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Abstract

We consider a general class of nonlinear reduced-order observers and show that the global asymptotic convergence of the
observation error in the absence of network-induced constraints is maintained for the emulated observer semiglobally and
practically (with respect to the maximum allowable transmission interval) when system measurements are sent through a
communication channel. Networks governed by a Lyapunov uniformly globally asymptotically stable protocol are investigated.
Our results can be used to synthesize various observers for networked control systems for a range of network configurations,
as we illustrate it by considering classes of immersion and invariance observers which include the circle-criterion observers.
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1 Introduction

Networked control systems (NCS) refer to systems for
which communication between the controller and spa-
tially distributed sensors / actuators is ensured via a
shared network channel. Due to their great flexibility,
low cost and easymaintenance, NCS have become preva-
lent in many emerging control applications such as drive-
by-wire cars and fly-by-wire aircrafts. However, the com-
munication constraints induced by the network imply
additional difficulties compared to classical control sys-
tems. When considering the observer design problem,
one of themain issues is due to the scheduling: only a sub-
set of sensors is allowed to send their data to the observer
at the transmission instants. The sporadic and partial
availability of system measurements, which are respec-
tively characterized by the maximum allowable trans-
mission interval (MATI) and the scheduling protocol, re-
quires the development of appropriate observer designs.

⋆ This work was supported by the Australian Research
Council under the Future Fellowship and Discovery Grants
Schemes and was done while R. Postoyan was a research as-
sistant at the Electrical and Electronic Department of the
University of Melbourne. This paper was not presented at
any IFAC meeting. Corresponding author R. Postoyan. Tel.
+33(0)3.83.59.56.47. Fax +33(0)3.83.59.56.44.

Email addresses: romain.postoyan@cran.uhp-nancy.fr
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A framework for the synthesis of full order observers
for nonlinear NCS has been proposed in [16], via an
emulation-like approach, that encompasses the meth-
ods proposed in [8,15] as particular cases. Provided that
the continuous-time observer is sufficiently robust to
measurement errors, sufficient conditions are given to
guarantee the global convergence of the observation er-
ror for various in-network processing implementations
and Lyapunov uniformly globally exponentially stable
(UGES) protocols. Computable MATI bounds are ob-
tained and our results have been applied to derive linear
observers [16] and high-gain observers [14] for NCS for
a range of network configurations. This work has then
been extended to larger classes of systems and protocols
in [17], by allowing Lyapunov UGAS (uniformly glob-
ally asymptotically stable) protocols as introduced in
[13], and by assuming that all the input-to-state stabil-
ity (ISS) assumptions in [16] hold with nonlinear gains
(and not linear gains). As a consequence, the observa-
tion error is no longer ensured to converge globally in the
presence of network, but semiglobally (and practically)
with respect to the MATI. Obtained results have been
applied to build circle-criterion observers ([2]) for NCS.

In this paper, we study the emulation of reduced-order
observers for NCS. To the best of our knowledge, it is
the first time that reduced-order observers are built for
NCS subject to scheduling. We start by considering a
continuous-time observer design which comes from im-
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mersion and invariance techniques [9,3] and which al-
lows one to recover many observer syntheses as men-
tioned in [9], such as linear Luenberger observers, high-
gain observers [10,5], observers for linear systems up to
an output injection [11,7] and circle-criterion observers
[2] to mention a few. A model is then derived for the
observer design for NCS, which is based on a different
set of coordinates compared to [16,17]. We show that if
the continuous-time observer is built to ensure some ISS
properties for the observation error while ignoring the
network, then this property will be maintained semiglob-
ally and practically w.r.t. the parameter MATI, when
the system measurements are sent through a network
controlled by a Lyapunov UGAS protocol, under mild
conditions. We use the obtained results to build up a
class of immersion and invariance observers as well as
circle-criterion observers for NCS.

2 Preliminaries

A function γ : R≥0 → R≥0 is of class K if it is contin-
uous, zero at zero and strictly increasing and is of class
K∞ if, in addition, it is unbounded. By extension, for
γ : R2

≥0 → R≥0 is of class KK if, for any (s1, s2) ∈ R
2
≥0,

γ(s1, ·) and γ(·, s2) are of class K. A continuous func-
tion γ : R2

≥0 −→ R≥0 is of class KL if for each t ∈ R≥0,

γ(·, t) is of class K, and, for each s ≥ 0, γ(s, ·) is de-
creasing to zero. Let C(Rp,Rq) and C1(Rp,Rq) respec-
tively denote the space of all continuous and continu-
ously differentiable mappings from R

p to R
q. The Eu-

clidean norm of a vector or a matrix is denoted by | · |.
Given a measurable, locally essentially bounded signal
f : [t0,∞) →→ R

n, we denote its L∞ norm as ‖f‖∞ =
ess. supτ≥t0

|f(τ)|. When ‖f‖∞ is bounded, we write
that f ∈ L∞ and we say that f ∈ Lloc,∞, when for any
t0 ≤ t1 ≤ t2 <∞, ess. supt2≥τ≥t1

|f(τ)| is bounded. For

(x, y) ∈ R
n+m, the notation (x, y) stands for [xT, yT]T

and I denotes the identity matrix of appropriate dimen-
sions. A mapping h(t, z, y) : R≥0×R

nz+ny → R
nη is said

to be left-invertible w.r.t. its second argument if there
exists a mapping hL : R≥0 × R

nη+ny → R
nz such that

hL(t, h(t, z, y), y) = z for all t, z, y. Consider the system:

ẋ = f(t, x, u), y = h(t, x), (1)

where x ∈ R
nx is the state, y ∈ R

ny the output and
u ∈ R

nu the input.

Definition 1 System (1) is said to be uniformly
bounded-input-bounded-state (UBIBS) with input u
if there exist K, γ ∈ K, such that, for any x0 ∈ R

nx ,
u ∈ L∞: |x(t)| ≤ K(|x0|) + γ(‖u‖∞) for all t ≥ t0 ≥ 0.
When u ≡ 0, we say that it is uniformly globally stable
(UGS).

