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Abstract

The linear Fresnel reflector solar technology suffers from the lack of
optical precision, due to the dynamic change of optical distance brought
about by the rotation of the mirror strips.

We propose a simple method to produce mirror strips with dynamic
curvature of high precision, which can be used to significantly enhance the
optical concentration efficiency of linear Fresnel reflector solar concentra-
tors. The basic idea is to create a dynamically modifiable depression
behind the mirror, that curves the mirror through the elastic deflection of
the mirror’s substrate.

Introduction

The linear Fresnel reflector (LFR) solar concentrator is one of the most promis-
ing solar thermal technologies. It uses multiple independently rotating mirror
strips to reflect the Sun’s radiations onto a linear receiver at fixed position.

One of the biggest problems of the linear Fresnel technology is the lack of
optical precision. Originally, the mirror strips are flat. But flat mirrors offer
very limited concentrating capacity, as it is clear that the focus width will not
be smaller than the width of the mirror strips. Recently, concave mirror strips
with static curvature are proposed, based on the elastic deflection of the glass
sheet [7].

Although the statically curved mirrors are more precise than the flat ones
and offer a higher concentrating capacity, their optical properties are still less
than optimal. As is shown in Figures 4 and 6 of [3], the focus, hence the optical
precision, of the mirrors varies with the angle of the Sun. In Section 1, we carry
a geometric study of the situation, finding out that for an optimized receiver,
the variation of the focal length results in a non-negligeable intercept loss plus
an increase in the thermal loss by the receiver.

The limited concentration ratio, hence the large size of the receiver and
the high thermal losses from it, is not the only drawback of the variation of the
focus. Most LFR receivers now use a multiple of parallel pipes as heat absorber.
The variation of the focus leads to a wide variation of the distribution of light



intensity on the different absorbing pipes, creating serious difficulties for the
balance of flux and temperature of the fluid within the different pipes.

The only solution to this problem is to use concave mirrors with dynamic
curvature. A proposition to this end can be found in [2], but the computations
there are rather rough. In fact, the most important point here is that the
distribution of the curvature must be as uniform as possible on the whole surface
of the mirror, within a wide range of the average curvature.

There are other minor factors to be considered, including the simplicity and
the cost of the control mechanism, the resistance to wind load, etc.

The main purpose of this article is to discuss the feasibility of making mirrors
of dynamic curvature for LFR concentrators. In Section 2, a simple method to
create a uniform curvature variation is proposed. It is shown that using the
atmospheric pressure and a reinforcement structure at the back of the mirror, a
dynamically variable curvature can be created, with a very high optical precision
and a wide range of variation. Moreover, with a small electric fan, a single
control point is enough to control the curvature of a mirror strip with more
than 10m? of reflective surface.

Detailed calculations are made using concrete examples. The advantage over
mirrors of static curvature is obvious. With a higher optical precision, mirrors
of dynamic curvature eliminates important intercept loss and reduces the size
of the receiver. The gain in performance of the concentrator is estimated to be
more than 20%.

Mirrors of dynamic curvature are of special interest for LFR concentrators
of small size. Traditionally, a small LFR concentrator must use narrow mirror
strips, because a minimal number of mirror strips is required for a reasonable
performance. But narrow mirror strips lead to higher cost, due to the multipli-
cation of overhead. Using mirrors of dynamic curvature, concentrators with as
few as 4 mirror strips can be constructed, eliminating this problem. A concrete
example is described in Section 4.

1 Mirror with static curvature and its focal length

In this section, we present a computation of the optimal aperture width of the
receiver for a LFR concentrator using concave mirrors with static curvature.
The computed width will later be used to compare with that of mirrors with
dynamic curvature.

The focal length of a concave mirror varies with the direction of the focus,
as shown by Figure 1. When the mirror moves from position (3) to position
(4) due to the rotation of the incoming light (5), the focal point of the reflected
light moves from (2) to (7), with a shorter distance towards the mirror. So on
the position of the receiver (2), the reflected light scatters out widely.

More precisely, let N be the normal line of the mirror surface at the center p
of the mirror, v, (resp. va) be the vector from the p to the Sun (resp. the center
of the receiver), and « be the angle between N and vs, as shown in Figure 2.
Let r be the radius of curvature of the mirror. Then assuming that the width



Figure 1: The focal length of a concave mirror

W of the mirror is much smaller than r, the distance § from p to the focus of
the reflected sunlight is given by

0= 17'(:03 (o) .

