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1. Introduction

The celebrated classical nonlinear shallow water equations were derived in 1871 by A.J.C.
de Saint-Venant [14]. Currently these equations are widely used in practice and one can

find thousands of publications devoted to the applications, validations and numerical solutions
of these equations [24, 25, 37].

The interaction of surface waves with mild or tough bottoms has always attracted the par-

ticular attention of researchers [4, 12, 23, 39]. There are however few studies which attempt to

include the bottom curvature effect into the classical Saint-Venant [14, 47] or Savage–Hutter1

[27, 43] equations. One of the first studies in this direction is perhaps due to Dressler

[16]. Much later, this research was pursued almost in the same time by Berger, Keller,

Bouchut and their collaborators [7, 10, 31]. We note that all these authors used some vari-
ants of the asymptotic expansion method. Recently, the model proposed by Dressler was

validated in laboratory experiments [15]. The present study is a further attempt to improve
the classical Saint-Venant equations by including a better representation of the bottom shape.

The Saint-Venant equations are derived under the assumption of a hydrostatic pressure

field, resulting in a non-dispersive system of equations. Many non-hydrostatic improved
models have long been proposed, see [36, 57] for reviews. These Boussinesq-like equations
are dispersive (i.e. , the wave speed depends on the wavelength) and involve (at least) third-

order derivatives. Although these models capture more physical effects than the classical
Saint-Venant shallow water equations, they have several drawbacks. First, the dispersive
effects are often negligible for very long waves such as tsunamis and tide waves. Second,

the higher-order derivatives introduce stiffness into the equations and thus their numerical
resolution is significantly more involved and costly than for the Saint-Venant equations. Third,
the Boussinesq-like equations are not hyperbolic and, unlike the Saint-Venant equations, the

method of characteristics cannot be employed (unless the operators are splitted, e.g. [9]).
Therefore, it is not surprising that the dispersive shallow water models are not systematically
used in ocean modelling.

In presence of a varying bathymetry, the shallow water equations are derived under the
assumption that the bottom variations are very weak. However, even for very long surface
waves, significant variations of the bathymetry can play an important role in the wave prop-

agation. These bottom slope effects can be even more important when the wave travels over
many oscillations of the seabed, due to the accumulation of bottom slope influences. There-
fore, even for a shallow water long waves model, it is important to take into account properly

the significant bottom variations [12]. In this article, we present a modification of the Saint-
Venant equations in presence of a seabed of significant variations. This model is derived from
a variational principle, which is a powerful method to derive approximations that cannot be

obtained from more classical asymptotic expansions.
In the theory of water waves, variational principles are generally used together with small

parameter expansions. Doing so, the approximations derived are identical to the one obtained

from asymptotic expansions directly used into the equations. Thus, the only advantage of
a variational method is elegance and simplified derivations. However, variational methods
are much more powerful than that and approximations can also be obtained without relying

1The Savage–Hutter equations are usually posed on inclined planes and they are used to model various

gravity driven currents, such as snow avalanches [3].
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on asymptotic expansions. This is specially useful when no obvious small parameter can be

identified in the problem at hands.
Indeed, variational methods have been more popular in Physics [6], especially in Quantum

Mechanics [42] than in Fluid Mechanics where the majority of approximate model derivations

use the perturbation-type techniques. The main reason for this discrepancy comes probably
from the fact that in most problems of Quantum Mechanics a small parameter cannot be sim-
ply identified (roughly speaking everything scales with the Planck constant h̵). Consequently,

physicists had to develop alternative methods based on the guess of the solution structure,
translated into the mathematical language as the so-called solution’s ansatz. For example, a
particularly good guess of the ansatz was made by R. Laughlin [34] for the quantum Hall
effect, which was distinguished 15 years later by the Nobel Prize in Physics in 1998.