Definition 2 System (1) is said to be uniformly forward
complete with input u if there exist ν1, ν2, ν3 ∈ K and c ∈

R≥0 such that, for any x0 ∈ R
nx , u ∈ L∞, along solutions

to (1): |x(t)| ≤ ν1(t − t0) + ν2(|x0|) + ν3(‖u‖∞) + c for
all t ≥ t0 ≥ 0.

Remark 3 Definition 2 is inspired by [1] (in particular
Corollary 2.3) where forward completeness characteriza-
tions are proposed for time-invariant systems.

3 System models

We pursue the emulation-like approach for the observer
design for NCS like in [16,17], which is originally in-
spired by the work of [18,12] for the control of NCS.
The approach consists in synthesizing an observer while
ignoring the communication constraints, afterwards the
networked-induced errors are taken into account.

3.1 Immersion and invariance reduced-order observers

We choose to focus on observer designs which come
from immersion and invariance techniques [9,3] because
a number of observer constructions available in the liter-
ature can then be considered in a unified manner. Con-
sider the plantmodeled by the following continuous-time
equations:

η̇ = fη(t, η, y, w), ẏ = fy(t, η, y, w), (2)

where η ∈ R
nη is the unmeasured part of the state,

y ∈ R
ny is the measurable part of the state, w ∈ R

nw

is an exogenous disturbance input. For the purpose of
constructing an observer which estimates η, we may em-
ploy a coordinate transformation, thus we define the
variable z = TP (t, η, y) ∈ R

nz where nz ≥ nη and
TP ∈ C1(R≥0×R

nη+ny ,Rnz) is a left-invertiblemapping
in its second argument with left-inverse TL

P . We denote:

ż = fz(t, z, y, w), ẏ = fy(t, T
L
P (t, z, y), y, w), (3)

where

fz(t, z, y, w) = ∂TP

∂t
(t, TL

P (t, z, y), y)

+∂TP

∂η
(t, TL

P (t, z, y), y)fη(t, T
L
P (t, z, y), y, w)

+∂TP

∂y
(t, TL

P (t, z, y), y)fy(t, T
L
P (t, z, y), y, w).

The idea is to design a reduced-order observer for system
(3) that will provide us with an estimate of z, namely z̄.
The estimate of η, denoted η̄, will then be obtained by
using η̄ = TL

P (t, z̄, y). In a number of cases, nz is equal
to nη. Nonetheless, it is known that immersing the plant
(2) into a system of larger dimension (nz > nη) may help
for designing an observer (see Chapter 5 in [3] and the
references therein). Now to show the observation error
η − η̄ satisfies some ISS properties, we need to assume
that TP guarantees the following condition.
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Assumption 4 There exist θP , θ̄P ∈ K∞ such that for
any a, ā ∈ R

nz , b, b̄ ∈ R
ny and t ∈ R≥0, this holds:

|TL
P (t, a, b)− TL

P (t, ā, b̄)| ≤ θP (|a− ā|) + θ̄P (|b − b̄|).

The reduced-order observer takes the following form:

˙̄q = fq̄(t, q̄, y)

z̄ = TO(t, q̄, y)

η̄ = TL
P (t, z̄, y)















(4)

where q̄ ∈ R
nq̄ is the observer state (nq̄ = nz), z̄ ∈ R

nz

is defined through the output map TO ∈ C1(R≥0 ×
R

nq̄+ny ,Rnz), where TO is left-invertible w.r.t. its sec-
ond argument with left-inverse TL

O , and TL
P is used to

obtain η̄ ∈ R
nη , the estimate of η. Variable z̄ may seem

superfluous since η̄ = TL
P (t, TO(t, q̄, y), y) according to

(4). Nevertheless, it is sometimes necessary to analyse
the dynamics of z− z̄ rather than directly those of η− η̄
in order to deduce stability properties for the observa-
tion error, as discussed in Remark 1 in [9].
Beside the immersion and invariance observers devel-
oped in [9] and in Chapter 5 in [3], the observer formu-
lation (4) allows one to consider various reduced-order
observer designs available in the literature, such as the
circle criterion observers developed in [2] as shown be-
low.

Example 5 [Circle-criterion observers in [2]] Consider
the system:

ẏ = A1η +G1γ(H1y +H2η) + ρ1(y) (5)

η̇ = A2η +G2γ(H1y +H2η) + ρ2(y), (6)

where A1, A2 are real matrices of appropriate dimension,
ρ1, ρ2, γ are continuous functions and γ satisfies some
monotonic properties. The following reduced-order ob-
server is built:

˙̄q = (A2 +NA1)q̄ + (G2 +NG1)

×γ
(

H2q̄ + (H1 −H2N)y
)

+ ρ̄(y) (7)

η̄ = q̄ −Ny, (8)

where q̄ ∈ R
nη , ρ̄(y) = Nρ1(y)+ρ2(y)− (A2+NA1)Ny

and the real matrix N satisfies a given LMI (see (30) in
Section 5.2). We have: z = η+Ny, TP (t, η, y) = η+Ny
(that satisfies Assumption 4), z̄ = q̄ i.e. TO(t, q̄, y) = q̄.