Now if d is the distance from p to the center of the receiver, and if the
aperture of the receiver is a plane of width V' whose normal line has an angle
B with the vector ve, then the reflected images of light rays coming from the
center of the Sun has a width U’ given by

U’:U’(a,ﬂ):‘dgé‘Wcos(oz)/cos(ﬁ) .

Adding the Sun’s angular diameter and enginerring error margins, we get the
total width U of the image of the sunlight on the receiver

U=U(a,B) = <‘d(5_6‘Wcos(Oz)+cd)/cos(6) (1)

where ¢ is the angular diameter of the cone of the reflected sunlight from p. In
practice, engineering error margins other than that resulting from the problem of
focal distance can be encorporated into c. As the angular diameter of the Sun is
about 0.009 (9 mrad), a typical value of ¢ is 0.015 with 6 mrad for the combined
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Figure 2: Reflection of a mirror

statistical error margin such as tracking error, surface error, manufacturing error
of the components, etc. (see for example [1]).

The proportion of the reflected sunlight that hits the aperture of the receiver
is given by
1 itUu<v

VU #U>V @)

77:77(0‘76):{

This is the intercept efficiency with given angles and given widths.

Now let v be the angle between the Sun and the zenith. We have o =
1 (y—B), or y = B+2a. For v varying within a range [v1,72], the total amount
of the radiative energy reflected by the mirror is given by the integral

T=T(8) = ]ZFcos (o) dy = ]ZFcos (; (v - 6)) d

where F' is a constant. And by (2), the amount of the reflected radiation that
hits the receiver aperture is

S:S(V,B):/Fn(a,ﬂ)cos(a)d'y.

Therefore we have the average intercept efficiency of the mirror given by

e(V,3)=5(V.8)/T(B) , 3)

and the average intercept efficiency E (V') of the whole LFR concentrator can
be obtained by taking the average of e (V, ) over all mirror strips of the con-
centrator.

This mathematical model can be used to determine the optimal aperture
width V of the receiver. To do so, we take as example the configuration of the



concentrator described in [3]. See Table 1 of [3] for the data of the configuration.
Note that W = 0.4m for this case, and the height of the receiver is 2.5m =
6.25W over the mirror field. There are 5 mirrors at each side of the receiver,
with respective values of § at 6.28°, 18.26°, 28.81°, 37.60°, 44.71°.

Suppose that the concentrator is installed with a north-south axis, and we
take v9 = —v1 = 65° = 1.1345, corresponding to a daily movement of the Sun
from 7:40 am to 16:20 pm.

The mirror curvature given in Table 1 of [3] is adjusted to r = 2d, in other
words the focus of the mirror strip is on the receiver when o« = 0. In this case, if
V =0.1m = 0.25W as suggested in [3, Figure 7], a numerical integration on (3)
gives E (0.25W) = 0.914, in other words the entercept miss is as high as 8.6%.

The graph of the function 1 — E (V') is shown in Figure 3. The optimal value
of V/W depends on the thermal loss of the receiver, and can be determined
via Figure 3. For example, assume that increasing V/W by 0.01 increases the
thermal loss by 0.6% with respect to the amount of energy absorbed by the
receiver. Then the optimum of E (V') is obtained at a point of the curve where
the slope of the tangent is dE/d (V/W) = 0.6. The dotted line in the graph
shows that this point is near V/W = 0.28, for 1 — E (V) ~ 6.5%.

1-E(V)

15%

Figure 3: The intercept miss as a function of V/W

Note that the highest values of e (V, 8) occurs when || is near its maximum,
and hence the mirror efficiencies are lowest due to the cosine factor. Therefore
the variation of the focal lengths of mirrors with static curvature worsens the
fluctuation of the output of the LFR, concentrator.

2 Mirrors of dynamic curvature

The best material for a solar mirror is the back surface glass mirror, for its
performance, durability and low cost. And a concave glass mirror can be formed
from a flat glass sheet, via elastic deflection of the glass. For example, [7]



describes a method to form a concave mirror of static curvature using elastic
deflection.

