).

The derivative of W along the solutions of (B.1) is:

. ow . ow
W= %((,H LC)e + ¥(z, 7)) + S
From Theorem 1, there exists l~€37 k4 > 0 such that:

W < — ksle|? + kale||P.|.

\Ile($7 T, €y, €y, €9, 6sys)-

Using the fact that the function Sy is globally Lipschitz with Lipschitz constant ps
and S2(z) < ag for any z € R as defined in (4), we obtain:

W < —kslel® + kalel (o (ley]) + oo (leol) + oulleal) + lesys])

where Uy(|€y|) = (|(9Aa02pa ngC4pa eGgC7p7 QAGC1P» QAGCSPa QAGCM% 936C6p)| +
ILI)leyl, oulleul) = Oaalea| and op(les)) = [((aC2a + allulljo,)leo], bCsceo],
gCraleg|, aCraleg|, aCsales|, aCsaleg|, bCsaleg|)].
Therefore, if
2k4
le] > ?(Uy(leyD +oullea]) +oo(leo]) + lesys])
3

then

. 1-
W< — §]€3|6|2. (B.2)

From (B.2), [35, (4.49) of Theorem 4.19] is fulfilled and [35, (4.48) of Theorem
4.19] is satisfied with a1 = k; and as = ko, where k; and ko are from Lemma 1
in Appendix A. Therefore, we can conclude that the error system (B.1) is ISS with
respect to €,, €, €g and ez, with gains v, (s) = 2285 (5) Hy(s) = K22kagp(s),

. - k1 ks k1 ks
Yu(8) = %é’?au(s) and vsys(s) = %212124.3, for s > 0 and v,(0) = v(0) = ,(0) =

Ysys(0) = 0. Here, we have shown it for the model by Wendling et. al. [3], but similar
arguments apply to all other models considered in Section 3. O

Appendix C. Values and description of the constants
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] Parameter \ Description \ Standard value
i, é Average time constant in the | a7 = 55,42 =
excitatory feedback loop 605571
i, é Average time constant in the | by = 27.5,by =
inhibitory feedback loop 55571
Vi, a1, r1 | Parameters for the sigmoid func- | V3 = 6mV,
tion. @7 is the maximum fir- | oy = 5571,
ing rate. 7, is the slope of the | r; = 0.56mV !
sigmoid and V; is the threshold
of the population’s mean mem-
brane potential.
Cs, Cy Average number of synaptic con- | C3 =32, Cy =3
tacts in the inhibitory feedback
loop
04, 0p Synaptic gain of the excitatory | 84 = 1.65, g = 32
and inhibitory populations re-
spectively

Table C1. Standard constants used in the model by Stam et. al. in [1].

Parameter \ Description \ Standard value
% Average time constant in the | ¢ = 10051
excitatory feedback loop
% Average time constant in the | b=50s""
slow inhibitory feedback loop
Vo, aig, ro | Parameters for the sigmoid func- | V5 = 6mV,
tion. s is the maximum fir- | asg = 5571,
ing rate. 7o is the slope of the | ro = 0.56mV~!
sigmoid and V5 is the threshold
of the population’s mean mem-
brane potential.

C1, Cy Average number of synaptic con- | With C = 135,
tacts in the excitatory feedback | C; = C and Cy =
loop 0.8C

Cs, Cy Average number of synaptic con- | C3 = Cy = 0.25C
tacts in the slow inhibitory feed-
back loop

04 and O | Synaptic gain of the excitatory | 4 = 3.25 and 0 =
and inhibitory populations re- | 22
spectively

Table C2. Standard constants used in the model by Jansen and Rit in [2].
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] Parameter \ Description \ Standard value
% Average time constant in the | @ = 1005~ !
excitatory feedback loop
% Average time constant in the | b=50s""!
slow inhibitory feedback loop
é Average time constant in the fast | g = 500571
inhibitory feedback loop
Vo, as, 9 Parameters for the sigmoid func- | V5 = 6mV,
tion. a9 is the maximum fir- | as = 5571,
ing rate. 7o is the slope of the | ro = 0.56 mV !
sigmoid and V5 is the threshold
of the population’s mean mem-
brane potential.

C1, Cs Average number of synaptic con- | With C = 135,
tacts in the excitatory feedback | C; = C and Cy =
loop 0.8C

Cs, Cy Average number of synaptic con- | C3 = Cy =0.25C
tacts in the slow inhibitory feed-
back loop

Cs, Cq Average number of synaptic con- | C5 = 0.3C and
tacts between the fast and slow | Cg = 0.1C
inhibitory feedback loop

Cr Average number of synaptic con- | C7; = 0.8C

tacts in the fast inhibitory feed-
back loop

QA, 93 and 0G

Synaptic gain of the excita-
tory, fast inhibitory and slow in-
hibitory populations respectively

See [3] for wvalues
corresponding  to
different brain
activity

Table C3. Standard constants used in the model by Wendling et. al. in [3]
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