3.2 NCS model

When the system output is transmitted through a serial
communication channel, y is no longer available to the
observer but ŷ, which is generated from the most recent
system output sent through the network, (see [12,16]
for instance, where a similar approach is followed and

discussed in more details). The problem can then be
modeled as follows:

ż = fz(t, z, y, w) ∀t ∈ [ti−1, ti]

ẏ = fy(t, T
L
P (t, z, y), y, w) ∀t ∈ [ti−1, ti]

˙̄q = fq̄(t, q̄, ŷ) ∀t ∈ [ti−1, ti]

z̄ = TO(t, q̄, ŷ)

η̄ = TL
P (t, z̄, ŷ)

˙̂y = f̂y(t, ŷ, z̄) ∀t ∈ [ti−1, ti]

ŷ(t+i ) = y(ti) + h(i, e(ti))



























































(9)

where e = ŷ − y ∈ R
ne (ne = ny) denotes the network-

induced error and the sequence ti, i ∈ Z>0, of mono-
tonically increasing transmission times satisfies υ ≤ ti−
ti−1 ≤ τ for some fixed 1 υ ∈ R>0, τ ∈ [υ,∞) is the
MATI, t0 ∈ R≥0 being the initial time. The setup is
the following (see Figure 1). Sensors are grouped into
l sensor nodes, which are connected to the communi-
cation channel. At each transmission instant, a unique
node is designated by the protocol to transmit its data:
typically, by decomposing the system output into l cor-
responding subvectors y = (y1, . . . , yl), if node j has
been selected at time ti the corresponding subvector of
ŷ is set to ŷj(t

+
i ) = yj(ti) while the others remain un-

changed. This mechanism is modeled by function h. The
network may also contain an arbitrary number of pas-
sive nodes which can only receive packets. Without loss
of generality, we suppose that there is only one passive

node where the observer is located. Function f̂y mod-
els the in-network processing algorithm, i.e. the way ŷ
is generated between the transmission instants. In many
problems, zero-order-hold (ZOH) algorithms are con-

sidered that is: f̂y = 0, namely the variable ŷ is kept
constant between two transmission instants. Neverthe-
less, our approach allows us to study a range of in-
network processing algorithms, like in [12,16,17], such
as the following predictive-type implementation intro-
duced in [8] for the design of sampled-data observers:

f̂y(t, ŷ, z̄) = fy(t, η̄, ŷ, 0) = fy(t, T
L
P (t, z̄, ŷ), ŷ, 0).

We write system (9) in the coordinates (ζ, χ, e) where
ζ = z− z̄ ∈ R

nζ , χ = (z, y) ∈ R
nχ and we introduce the

observation error ξ = η − η̄ ∈ R
nξ :

ζ̇ = fζ(t, ζ, χ, e, w) ∀t ∈ [ti−1, ti] (10)

χ̇ = fχ(t, χ, w) ∀t ∈ [ti−1, ti] (11)

ė = g(t, ζ, χ, e, w) ∀t ∈ [ti−1, ti] (12)

ζ(t+i ) = ζ(ti) (13)

χ(t+i ) = χ(ti) (14)

e(t+i ) = h(i, e(ti)) (15)

ξ = hξ(t, ζ, χ, e), (16)

1 Note that υ is arbitrary and it is used to prevent Zeno
solutions in (9), see [12].
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. . .. . .

Plant

Node 1 Node 2 Node j Node l

y1(t) y2(t) yj(t) yl(t)

y1(ti+1)

y1(ti+1)

yj(ti)

yj(ti)
Network

Observer

(Passive node)

Fig. 1. Block diagram of the NCS

where fζ(t, ζ, χ, e, w) = fz(t, z, y, w) −
∂TO

∂t
(t, TL

O (t, z −

ζ, y + e), y + e) − ∂TO

∂q̄
(t, TL

O (t, z − ζ, y + e), y +

e)fq̄(t, T
L
O (t, z − ζ, y + e), y + e) − ∂TO

∂ŷ
(t, TL

O (t, z −

ζ, y + e), y + e)f̂y(t, y + e, z − ζ), fχ(t, χ, w) =
(fz(t, z, y, w), fy(t, T

L
P (t, z, y), y, w)), g(t, ζ, χ, e, w) =

f̂y(t, y+ e, z− ζ)− fy(t, T
L
P (t, z, y), y, w), hξ(t, ζ, χ, e) =

TL
P (t, z, y)− TL

P (t, z − ζ, y + e).

Remark 6 Compared to [16,17] where system (9) is
written using the variables (ξ, z̄, e), our choice of coor-
dinates is motivated by the fact that, when dealing with
reduced-order observers, convergence properties are usu-
ally not directly shown to hold for ξ but for ζ. It has to be
noticed that this set of coordinates simplifies the structure
of the interconnections of system (10)-(16) compared to
system (10)-(15) in [16] and system (14)-(19) in [17],
since subsystem (11), (14) is in cascade with the others.

By ensuring appropriate stability properties for system
(10), we will be able to derive stability properties for the
observation error ξ using Assumption 4. Equation (11)
models the dynamics of the variable (z, y) and is closely
related to the dynamics of the plant (2) as we show it
in Section 4. We refer to (15) as the protocol. It was
shown in [12] that static protocols such as the round-
robin protocol (RR) (that grants access to each node at
a period l), and dynamic protocols such as the try-once-
discard protocol (TOD) [18] (that gives access to the
node where the error |ej| = |yj − ŷj | is the biggest) can
be modeled in this manner. It is also interesting to note
that (15) can be used to model sampled-data systems by
setting the number of nodes l to 1, this gives: h = 0. The
stability of protocol (15) has been investigated for the
first time in [12], where the notion of Lyapunov UGES
protocol has been introduced and then extended in [13]
as follows.

Definition 7 Protocol (15) is said to be Lyapunov
UGAS if there exist a function W : R≥0 × R

ne → R≥0,
ρ ∈ [0, 1) and α, α ∈ K∞ such that, for all i ∈ Z≥0 and

e ∈ R
ne :

α(|e|) ≤ W (i, e) ≤ α(|e|), (17)

W (i+ 1, h(i, e)) ≤ ρW (i, e). (18)

We say that protocol (15) is Lyapunov UGES, if, in ad-
dition, functions α, α are linear.

It has been shown in Propositions 4 and 5 in [12] that RR
and TOD protocols and, as a consequence the sampled-
data case, are Lyapunov UGES. In [13], modified ver-
sions of the RR and TOD protocols have been devel-
oped which have the interesting features to transmit,
respectively, less frequently and less information as the
network-induced error e approaches the origin. Both
have been shown to be Lyapunov UGAS (see Examples
1-2 in [13]).