Here, we adopt the same philosophy applying it to the long water waves propagating over
a seabed with significant variations. Namely, the shallow water ansatz from [13] is addition-
ally constrained to respect the bathymetry variations in space and time. Then, applying

the variational principle, we arrive naturally to some modified Saint-Venant (mSV) equa-
tions. These mSV equations, like the classical Saint-Venant equations, are hyperbolic and
can be solved with similar techniques, that is an interesting feature in the prospect of integra-

tion/modification of existing operational codes. The derivation of mSV equations presented
below were communicated by the same authors in a short note announcing the main results
[17]. In the present study, we investigate deeper the properties of the proposed mSV system

along with its solutions through analytical and numerical methods. We specially focus on
some predictions of interest for ocean modelling, in particular the fact that the waves are
slowed down by the seabed slope.

This article is organised as follows. After some introductory remarks, the paper begins
with the derivation and discussion of some properties of the modified Saint-Venant (mSV)
equations in Section 2. Then, we investigate the hyperbolic structure and present a finite

volume scheme in Section 3. Several numerical results are shown in Section 4. Finally, some
main conclusions and perspectives are outlined in the last Section 5.

2. Mathematical model

Consider an ideal incompressible fluid of constant density ρ. The horizontal independent

variables are denoted by x = (x1, x2) and the upward vertical one by y. The origin of the
Cartesian coordinate system is chosen such that the surface y = 0 corresponds to the still
water level. The fluid is bounded below by the bottom at y = −d(x, t) and above by the
free surface at y = η(x, t). Usually, we assume that the total depth h(x, t) ≡ d(x, t) + η(x, t)
remains positive h(x, t) ⩾ h0 > 0 at all times t ∈ [0, T ]. The sketch of the physical domain
Ω × [−d, η], Ω ⊆ R2 is shown in Figure 1.

Traditionally in water wave modeling the assumption of flow irrotationality is also adopted.

Under these constitutive hypotheses, the governing equations of the classical water wave
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Figure 1. Definition sketch of the fluid domain.

problem are [48]:

∇
2φ + ∂ 2

y φ = 0, (x, y) ∈ Ω × [−d, η], (2.1)

∂tη + (∇φ) ⋅ (∇η) − ∂yφ = 0, y = η(x, t), (2.2)

∂tφ + 1

2
∣∇φ∣2 + 1

2
(∂yφ)2 + gη = 0, y = η(x, t), (2.3)

∂td + (∇d) ⋅ (∇φ) + ∂yφ = 0, y = −d(x, t), (2.4)

where φ is the velocity potential (by definition, u = ∇φ and v = ∂yφ), g > 0 is the accelera-

tion due to gravity and ∇ = (∂x1
, ∂x2
) denotes the gradient operator in horizontal Cartesian

coordinates.
The assumptions of fluid incompressibility and flow irrotationality lead to the Laplace

equation (2.1) for the velocity potential φ(x, y, t). The main difficulty of the water wave
problem lies on the boundary conditions. Equations (2.2) and (2.4) express the free-surface
kinematic condition and bottom impermeability, respectively, while the dynamic condition
(2.3) expresses the free surface isobarity.

It is well-known that the water wave problem (2.1) – (2.4) possesses several variational
structures [11, 35, 41, 56, 59]. Recently, we proposed a relaxed Lagrangian variational principle
which allows much more freedom in constructing approximations compared to the classical

formulations. Namely, the water wave equations can be obtained as Euler–Lagrange equations
of the functional ∭ L d2xdt involving the Lagrangian density [13]:

L = (∂tη + µ̃ ⋅ ∇η − ν̃) φ̃ + (∂td + µ̌ ⋅ ∇d + ν̌) φ̌ − 1

2
g η2

+ ∫ η

−d
[µ ⋅u − 1

2
u
2 + νv − 1

2
v2 + (∇ ⋅µ + ∂yν)φ ] dy, (2.5)

where over ‘tildes’ and ‘wedges’ denote, respectively, quantities computed at the free surface
y = η(x, t) and at the bottom y = −d(x, t) (we shall also denote below with ‘bars’ the quantities
averaged over the water depth); {u, v,µ, ν} being the horizontal velocity, vertical velocity

and associated Lagrange multipliers, respectively. The last two additional variables {µ, ν}
are called the pseudo-velocities. They formally arise as Lagrange multipliers associated to
the constraints u = ∇φ, v = φy. However, once these variables are introduced, the ansatz can
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be chosen regardless their initial definition, i.e. , it is not obligatory to choose an ansatz such

that the relations µ = u = ∇φ, for example, are exactly satisfied. The advantage of the relaxed
variational principle (2.5) consists in the extra freedom for constructing approximations.