Elastic deflection of the glass sheet can also be used to form a concave
mirror of dynamic curvature. The difficulties are the simplicity of the control,
a sufficient range of the variation of the curvature, and the precision of the
distribution of the curvature over the whole surface of the mirror and within
the whole range of the variation.

The dynamic elastic deflection can be dynamically created and maintained
by the atmospheric pressure, as in Figure 4 that shows a transversal section of
the mirror strip. A back structure (12) encloses an essentially hermetic depres-
sion chamber (13) behind the glass mirror sheet (11), and a small electric fan or
air pump (14) evacuates the air within the depression chamber, creates a slight
depression within the chamber. The difference in atmospheric pressure before
and behind the glass sheet exercises a uniform normal load (15) on the sheet,
resulting in an elastic deflection of it.

HEEEERREE

Figure 4: Transversal section of a mirror with its depression chamber

Changing the speed of the fan (or pump) changes the level of the depression,
hence the uniform normal load, hence the curvature of the mirror sheet. A
sensor can be inserted in the depression chamber, that detects either the level
of the depression or the amount of deflection. The output of the sensor can be
used as feedback for the control of the fan.

Alternatively, a common depression room can be installed for a multiple of
mirror strips, and a more powerful fan, such as that of a vacuum cleaner, is
attached to the depression room to create a depression in it. The depression
chambers of the multiple of mirror strips are connected to the depression room
via hoses. An electrically controled valve is installed in the connection hose
between the depression room and the depression chamber of each mirror strip,
to control the level of the depression in the latter. Another electric valve links
the depression chamber and the environment, so that the depression can be
released if it becomes too deep.

The glass mirror sheet is also subject to the gravitation load, which varies
with the rotational position of the mirror. As the curvature of the mirror is
relatively small, the gravitation is very close to a uniform load on the mirror
sheet, so it can be incorporated into the load created by the depression, as long



as it does not generate by itself a deflection exceeding the required amount.

The main point here is that the elastic deflection of a uniform sheet under
a uniform normal load is not of constant curvature. According to the Euler-
Bernoulli beam equation[9], the bending moment of the glass sheet under the
uniform load, at a point p of distance x to the center of the sheet, is

F

M(:C)ZE

(W?/4—2?) |

where I is the load per unit length, and W is the width of the mirror sheet as
in Section 1.
The curvature of the mirror at the point p is

 M(z)  F(W?/4—2?)
T(@) =57 (z)  2BI(z) )

where F is the Young’s modulus of the material, and I (z) is the second moment
of area. If the only resistance to the deflection comes from the glass sheet, then
I(z) is a constant, and the curvature is a quadratic function. This is not
desirable, as we want the curvature to be as close to a constant function as
possible.

This can be done by adding a reinforcement structure to the back of the glass
sheet, as shown in Figure 5. The reinforcement structure consists of parallel bars
that help resisting to the deflection of the glass sheet.

Figure 5: Reinforcement structure at the back of the mirror

Here we assume that the parallel reinforcing bars are not bonded to the back
of the mirror, but their ends are pushed against the back of the mirror. Under



this setup, the curvature formula (4) can be re-written as

_F (W?2/4 — %)
T (I) B 2 (ElIl + EQIQ (.’L’)) ’ (5)

where F7 and I; are the Young’s modulus and second moment of the glass
sheet, and Ey and I (z) are that of the parallel bars. Now if the parallel bars
are constructed in a way such that
W?2/4 —2?) — BT
B - WA - BL ©)
2

where a is a constant coefficient, then the curvature 7 (z) = 4 is constant.

If the reinforcing bars are bonded to the back of the mirror, the second
moment of area is higher than in (5), but the principle remains the same.

An example of an angled bar with variable second moment of area is illus-
trated in Figure 6. For the stability of the bar, the angle is slightly smaller than

90°.

Figure 6: A reinforcing bar with variable second moment of area

Of course, in reality this can never be exactly as in (6), because when || is
close to W/2, the first term of the numerator in (6) is close to 0, hence I (x)
would be negative, which is impossible to realize.