Remark 8 When the observer is implemented using a
dynamic protocol i.e. when the schedule of the sensor
nodes transmissions is not fixed (like the (modified) TOD
protocol and the modified RR protocol) with in-network
processing algorithms that require the knowledge of z̄ or
η̄ (like the predictive-type in-network processing algo-
rithm), the use of smart sensors (i.e. sensors which have
sufficient computational capacities to run the algorithm)
is required as explained in Section III.C.2 in [16].

The main focus of this study is to guarantee the conver-
gence of the observation error ξ when the system output
is transmitted through a serial communication channel
ruled by a Lyapunov UGAS protocol.

4 Main results

In this section, we suppose that the observer (4) has been
designed to guarantee an ISS property in the absence of
network.We then derive sufficient conditions on the net-
work configuration (in terms of the protocol, the MATI
and the in-network processing algorithm), the observer
and the plant which ensure that this stability property
is maintained (semiglobally and practically) in the pres-
ence of a communication channel. The stability analysis
is similar to [13] and the proofs are given in Appendix
A.1.

First, we show that the e-system satisfies some
semiglobal practical stability properties under the con-
ditions that the protocol is Lyapunov UGAS, that the
vector g (which is used to define the dynamics of e
between the transmissions instants) is bounded (on
compacts) and that transmissions occur sufficiently fre-
quently (i.e. the MATI is small). In that way, loosely
speaking, the protocol (15) is able to compensate for
the destabilizing effect of the continuous-time dynamics
(12) of the e-system. That is what is presented in the
next theorem which corresponds to Theorem 1 in [13].
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Theorem 9 Consider system (12), (15) and suppose the
following.

(i) Protocol (15) is Lyapunov UGAS with a Lyapunov
functionW (i, e) which is continuous in e, uniformly
in i.

(ii) g(t, ζ, χ, e, w) is bounded on compact sets, uniformly
in t.

Then there exist τ∗, β1 ∈ KL and γ1 ∈ K∞ such that,
for any strictly positive pair (∆, ε), τ ∈ [υ, τ∗(ε,∆)) and
max{‖ζ‖∞ , ‖χ‖∞ , ‖w‖∞ , |e0|} ≤ ∆, solutions to (12),
(15) satisfy:

|e(t)| ≤ β1

(

|e0|,
t− t0

τ

)

+ γ1(ε) ∀t ≥ t0 ≥ 0. (19)

From [12,13], the (modified) RR and the (modified)
TOD protocols satisfy condition (i) of Theorem 9.When
facing difficulties for building an appropriate Lyapunov
function W , Proposition 2 in [13] or equation (8) in
[13] may be utilized to check whether condition (i) of
Theorem 9 holds or not. Condition (ii) is related to the
y-dynamics of the plant and the choice of the in-network
processing implementation in view of the definition of
g (see Section 3.2). Before stating the main theorem of
this section, we introduce the following auxiliary system
which models system (10) when e ≡ 0:

˙̃
ζ = fζ(t, ζ̃, χ, 0, w). (20)

We are now ready to state the main results.

Theorem 10 Consider system (10)-(16) and suppose
that the following conditions hold.

(i) Assumption 4 is satisfied.
(ii) All conditions of Theorem 9 hold.
(iii) There exist L ∈ K and M ∈ KK such that for

each c > 0, max{|ζ|, |ζ̄|, |χ|, |e|, |w|} < c implies
|fζ(t, χ, ζ, e, w)−fζ(t, χ, ζ̄, 0, w)| ≤ L(c+1)|ζ− ζ̄|+
M(c+ 1, |e|).

(iv) There exist β2 ∈ KL and γ2 ∈ K such that for any

ζ̃0 ∈ R
nζ and (χ,w) ∈ L∞, the solutions of (20)

satisfy, for all t ≥ t0 ≥ 0:
|ζ̃(t)| ≤ β2(|ζ̃0|, t− t0) + γ2(‖w‖∞). (21)

(v) System (11) is UBIBS with input w.

Then there exist τ∗, β ∈ KL, γ ∈ K such that for
any strictly positive pair (∆, ε), τ ∈ [υ, τ∗(ε,∆)),
(ζ0, χ0, e0) ∈ R

nζ+nχ+ne and w ∈ L∞ with max{|ζ0|,
|χ0|, |e0|, ‖w‖∞} < ∆ solutions to (10)-(16) satisfy, for
any t ≥ t0 ≥ 0:

|e(t)| ≤ β1

(

|e0|,
t− t0

τ

)

+ ε (22)

|ζ(t)| ≤ β2(|ζ0|, t− t0) + γ2(‖w‖∞) + ε (23)

|ξ(t)| ≤ β (|(ζ0, e0)|, t− t0) + γ(‖w‖∞) + ε. (24)

Theorem 10 tells us that the ISS property ensured by
the observer when there is no network (item (iv) of The-
orem 10) is preserved semiglobally and practically (see
(23)) with the same class-KL function, β2, and ISS gain,
γ2, provided that the protocol is UGAS, the MATI is
small, the vector field fζ satisfies some Lipschitz proper-
ties (item (iii) of Theorem 10) and the plant is bounded
(item (v) of Theorem 10). Condition (i) of Theorem 10
is then used to derive the stability property (24) for the
observation error ξ.
We note that, from items (i) and (iv) of Theorem 10,

there exist β̃ ∈ KL and γ̃ ∈ K such that for any ζ̃0 ∈
R

nζ and (χ,w) ∈ L∞, along solutions to (20), denoting

ξ̃ = TL
P (t, z, y)− TL

P (t, z − ζ̃, y), the following holds:

|ξ̃(t)| ≤ β̃(|ζ̃0|, t− t0) + γ̃(‖w‖∞) ∀t ≥ t0 ≥ 0. (25)

In that way, Theorem 10 shows us that the observation
error still converges under network-induced constraints,
but semiglobally and practically in view of (24).
Various design methods can be employed to ensure con-
dition (iv) of Theorem 10, see Chapter 5 in [3] or Sec-
tion 5.2 for instance. Condition (iii) of Theorem 10 holds
whenever function fζ is locally Lipschitz in χ, ζ, e, w,
uniformly in t. Note that condition (v) of Theorem 10
implies that the plant (2) is UBIBS in view of Defini-
tion 1 and Assumption 4. Conversely, it is possible to
relate the stability of the plant to the stability of system
(11) using the following lemma. Its proof follows directly
from the use of Definitions 1 and 2 and Lemma 18 given
in Appendix A.2.