2.1. Constrained shallow water ansatz

In order to simplify the full water wave problem, we choose some approximate but physically
relevant representations of all dependent variables. In this study, we choose a simple shallow

water ansatz, which is a velocity field and velocity potential independent of the vertical
coordinate y such that

φ ≈ φ̄(x, t), u = µ ≈ ū(x, t), v = ν ≈ v̌(x, t), (2.6)

where ū(x, t) is the depth-averaged horizontal velocity and v̌(x, t) is the vertical velocity at
the bottom. In this ansatz, we take for simplicity the pseudo-velocities to be equal to the

velocity field u = µ, v = ν. However, in other situations they can differ (see [13] for more
examples).

Physically, the ansatz (2.6) means that we are considering a so-called columnar flow [38],

which is a sensible model for long waves in shallow water, as long as their amplitudes are not
too large. Mathematically, the ansatz (2.6) implies that the vertical variation of the velocity
field does not contribute (i.e. , is negligible) to the Lagrangian (2.5). Thus, with the ansatz

(2.6), the Lagrangian density (2.5) becomes

L = (∂th + ū ⋅ ∇h + h∇ ⋅ ū) φ̄ − 1

2
g η2 + 1

2
h (ū2 + v̌2), (2.7)

where we introduced the total water depth h = η + d.
Since we are considering a columnar flow model, each vertical water column is viewed as

moving somehow like a rigid body. In presence of bathymetry variations, the columnar flow

paradigm then yields that the fluid vertical velocity must be equal to the one at the bottom,
because the bottom is impermeable. Thus, we require that the fluid particles follow the
bottom profile, i.e. ,

v̌ = −∂t d − ū ⋅ ∇d, (2.8)

this identity being the bottom impermeability condition expressed with the ansatz (2.6).

Remark 1. Note that for ansatz (2.6) the horizontal vorticity ω and the vertical one ζ are
given by:

ω = (∂x2
v̌ , −∂x1

v̌), ζ = ∂x1
ū2 − ∂x2

ū1.

Consequently the flow is not exactly irrotational in general. It will be confirmed below one
more time when we establish the connection between ū and ∇φ̄.

After substitution of the relation (2.8) into the Lagrangian density (2.7), the Euler–Lagrange
equations yield:

δū ∶ 0 = ū − ∇φ̄ − v̌∇d, (2.9)

δφ̄ ∶ 0 = ∂t h + ∇ ⋅ [h ū ], (2.10)

δη ∶ 0 = ∂t φ̄ + g η + ū ⋅ ∇φ̄ − 1

2
(ū2 + v̌2). (2.11)
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Taking the gradient of (2.11) and eliminating of φ̄ from (2.9) gives us the system of governing

equations:

∂t h + ∇ ⋅ [h ū ] = 0, (2.12)

∂t [ ū − v̌∇d ] + ∇ [g η + 1

2
ū
2 + 1

2
v̌2 + v̌ ∂td ] = 0, (2.13)

together with the auxiliary relations

ū = ∇φ̄ + v̌∇d = ∇φ̄ − ∂td + (∇φ̄) ⋅ (∇d)
1 + ∣∇d∣2 ∇d, (2.14)

v̌ = − ∂t d − ū ⋅ ∇d = − ∂td + (∇φ̄) ⋅ (∇d)
1 + ∣∇d∣2 . (2.15)

Hereafter, every times the variables ū and v̌ appear in equations, it is always assumed that
they are defined by the relations (2.14)–(2.15).