The solution is to cut the bars to a length shorter than W. Within the
length of the bars, the second moment is as given by (6), so that the curvature
is theoretically constant; beyond the length of the bars, the curvature, hence the
tangent plane, of the mirror sheet is approximative, so that optical aberration
occurs. The length of the bars can be chosen so that this approximation is
optimal, not only in that the extent of the aberration is minimal, but also in
that the area of the mirror surface where aberration occurs is minimal.

More precisely, let L be the length of the bars, and let R = El[%%mm =

4‘EEV‘1/IQI. The optimal ratio L/W depends only on R, and the higher is R, the




smaller are the aberrations. Note that a higher R also means that the mirror is
more rigid, so that its curvature is less sensitive to the random wind load.

ELT1+E212(x)

R 0 W/2

R=H

Figure 7: Tangent curve of the mirror for R =5

Figure 7 shows the tangent T (z) of the mirror surface for the case of R = 5,
and the blue curve in Figure 7 is the curve of second moment of area F;1; +
EsI5 (x). Note that it is the tangent of the mirror surface that governs the
direction of the reflected light rays, and that for the ideal situation where the
curvature is constant everywhere, the tangent curve should be a straight line,
as is indicated by the dotted line in the graph.

We have chosen a small value of R for Figure 7, because for higher R the
curve T (z) is too close to the straight line for the difference to be graphically
visible.

By construction, one sees that the shape of the curve T' (z), hence the devi-
ation in the tangent, does not depend on the average curvature. So the optical
aberration is a constant proportion of the mirror width W, not depending on
the focal distance. And the maximal (average) curvature of the mirror is limited
only by the strength of the materials, while the minimal curvature is limited by
that introduced by the gravitation load.

We will see from the concrete example in the next section that usually, this
range of the variation of the curvature is more than sufficient.

Figure 8 shows the optimal ratio L/W with respect to R. The curve @Q is
the proportion of the surface of the mirror for which the optical aberration due
to the deviation in the tangent is less than 0.005W.
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Figure 8: Optimal ratio L/W versus R

3 A concrete example

We can again use the configuration of the concentrator in [3] as an example
for a concrete computation of the mirror. However, this configuration is a
small one, while concentrators for power generation are usually bigger. As
small concentrators will be studied in the next section, here we multiply all the
dimensions in [3] by 4. That is, the mirror width is 1.6m, and the distance
between adjacent mirrors is 0.6m. Moreover, we follow the computations in [12]
that recommend a higher receiver, to assume that the receiver is 13m above the
mirror field (instead of 10m).

Under this configuration, the maximal curvature occurs for mirror strips near
the center of the mirror field, when they are turned perpendicularly towards the
receiver. The minimal radius of curvature is r = 2 x 13m = 26m.

Assume that the mirror is made of ordinary glass with a thickness of 5mm.
We have

By I = T0GPa x 5° x 1000mm* /12 = 730Nm?

per meter of length.

The reinforcing bar at the back of the glass sheet is an L-shaped steel angle,
with a thickness of 2mm, and the width of the leg touching the back of the
glass is 15mm. Its hight is variable according to the requirement of the variable
second moment of area, with a maximum of 33mm at the center of the bar. At
this point, the second moment of area of the bar is

Fy I, (0) = 200G Pa x 40° x 2mm* /12 = 2133Nm? |

and the maximal distance from the neutral axis to extreme fibers is es = 20mm.

In fact, this computation can be easily done by first putting the neutral axis
at a point g that is 20mm below the top of the bar, then checking that above
and below ¢, the second moments are the same.[8]
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At a point of the bar away from the center, both the second moment Eo15 (z)
and the maximal distance to the extreme fibers are smaller than the correspond-
ing values at the center.

Now assume that parallel reinforcing bars are positioned at a distance of
32.5¢m from each other. Then for each meter of length, the second moment of
area of the bars is 2133Nm2/0.325 = 6563Nm? = 9E, I, or R = 10.

According to Figure 8, the bars extend to a length of 0.92W = 1.47m.

The level of depression needed to create the curvature can be determined
via (5), for the point = = 0:

1 14600Nm> _, 22810N _,

2%m = r — —
METTI0) T 0.64Fm2 F"

or F = 880Nm~2 = 9mbar. As the gravitation amounts to 1.3mbar, the
maximal radius of curvature is 26m x 9/1.3 = 180m, which is much more than
what is needed (no more than 50m).