Lemma 11 Suppose there exist ϑP , ϑ̄P , θ̃P ,
¯̃
θP ∈ K∞

such that, for any (t, η, z, y) ∈ R≥0 × R
nη+nz+ny , the

following holds:

|TP (t, η, y)| ≤ ϑP (|η|) + ϑ̄P (|y|) (26)

|TL
P (t, z, y)| ≤ θ̃P (|z|) +

¯̃
θP (|y|). (27)

Then system (11) is UBIBS (uniformly forward com-
plete) with input w if and only if plant (2) is UBIBS
(uniformly forward complete) with input w.

Remark 12 Condition (27) is obviously implied by As-
sumption 4 when TL

P (t, 0, 0) = 0 for t ∈ R≥0, with

θ̃P = θP and
¯̃
θP = θ̄P . When TP (t, η, y) = η + Λy,

where Λ is a real matrix of appropriate dimension, we
see that (26) and (27) hold with θ̃P (s) = ϑP (s) = s and
¯̃
θP (s) = ϑ̄P (s) = |Λ|s for s ≥ 0.

Item (v) of Theorem 10 is typically needed when us-
ing zero-order-hold devices. When implementing other
in-network processing algorithms such as the predictive-
type introduced in Section 3.2, the following result may
be derived which requires the χ-dynamics to be uni-
formly forward complete only (and not bounded) like in
Section 5.2 for instance.

5



Theorem 13 Suppose the following holds.
(i) Assumption 4 holds.
(ii) Condition (i) of Theorem 9 holds.
(iii) There exists ḡ : R≥0 × R

nζ+ne+nw that is
bounded on compact sets, uniformly in t and
such that: |g(t, ζ, χ, e, w)| ≤ ḡ(t, ζ, e, w) for any
(t, ζ, χ, e, w) ∈ R≥0 × R

nζ+nχ+ne+nw .
(iv) There exist L ∈ K and M ∈ KK such that for

each c > 0, max{|ζ|, |ζ̄|, |e|, |w|} < c and χ ∈ R
nχ

implies |fζ(t, χ, ζ, e, w) − fζ(t, χ, ζ̄, 0, w)| ≤ L(c +
1)|ζ − ζ̄|+M(c+ 1, |e|).

(v) There exist β2 ∈ KL and γ2 ∈ K such that for any

ζ̃0 ∈ R
nζ , χ ∈ Lloc,∞ and w ∈ L∞, the solutions of

(20) satisfy, for any t ≥ t0 ≥ 0:

|ζ̃(t)| ≤ β2(|ζ̃0|, t− t0) + γ2(‖w‖∞). (28)
(vi) System (11) is uniformly forward complete with in-

put w.
Then there exist τ∗, β ∈ KL, γ ∈ K such that for
any strictly positive pair (∆, ε), τ ∈ [υ, τ∗(ε,∆)),
(ζ0, χ0, e0) ∈ R

nζ+nχ+ne andw ∈ L∞ withmax{|ζ0|, |e0|,
‖w‖∞} < ∆ solutions to (10)-(16) satisfy (22)-(24).

Contrary to Theorem 10, the stability properties ensured
by Theorem 13 hold with no boundedness restriction on
the norm of χ0. The price to pay to be able to relax the
condition (v) of Theorem 10 is that we can upperbound
|g| by a function that is independent of χ that is also
bounded on compacts (see item (iii) of Theorem 13) and
that item (iv) of Theorem 13 is verified. This allows us
to consider the ζ- and e-systems independently of the
χ-system.

5 Applications

In this section, we focus on two nonlinear observer de-
signs and apply respectively Theorems 10 and 13 to
analyse the convergence of the observation error under
network-induced constraints.

5.1 A class of immersion & invariance observers

Consider system (2) with no time-dependency and no
perturbation w only for the sake of simplicity. We as-
sume that fη and fy are locally Lipschitz. We follow the
observer design described in Section 3.1 to build a time-
invariant observer of the form of (4) where fq̄ is locally
Lipschitz and the mappings TP and TO verify the fol-
lowing.

Assumption 14 The mappings TL
P , T

L
O and the first

derivatives of TP and TO are locally Lipschitz and TP
ensures Assumption 4.

We also assume that the observer is designed so that,
denoting ζ̃ = z − z̄, there exists β ∈ KL so that for any
ζ̃0 ∈ R

nq̄ along solutions to (2), (4) this holds:

|ζ̃(t)| ≤ β(|ζ̃0|, t− t0) ∀t ≥ t0 ≥ 0. (29)

Property (29) ensures that the manifold M =
{

(η, y, q̄)

∈ R
nη+ny+nq̄ : TP (η, y) = TO(q̄, y)

}

is positively in-
variant and globally attractive for system (2), (4) and
thus observer (4) is an (immersion and invariance) ob-
server according to Definition 1 in [9].
We now consider the scenario where the system mea-
surements are transmitted through a shared communi-
cation channel governed by a Lyapunov UGAS proto-
col. We write the problem in (ζ, χ, e) coordinates and
obtain system (10)-(16). We use in-network processing

algorithms that are such that f̂y is locally Lipschitz
which is the case of the zero-order-hold devices ŷ (i.e.

f̂y = 0) or the predictive-type algorithm of [8] (i.e.

f̂y(q̄, ŷ) = fy(T
L
P (z̄, ŷ), ŷ)) in view of the assumed con-

ditions. The following corollary is a direct application of
Theorem 10.