Remark 2. The classical irrotational nonlinear shallow water or Saint-Venant equations
[14, 47] can be recovered by substituting v̌ = 0 into the last system:

∂t h + ∇ ⋅ [h ū ] = 0,

∂t ū + ∇ [g η + 1

2
ū
2 ] = 0,

where ū = ∇φ̄.

2.2. Properties of the new model

From the governing equations (2.12), (2.13) one can derive an equation for the horizontal
velocity ū:

∂t ū + 1

2
∇(ū2) + g∇η = γ∇d + ū ∧ (∇v̌ ∧∇d), (2.16)

where γ is the vertical acceleration at the bottom defined as:

γ ≡ d v̌

dt
= ∂t v̌ + (ū ⋅ ∇) v̌. (2.17)

Remark 3. Note that in (2.16) the last term on the right-hand side cancels out for two-
dimensional waves ( i.e. , one horizontal dimension). It can be seen from the following ana-
lytical representation which degenerates to zero in one horizontal dimension:

ū ∧ (∇v̌ ∧∇d) = (∇v̌) (ū ⋅ ∇d) − (∇d) (ū ⋅ ∇v̌).
This property has an interesting geometrical interpretation since ū∧ (∇v̌∧∇d) is a horizontal
vector orthogonal to ū and thus vanishing for two-dimensional waves.

Defining the depth-averaged total (kinetic plus potential) energy density E together with
the ansatz (2.6), i.e. ,

E = ∫ η

−d
[ u2 + v2

2
+ g y ]dy ≈ h

ū
2 + v̌2

2
+ g

η2 − d2
2

, (2.18)

and using (2.14)–(2.15), after some algebra, one derives the energy equation

∂t E + ∇ ⋅ [E ū + 1

2
g h2 ū ] = −(g + γ)h∂td. (2.19)

Obviously, the source term on the right-hand side vanishes if the bottom is fixed d = d(x) or,
equivalently, if ∂td = 0.
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The mSV equations (2.9)–(2.11) possess a Hamiltonian structure with canonical variables

h and φ̄, i.e. ,
∂ h

∂t
= δH

δφ̄
,

∂ φ̄

∂t
= −δH

δh
,

where the Hamiltonian H is defined as

2H = ∫ {g(h − d)2 − gd2 + h∣∇φ̄∣2 − h [∂td + (∇φ̄) ⋅ (∇d) ]2
1 + ∣∇d∣2 } d2x. (2.20)

One can easily check, after computing the variations, that the Hamiltonian (2.20) yields

∂t h = −∇ ⋅ [h∇φ̄ − ∂td + (∇φ̄) ⋅ (∇d)
1 + ∣∇d∣2 h∇d] , (2.21)

∂t φ̄ = − g (h − d) − ∣∇φ̄∣2
2

+ [∂td + (∇φ̄) ⋅ (∇d) ]2
2 + 2 ∣∇d∣2 , (2.22)

which are equivalent to the system (2.10)–(2.11) after introduction of the auxiliary variables
ū and v̌ defined in (2.14) and (2.15).

Remark 4. If we rewrite the Hamiltonian (2.20) in the following equivalent form:

2H = ∫ { g η2 − g d2 + h ū2 + h v̌2 + 2h v̌ ∂td} d2x, (2.23)

one can see that the Hamiltonian density is actually the physical energy density E if the bottom
is static ( i.e. , if ∂td = 0), but these two quantities are different if the bottom moves. In other
words, the Hamiltonian is the energy only if there is no external input of energy into the
system. Note also that the Hamiltonian structure of the classical Saint-Venant equations can

be recovered substituting v̌ = 0 into the last Hamiltonian (2.23):

2H0 = ∫ { g η2 − g d2 + h ū2 } d2x,
where ū = ∇φ̄

2.3. Steady solutions

We consider here the two-dimensional case (i.e. , one horizontal dimension) in order to
derive a closed form solution for a steady state flow over a general bathymetry. We assume
the following upstream conditions at x→ −∞:

η → 0, d → d0, ū → u0 ⩾ 0.