The effect of the wind load on the curvature of the mirror should also be
estimated. Wind creates a random load on the mirror surface, changing its
curvature. From the above, a deviation of the curvature of 10% corresponds to
a pressure of 0.9mbar, or 9kg/m?, which amounts to a wind speed of 42km /h if
the mirror surface is directly hit. However, LFR mirrors are more horizontally
than vertically disposed, and the constant part of the wind pressure can be
compensated by varying the depression. Therefore in practice the wind speed
of 42km/h results in a much lower deviation of the curvature, probably no more
than 2 — 3%, which is tolerable.

A higher wind speed will start to affect the optical precision, but a detailed
study of the wind load is beyond the scope of this article.

The maximal distance from the mirror to the receiver is d = /132 + 9.92 =
16.3m, and the required receiver aperture width is

U = cd/ cos (arctan (9.9/13)) = 0.015 x 16.3/0.7956 = 0.31m .

It remains to be verified that the strength limits of the materials are not
exceeded even at the maximal curvature. For the glass sheet, the distance from
the extreme fibers to the neutral axis is e; = 5mm/2 = 2.5mm, hence the
maximal strain is

70GPa x ey /r = 6.TMPa ,

which is much less than the usual tensile strength of the glass (> 30M Pa).

For the reinforcing bar, the maximal strain is 200G Pa X e /r = 154M Pa.
So choosing a steel grade with yield strength greater than 350M Pa should be
enough.

4 A small LFR concentrator with 4 mirror strips

Small size LFR concentrators are important, because they are more adaptable to
various environments than big ones. With mirrors of static curvature, a minimal
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number of mirror strips is required, so the biggest problem for reducing the size
of the LFR concentrator is the narrowness of the mirrors. Narrow mirrors
imply increased overhead of mechanical and structural costs, hence the cost
effectiveness is reduced.

With mirrors of dynamic curvature, the number of mirror strips per receiver
can be significantly reduced, leading to wider mirrors and hence reduced cost.
Here we describe an example to show how this can be done.

The configuration is shown in Figure 9. The mirror width is W = 1m, and
the receiver height is 3.2m above the mirror field. We put a gap of 0.3m between
adjacent mirror strips, so that the total mirror field width is 4.9m.

Figure 9: A small LFR concentrator with 4 mirror strips

We use a glass sheet of 3mm for the mirror substrate. The minimal radius
of curvature is 2v/3.2%2 + 0.65%2 = 6.5m. It exercises a maximal curving strain of
T0GPa x 1.5mm/6.5m = 16 M Pa, which is acceptable, especially if tempered
glass is used. We have

Ey I, = 70GPa x 3% x 1000mm*/12 = 157.5Nm?

per meter of length.

The reinforcing bar is of thickness 1.5mm, having a distance of 10mm from
the extreme fibers to the neutral axis. The second moment of area is 200G Pa x
202 x 1.5mm*/12 = 200Nm?. Placing one bar at each 200mm of length, we get
R =5x200/157.54 1 = 7.35, and the maximal strain on the bar is 200G Pa x
10mm/6500mm = 308M Pa. Therefore, a grade of steel with yield strength
> 600M Pa is preferred.

As in the preceding section, we find that the maximal depression in the
depression chamber is 14mbar.

12



The wide mirror leads to an optical aberration when it is not perpendicular
to the direction of the receiver, as shown in Figure 10. The reason is that in
this case, the different points on the mirror has unequal distance to the receiver,
while the curvature is constant. This aberration is inversely proportional to the
square of the ratio of mirror-to-receiver-distance versus mirror-width. For a
concentrator with 10 or more mirror strips, this aberration is negligeable. But
for concentrators with 4 or less mirror strips, this must be taken into account.

Figure 10: Optical aberration due to unequal distances to the receiver

An easy geometric study shows that the worst case occurs when the normal
line of the mirror is at 45° towards the receiver, in which case we have |u; —us| ~
0.53W, and |ug — ug| ~ 0.53W x gW/d = 0.0937W?2/d. For our concentrator,
the worst case occurs for the two outer mirror strips with d = v/3.22 +1.952 =
3.75m, hence |ug — uf| ~ 0.025W = 2.5¢m.