Corollary 15 Consider system (10)-(16) and suppose
the following holds.

(i) Assumption 14 holds.
(ii) Protocol (15) is Lyapunov UGAS with a Lyapunov

function W (i, e) continuous in e, uniformly in i.

(iii) Function f̂y is locally Lipschitz.
(iv) System (11) is UGS.

Then properties (22)-(24) are satisfied.

Proof. Condition (i), (iv) and (v) of Theorem 10 are
satisfied respectively in view of item (i) of Corollary 15,
(29) and item (iv) of Corollary 15. According to the ex-
pression of g given in Section 3.2, condition (ii) of The-

orem 9 is satisfied since both f̂y and fy are continuous
as they are locally Lipschitz from item (iii) of Corollary
15. Thus, since item (ii) of Corollary 15 holds, condi-
tion (ii) of Theorem 10 is verified. Similarly, in view of
the definition of fζ given in Section 3.2, we see that it is
locally Lipschitz according to Assumption 14 and item
(iii) of Corollary 15. Item (iii) of Theorem 10 is there-
fore ensured. Since all conditions of Theorem 10 hold,
the desired results are obtained. 2

5.2 Circle-criterion observers

In this subsection, we show how Theorem 13 can be used
for designing a circle-criterion observer [2] for NCS in the
case where the plant is only supposed to be uniformly
forward complete, by using an appropriate in-network
processing algorithm. Consider system (5)-(6) where γ =
(γ1, . . . , γr) satisfies for all a, b ∈ R≥0 and i ∈ {1, . . . , r}:
(a − b)[γi(a) − γi(b)] ≥ 0. An additional assumption is
taken on the nonlinear functions ρ1, ρ2 and γ, similar to
Assumption 6 in [17].

Assumption 16 There exist θρ1
, θρ2

, θγ ∈ K, with θγ
locally Lipschitz, such that for a, b of appropriate dimen-
sions, this holds: |ρ1(a)− ρ1(b)| ≤ θρ1

(|a− b|), |ρ2(a)−
ρ2(b)| ≤ θρ2

(|a− b|) and |γ(a)− γ(b)| ≤ θγ(|a− b|).
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Assumption 16 is equivalent to saying that functions ρ1,
ρ2 and γ are uniformly continuous (see PropositionA.2.1
in [14]). We build the reduced-order observer (7)-(8) and
we assume there exist real matrices P , that is symmetric
positive definite, Λ, that is diagonal and positive definite,
and constant ν > 0 such that the following LMI holds:





(A2 +NA1)
TP + P (A2 +NA1) + νI ⋆

(G2 +NG1)
TP + ΛH2 0



 ≤ 0, (30)

where ⋆ stands for P (G2 + NG1) + HT
2 Λ. We intro-

duce z = η + Ny and z̄ = q̄, i.e. TP (t, η, y) = η + Ny
and TO(t, q̄, y) = q̄ as in Example 5. The system mea-
surements are now sent through a shared channel and
we implement the observer (7)-(8) using the predictive-

type in-network algorithm: f̂y(ŷ, z̄) = A1η̄+G1γ(H1ŷ+
H2η̄) + ρ1(ŷ) where η̄ = q̄ − Nŷ = z̄ − Nŷ in view
of Example 5. We write the problem in the coordinates
(ζ, χ, e):

ζ̇ = (A2 +NA1)ζ + (G2 +NG1)(γ(µ1)− γ(µ2))

+ρ̄(y)− ρ̄(y + e) ∀t ∈ [ti−1, ti](31)

χ̇ =











A2(z −Ny) +G2γ(µ1) + ρ2(y)

+N
[

A1(z −Ny) +G1γ(µ1) + ρ1(y)
]

A1(z −Ny) +G1γ(µ1) + ρ1(y)











∀t ∈ [ti−1, ti](32)

ė = −A1(ζ +Ne) +G1(γ(µ2)− γ(µ1))

+ρ1(y + e)− ρ1(y) ∀t ∈ [ti−1, ti](33)

ζ(t+i ) = ζ(ti) (34)

χ(t+i ) = χ(ti) (35)

e(t+i ) = h(i, e(ti)) (36)

ξ = ζ +Ne, (37)

where h is defined by the protocol and µ1 = H1y +
H2(z −Ny) and µ2 = H2(z − ζ) + (H1 −H2N)(y + e).
The following result follows from Theorem 13.

Corollary 17 Consider system (31)-(37). Suppose the
following holds.
(i) Assumption 16 holds.
(ii) Protocol (36) is Lyapunov UGAS with a Lyapunov

function W (i, e) continuous in e, uniformly in i.
(iii) Plant (5)-(6) is uniformly forward complete.
Then properties (22)-(24) are satisfied.

Proof. We show that the conditions of Theorem 13 are
ensured before applying it. Condition (i) of Theorem
13 and the conditions of Lemma 11 hold with θP (s) =

θ̃P (s) = ϑP (s) = s and θ̄P (s) =
¯̃
θP (s) = ϑ̄P (s) = |N |s

for any s ≥ 0. Therefore, in view item (iii) of Corollary 17
and Lemma 11, condition (vi) of Theorem 13 is verified.
On the other hand, item (ii) of Corollary 17 corresponds
to condition (ii) of Theorem 13. According to Section 2

in [2], condition (v) of Theorem 13 is satisfied. In view
of Assumption 16, it can be shown that condition (iii) of
Theorem 13 holds with ḡ : (ζ, e) 7→ |A1||ζ|+ |A1N ||e|+
|G1|θγ(|H2N −H1||e|+ |H2||ζ|) + θρ1

(|e|) which is con-
tinuous in ζ, e and so bounded on compact sets. Simi-
larly, condition (iv) is ensured by using Assumption 16.
The proof is completed by applying Theorem 13. 2

6 Conclusion

We have shown that the global asymptotic convergence
of a class of nonlinear reduced-order observers in the ab-
sence of network is maintained semiglobally and practi-
cally, with respect to the MATI, when the system mea-
surements are transmitted through a serial communica-
tion channel governed by a Lyapunov UGAS protocol,
under mild conditions. The proposed conditions have
been used to synthesize immersion and invariance ob-
servers and circle criterion observers for NCS.
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[17] R. Postoyan and D. Nešić. On emulation-based observer
design for networked control systems. In CDC (IEEE
Conference on Decision and Control) Atlanta, U.S.A., 2010.