Physically, these conditions mean that far upstream we consider a uniform current over a
horizontal bottom. The mass conservation in steady condition yields

h ū = d0 u0,

while the momentum conservation equation becomes

g h + 1

2
ū2 [ 1 + (∂xd)2 ] = g d0 + 1

2
u2

0 .

The last two relations yield the following cubic equations for the total water depth (with
the dimensionless height Z = h/d0 > 0 and the Froude number Fr = u0/√gd0 ⩾ 0)

G(Z) ≡ Z3 − (1 + 1

2
Fr 2 )Z2 + 1

2
Fr2 [1 + (∂xd)2 ] = 0. (2.24)
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Note that G(0) > 0 for all Fr > 0, G has a maximum at Z = 0 and a minimum at Z = Z1 =(2 +Fr 2)/3. Therefore, (2.24) has two positive solutions if G(Z1) < 0, one positive solution if
G(Z1) = 0, and no positive solutions if G(Z1) > 0. Equation (2.24) has always a real negative
root which is of no interest for obvious physical reasons.

If G(Z1) < 0, the two positive solutions may be presented as

Z+ = [2√A/3 cos(1
3
arccos (−3−1/2BA−3/2) − 2

3
π)]−1 ,

and

Z− = [2√A/3 cos(1
3
arccos (−3−1/2BA−3/2))]−1 ,

where

A ≡ 1 + 2Fr−2

1 + (∂xd)2 ⩾ 0, B ≡ 9Fr−2

1 + (∂xd)2 ⩾ 0.

We note that Z− < Z+. The root Z = Z+ corresponds to the subcritical regime, while Z = Z−
corresponds to a supercritical regime. For the special case Fr = 1, we have Z+ > 1 and Z− < 1.

If G(Z1) = 0, for a given Froude number Fr, there is only one absolute value of the slope
for which this identity is satisfied, that is

(∂xd)2 = (Fr2 − 1)2 (Fr2 + 8) /27Fr2. (2.25)

For instance, if ∂xd = 0 then G(Z1) = 0 if and only if Fr = 1.
Remark 5. It is straightforward to derive a similar equation for steady solutions to the

classical Saint-Venant equations

Z3 − (1 + 1

2
Fr 2 )Z2 + 1

2
Fr 2 = 0.

The last relation can be also obtained from equation (2.24) by taking ∂xd = 0. Consequently,

we can say that steady solutions to classical Saint-Venant equations do not take into account
the bottom slope local variations.

In order to illustrate the developments made above, we compute a steady flow over a bump.
The bottom takes the form

d(x) = d0 − ab−4 (x2 − b2 )2H(b2 − x2),
where H(x) is the Heaviside step function [1], a and b being the bump amplitude and its
half-length, respectively. The values of various parameters are given in Table 1. We consider
here for illustrative purposes the supercritical case for the classical and new models. The

result are shown on Figure 2 where some small differences can be noted with respect to the
classical Saint-Venant equations.

3. Numerical methods

In this Section we discuss some properties of the system (2.12), (2.13) and then, we propose
a space discretization procedure based on the finite volume method along with a high-order
adaptive time stepping.
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Parameter Value

Gravity acceleration g: 1ms
−2

Undisturbed water depth d0: 1m

Deformation amplitude a: 0.5m

Half-length of the uplift area b: 2.5m

Upstream flow speed, u0: 2.0ms
−1

Table 1. Values of various parameters used for the steady state computation.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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x [m]

η
(x
)
[m

]

Supercritical flow with Fr = 2

 

 

Bottom shape

SV

mSV

Figure 2. Supercritical steady state solutions over a bump for the Froude number

Fr = 2. Comparison between the classical and modified Saint-Venant equations.