Again taking ¢ = 0.015 as in (1), and as 8 = arctan (2.45/3.2) = 37.4°, the
horizontal aperture width of the receiver should be

U = (2.5¢m + 0.015 x 375¢m) / cos (8) = 10.2em .

With respect to the mirror width of 4m, the nominal concentration ratio is
39 times. This is slightly better than the concentrator with static mirrors in
Section 1, without the important intercept loss.

If secondary reflectors are incorporated in the receiver [12], the emitting
absorber width can be reduced to about 7c¢m, corresponding to a nominal con-
centration ratio of 57 times. This is very satisfactory for most applications.

Efforts to further reduce the size of the concentrator and the number of
mirror strips per receiver meet with two difficulties. A lower receiver puts
more strain to the mirror materials (glass and steel bar), that may exceed their
strength limit. And the optical aberration due to unequal distance from points
on the mirror to the receiver limits the ratio d/W. Solutions do exist, but these

13



are beyond the scope of this article. We expect to return to this subject in a
later occasion.

5 Comparing with mirrors of static curvature

If we multiply by 4 the size of the example concentrator in Section 1, we get
a concentrator with a total mirror width of 16m and a receiver height of 10m.
The optimal receiver aperture width becomes 0.28W = 0.45m.

This can be compared with the example concentrator using mirrors of dy-
namic curvature in Section 3. We have seen that for this case the aperture width
is 0.31m = 0.19W, with no intercept loss due to the variation of focal length.
Note that this width would be slightly smaller if the height of the receiver was
not lifted to 13m.

According to the dotted line in Figure 3, the performance gain of the latter,
in intercept loss and thermal loss of the receiver, amounts to 12%.

For the cost comparison, it is difficult to get precise cost information, so we
just give some rough estimations.

The mirrors of dynamic curvature reduces the size of the receiver by one
third, with a corresponding cost reduction estimated to one fifth. If the cost
of the receiver represents 20% of the total cost of the concentrator, the cost
reduction amounts to 4% of that of the concentrator.

If we force the LFR concentrator with mirrors of static curvature to use a
receiver with the same width 0.19W as for the case of dynamic curvature, Figure
3 shows an intercept miss of C' = 15%. This is at the same level of the sum of
the intercept loss and the cost difference for the optimal case above.

Let G be the total amount of optical energy received by the receiver, H be the
thermal loss by the receiver as well as the fluid circuit outside the concentrator.
H depends on the operational parameters of the concentrator, but a typical
value is H = 0.15G.

Now for a concentrator with given size, the value of H does not depend on
the type of the mirrors. So the net output of the concentrator is G — H = 0.85G
for the case of dynamic curvature, while it is G — H — C = 0.7G for the case of
static curvature. And the gain in performance of the former over the latter is
0.85/0.7 — 1 = 21%.

On the side of the cost, the main difference between the two methods is
with the mirrors. For mirrors with static curvature, the process of forming the
precise curvature is a very special one, whose cost is a non-negligeable part of
the total cost, even if the curvature is formed using the elasticity of the glass
[7], although we lack data for a precise estimation of this cost.

For mirrors with dynamic curvature, first they need the enclosing case at
the back to form the depression chamber. But this case replaces the rigidifying
structure at the back of the mirror, with comparable cost. The reinforcing bars
at the back of the mirror are easy to produce and are of very limited cost.

The sealing of the depression chamber represents a special technical require-
ment, whose cost is to be compared with the formation of the curvature for
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mirrors with static curvature. Our conjecture is that this comparison is favor-
able for mirrors with dynamic curvature, but this needs confirmation from the
industrial side.

An electric fan or air pump is needed to maintain the depression. Most
small DC fan having insufficient static pressure specification, an air pump with
specifications similar to that used for an aquarium can be selected. For a mirror
strip whose surface area exceeds 10m? in general, the cost of the pump and
its control circuitry is negligeable. As there is little air flux, the air pump
consumes only a few watts and is only turned on when needed, so that its power
consumption represents only a fraction of a percentage point of the electricity
that the solar concentrator can generate.

For solar concentrators with a size smaller than the above, the mirror of
dynamic curvature gives an extra cost advantage due to the fact that the number
of mirror strips per receiver can be reduced to 6 or 8 without noticeable drop in
performance, against a minimum of 10 or 12 for mirrors with static curvature.
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