[18] G.C. Walsh, O. Beldiman, and L.G. Bushnell. Asymptotic
behavior of nonlinear networked control systems. IEEE
Transactions on Automatic Control, 46:1093–1097, 2001.

A Appendix

A.1 Proofs of the main results

Proof of Theorem 9. The proof follows the same lines
than the proof of Theorem 1 in [13] by identifying x =
(ζ, χ). The only difference is that Theorem 1 (and Propo-
sition 3) in [13] makes use of the uniform continuity 2 of
W in e whereas here W is only assumed to be contin-
uous in e, uniformly in i. According to Lemma 19, by
identifying f(x, y) = W (i, e) and g(y) = α(|e|) (where
α comes from (17)), since W is continuous in e, uni-
formly in i and α is continuous, there exist ε̄, ε̃ ∈ K∞

such that, for any c ∈ R≥0, i ∈ R≥0, e1, e2 ∈ R
ne with

max{|e1|, |e2|} ≤ c, this holds: W (i, e1) − W (i, e2) ≤
ε̄(c)ε̃(|e1 − e2|). On the other hand, from item (ii) of
Theorem 9, there exists a continuous positive function
ϕ : R≥0 → R≥0 (not necessarily zero at zero), strictly
increasing and such that lims→∞ ϕ(s) = ∞ that sat-
isfies: |g(t, ζ, χ, e, w)| ≤ ϕ(max{|ζ|, |χ|, |e|, |w|}) for any
(ζ, χ, e, w) ∈ R

nζ+nχ+ne+nw and t ∈ R≥0. We define

τ∗1 : (ε, c) 7→ 1
1+ϕ(max{c+1,α−1

1
(c+1)})

ε̃−1
(

ε
ε̄(c+1)

)

that is

of classKL. Afterwards, by following the same lines than
the proof of Proposition 3 and Theorem 1 in [13] and us-
ing the last inequality of Lemma 18 to convert maximum
inequalities into a sum, the desired result is obtained.2

Proof of Theorem 10. Consider system (10)-
(16). From Lemma 1 and Proposition 4 in [13], by
identifying x = ζ, w = (χ,w), e = e, β = β2,

2 Indeed, there is an error in the statement of item (1) of
Theorem 1 (equivalently item (1) of Proposition 3) in [13]:
W must be uniformly continuous in e (and not only contin-
uous in e) in order to have W (i, e1)−W (i, e2) ≤ ε̃(|e1 − e2|)
with ε̃ ∈ K∞ for i ∈ Z>0, e1, e2 ∈ R

ne in the proof of Propo-
sition 3. Nonetheless, a similar inequality can be obtained
by restricting e1 and e2 to belong to a given compact set as
shown here.

γ(‖w‖∞) = γ2(‖w‖∞), all required conditions hold
(the fact that (21) is stated as a sum and not a
maximum as in (13) in [13] has no incidence on the
proofs of the cited results), so there exists τ̄ ∈ KL
such that for any ε,∆ ∈ R>0, τ ∈ [υ, τ̄(ε,∆)) and
max{|ζ0|, ‖e‖∞ , ‖w‖∞ , ‖χ‖∞} < ∆, the following in-
equality holds, for any t ≥ t0 ≥ 0:

|ζ(t)| ≤ β2(|ζ0|, t− t0) + γ2(‖w‖∞) + ε. (A.1)

Consequently, by using similar arguments than in
the proof of Theorem 2.1 in [6] (as for Theorem
2 in [13]), we obtain that there exists τ∗ ∈ KL
such that, for any ε,∆ ∈ R>0, τ ∈ [υ, τ∗(ε,∆)),
max{|ζ0|, |e0|, ‖w‖∞ , ‖χ‖∞} < ∆, this holds, for any
t ≥ t0 ≥ 0:

|e(t)| ≤ β1

(

|e0|,
t− t0

τ

)

+ ε (A.2)

|ζ(t)| ≤ β2(|ζ0|, t− t0) + γ2(‖w‖∞) + ε. (A.3)

We now need to relax the requirement that ‖χ‖∞ < ∆
in (A.2)-(A.3) to |χ0| ≤ ∆ to show that (22) and (23)
are satisfied. We use for that condition (v) of Theorem
10. Indeed, in view of condition (v) of Theorem 10 and
Definition 1, there exist K, γ ∈ K such that for any
χ0 ∈ R

nχ and w ∈ L∞, the following holds for any
t ≥ t0 ≥ 0: |χ(t)| ≤ K(|χ0|) + γ(‖w‖∞), thus, defining
α : s 7→ max{s, (K + γ)(s)} ∈ K∞, for any ∆ ∈ R>0,
|χ0| < ∆ and ‖w‖∞ < ∆ we have that:

‖χ‖∞ ≤ (K + γ)(∆) ≤ α(∆). (A.4)