3.1. Hyperbolic structure

From now on, we consider equations (2.12), (2.13) posed in one horizontal space dimension

(two-dimensional waves) for simplicity:

∂t h + ∂x [h ū ] = 0, (3.1)

∂t [ ū − v̌ ∂x d ] + ∂x [ g η + 1

2
ū2 + 1

2
v̌2 + v̌ ∂t d ] = 0. (3.2)

In order to present the equations in a more suitable conservative form, we will introduce the

potential velocity variable U = ∂xφ̄. From equation (2.9) it is straightforward to see that U

satisfies the relation

U = ū − v̌ ∂x d,

Depth averaged and vertical bottom velocities can be also easily expressed in terms of the

potential velocity U

ū = U − (∂td) (∂xd)
1 + (∂xd)2 , v̌ = −∂td + U ∂xd

1 + (∂xd)2 .
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Consequently, using this new variable equations (3.1), (3.2) can be rewritten as a system of

conservation laws

∂t h + ∂x [h U − (∂td) (∂xd)
1 + (∂xd)2 ] = 0,

∂tU + ∂x [ g (h − d) + 1

2

U2 − 2U (∂td) (∂xd) − (∂td)2
1 + (∂xd)2 ] = 0.

For the sake of simplicity, we rewrite the above system in the following quasilinear vectorial

form:

∂tw + ∂x f(w) = 0, (3.3)

where we introduced the vector of conservative variables w and the advective flux f(w):
w = ⎛⎝hU

⎞⎠ , f(w) =
⎛⎜⎜⎜⎝

h
U − (∂td)(∂xd)

1 + (∂xd)2
g(h − d) + U2 − 2U(∂xd)(∂td) − (∂td)2

2 [1 + (∂xd)2]
⎞⎟⎟⎟⎠
.

The Jacobian matrix of the advective flux f(w) can be easily computed:

A(w) = ∂ f(w)
∂w

= 1

1 + (∂xd)2
⎡⎢⎢⎢⎣
U − (∂td)(∂xd) h

g (1 + (∂xd)2) U − (∂td)(∂xd)
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
ū

h

1 + (∂xd)2
g ū

⎤⎥⎥⎥⎥⎥⎦
.

The matrix A(w) has two distinct eigenvalues:

λ± = U − (∂td) (∂xd)
1 + (∂xd)2 ± c = ū ± c, c2 ≡ g h

1 + (∂xd)2 .
Remark 6. Physically, the quantity c represents the phase celerity of long gravity waves. In

the framework of the Saint-Venant equations, it is well known that c =√gh. Both expressions

differ by the factor 1/√1 + (∂xd)2. In our model, the long waves are slowed down by strong

bathymetric variations since fluid particles are constrained to follow the seabed.

Right and left eigenvectors coincide with those of the Saint-Venant equations and they are
given by the following matrices

R = ⎡⎢⎢⎢⎣
−h h√
gh

√
gh

⎤⎥⎥⎥⎦ , L = 1

2

⎡⎢⎢⎢⎣
−h−1 (gh)−1/2
h−1 (gh)−1/2

⎤⎥⎥⎥⎦ .
Columns of the matrix R constitute eigenvectors corresponding to eigenvalues λ− and λ+

respectively. Corresponding left eigenvectors are conventionally written in lines of the matrix

L.

3.2. Group velocity

We would like to compute also the group velocity in the framework of the modified Saint-

Venant equations. This quantity is traditionally associated to the wave energy propagation
speed [48, 19]. Recall, that in the classical linearized shallow water theory, the phase c and
group cg velocities are equal [48]:

c = ω

k
= √gh, cg = dω

dk
= √gh,
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where ω = k√gh is the dispersion relation for linear long waves, k being the wavenumber and

ω being the angular frequency.
In order to assess the wave energy propagation speed we will consider a quasilinear system

of equations composed of mass and energy conservation laws:

∂th + ∂x [h U − (∂xd)(∂td)
1 + (∂xd)2 ] = 0,

∂tE + ∂x [ (E + 1

2
gh2)U − (∂xd)(∂td)

1 + (∂xd)2 ] = −(g + γ)h∂td,
where γ is defined in (2.17) and E is the total energy considered already above (2.19):

E = h
ū2 + v̌2

2
+ g (η2 − d2)

2
= h

2

U2 + (∂td)2
1 + (∂xd)2 +

g (h2 − 2hd)
2

.