From this condition, we could show that (22) and (23)
are verified by appropriately defining the MATI depend-
ing on (ε,∆). Nevertheless, because we want to consider
the same MATI for (22)-(24), we anticipate from the se-
quel and do the following. Let ε,∆ ∈ R>0 and define
θ : s 7→ min{s, θ̃−1(s)} ∈ K∞ with θ̃ : s 7→ θP (4s) +
θ̄P (2s) ∈ K∞ (where θP and θ̄P come from Assump-
tion 4). We denote τ̃ : (r, s) 7→ τ∗(θ(r), α(s)) ∈ KL. Let
τ ∈ [υ, τ̃ (ε,∆)), (ζ0, χ0, e0) ∈ R

nζ+nχ+ne and w ∈ L∞

be such that max{|ζ0|, |e0|, |χ0|, ‖w‖∞} < ∆ ≤ α(∆). In
view of (A.4), we have that max{|ζ0|, |e0|, |χ0|, ‖w‖∞} ≤
α(∆) and the following holds for any t ≥ t0 ≥ 0:

|e(t)| ≤ β1

(

|e0|,
t− t0

τ

)

+ θ(ε)

≤ β1

(

|e0|,
t− t0

τ

)

+ ε (A.5)

|ζ(t)| ≤ β2(|ζ0|, t− t0) + γ2(‖w‖∞) + ε, (A.6)

so (22) and (23) are ensured. We now show that
(24) is guaranteed. Consider variable ξ, we have
ξ = TL

P (t, z, y)−TL
P (t, z−ζ, y+e). According to Assump-

tion 4, this holds: |ξ| ≤ θP (|ζ|) + θ̄P (|e|), consequently,
from (A.5), (A.6) and using Lemma 18, the definition of
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θ̃ and the facts that τ < τ̃(ε,∆) = τ∗(θ(ε), α(∆)), the
following is satisfied for any t ≥ t0 ≥ 0:

|ξ(t)| ≤ θP (|ζ(t)|) + θ̄P (|e(t)|)

≤ θP
(

β2(|ζ0|, t− t0) + γ2(‖w‖∞) + θ(ε)
)

+θ̄P
(

β1

(

|e0|,
t− t0

τ

)

+ θ(ε)
)

≤ θP
(

2β2(|ζ0|, t− t0)
)

+ θP
(

4γ2(‖w‖∞)
)

+

+θ̄P
(

2β1

(

|e0|,
t− t0

τ

)

)

+ θ̃(θ(ε)). (A.7)

Since θ(ε) ≤ θ̃−1(ε), we get from (A.7) that: |ξ(t)| ≤
β(|(ζ0, e0)|, t − t0) + γ(‖w‖∞) + ε, with β : (s, t) 7→

θP
(

2β2(s, t)
)

+ θ̄P
(

2β1(s,
t
τ
)
)

∈ KL and γ : s 7→

θP
(

4γ2(s)
)

∈ K: property (24) is guaranteed. 2

Proof of Theorem 13 (Sketch). The proof follows the
same lines as the proof of Theorem 10. First, we show
that (19) is satisfied for any χ ∈ Lloc,∞. In the proof of
Proposition 3 in [13], instead of using the fact that g is
bounded on any compact sets, uniformly in t, we invoke
condition (iii) of Theorem 13 and define the function ϕ
in the proof of Theorem 9 by bounding ḡ (and not g).
Afterwards, by invoking the same arguments as the proof
of Theorem 10 but with no boundedness condition on
‖χ‖ and the fact that system (22) is uniformly forward
complete (according to item (vi) of Theorem 13), we
obtain the desired results. 2

A.2 Technical lemmas

Lemma 18 For any γ ∈ K and a, b ∈ R≥0, this holds:
γ(a + b) ≤ γ(2a) + γ(2b), a + b ≤ max{2a, 2b} and
max{a, b} ≤ a+ b.

Lemma 19 Let f : (x, y) 7→ f(x, y) from R
n+m toRp be

continuous in y, uniformly in x, and such that |f(x, y)| ≤
g(y) for any (x, y) ∈ R

n+m with g ∈ C(Rm,R≥0). There
exist γ1, γ2 ∈ K∞ such that for any c ∈ R≥0, (x, y1, y2) ∈
R

n+2m with max{|y1|, |y2|} ≤ c, this holds: |f(x, y1) −
f(x, y2)| ≤ γ1(c)γ2(|y1 − y2|).

Proof. For any c, s ≥ 0, define D(c, s) = {(y1, y2) ∈
R

2m : |y1 − y2| ≤ s, max{|y1|, |y2|} ≤ c}. Let
ψ(c, s) = sup

x∈Rn, (y1,y2)∈D(c,s)

{

|f(x, y1) − f(x, y2)|
}

for

c, s ≥ 0. Function ψ is well defined, since for any
c, s ≥ 0: ψ(c, s) ≤ sup

(y1,y2)∈D(c,s)

{g(y1) + g(y2)} ∈ R≥0.

Moreover, since f is continuous in y, uniformly in x, ψ
is continuous in c, s. In addition, ψ is non-decreasing
in c and s. For any c ∈ R≥0, (x, y1, y2) ∈ R

n+2m with
max{|y1|, |y2|} ≤ c, the following holds:

|f(x, y1)− f(x, y2)| ≤ ψ(c, |y1 − y2|). (A.8)

Let introduce ψ̃(c, s) = ψ(c, s) + cs for c, s ≥ 0, in view

of the properties of ψ, ψ̃(c, ·) ∈ K∞ and ψ̃(·, s) ∈ K∞

for c, s ∈ R>0. Additionally, according to (A.8) and the

definition of ψ̃, this holds for any c ∈ R>0, (x, y1, y2) ∈
R

n+2m with max{|y1|, |y2|} ≤ c:

|f(x, y1)− f(x, y2)| ≤ ψ̃(c, |y1 − y2|). (A.9)

Invoking Corollary IV.5 in [4], we know that there
exist γ1, γ2 ∈ K∞ such that, for any c, s ≥ 0, this
holds: ψ̃(c, s) ≤ γ1(c)γ2(s). As a consequence, in view
of (A.9), for any c ∈ R≥0, (x, y1, y2) ∈ R

n+2m with
max{|y1|, |y2|} ≤ c, this holds: |f(x, y1) − f(x, y2)| ≤
γ1(c)γ2(|y1 − y2|). This completes the proof. 2
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