The last formula can be inverted to express the potential velocity in terms of the wave energy:

U2 = [1 + (∂xd)2 ] ( 2E
h
− gh + 2gd) − (∂td)2.

In the spirit of computations performed in the previous section, we compute the Jacobian
matrix J of the mass-energy advection operator:

J = 1

1 + (∂xd)2
⎡⎢⎢⎢⎢⎢⎢⎣

U − (∂xd)(∂td) + h
∂ U

∂h
h
∂ U

∂E

gh[U − (∂xd)(∂td)] + (E + 1

2
gh2)∂ U

∂h
U − (∂xd)(∂td) + (E + 1

2
gh2)∂ U

∂E

⎤⎥⎥⎥⎥⎥⎥⎦
,

where partial derivatives are given here:

∂ U

∂h
= − [1 + (∂xd)2 ] gh2 + 2E

2h2 U
,

∂ U

∂E
= 1 + (∂xd)2

hU
.

Computation of the Jacobian J eigenvalues leads the following expression for the group velocity
of the modified Saint-Venant equations:

c2g = g h

1 + (∂xd)2
U − (∂xd)(∂td)

U
.

The last formula is very interesting. It means that in the moving bottom case, the group
velocity cg is modified and does not coincide anymore with the phase velocity c2 = gh[1 +(∂xd)2]−1. This fact represents another new and non-classical feature of the modified Saint-
Venant equations. The relative difference between phase and group velocities squared is

c2 − c2g

c2
= (∂xd) (∂td)

U
,

which is not necessarily always positive. When it is negative, the energy is injected into the
system at a higher rate than can be spread, thus leading to energy accumulation and possibly
favoring the breaking events.
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3.3. Finite volume scheme

Let us fix a partition of R into cells (or finite volumes) Ci = [xi− 1

2

, xi+ 1

2

] with cell center

xi = 1

2
(xi− 1

2

+ xi+ 1

2

), i ∈ Z. Let ∆xi denotes the length of the cell Ci. Without any loss of

generality we assume the partition to be uniform, i.e. , ∆xi =∆x, ∀i ∈ Z. The solution w(x, t)
is approximated by discrete values and, in order to do so, we introduce the cell average of w
over the cell Ci, i.e. ,

w̄i(t) ≡ 1

∆h
∫
Ci
w(x, t)dx.

A simple integration of (3.3) over the cell Ci leads the following exact relation

d w̄i

dt
+ f (w(xi+ 1

2

, t)) − f (w(xi− 1

2

, t))
∆x

= 0.

Since the discrete solution is discontinuous at cell the interfaces xi+ 1

2

, i ∈ Z, the heart of the

matter in the finite volume method is to replace the flux through cell faces by the so-called
numerical flux function

f (w(xi± 1

2

, t)) ≈ Fi± 1

2

(w̄L
i± 1

2

, w̄R
i± 1

2

) ,
where w̄

L,R

i± 1

2

are reconstructions of conservative variables w̄ from left and right sides of each

cell interface [5, 54]. The reconstruction procedure employed in the present study is described
below.

In order to discretise the advective flux f(w), we use the so-called FVCF scheme [26]

F(v,w) = f(v) + f(w)
2

− S(v,w) f(w) − f(v)
2

.

The first part of the numerical flux F(v,w) is centered, while the second part is the upwinding
introduced according to local waves propagation directions

S(v,w) = sign (A(v +w
2
)) , sign(A) = R ⋅ diag(s−, s+) ⋅L, s± ≡ sign(λ±).

After some simple algebraic computations one can find expressions for sign matrix S coeffi-

cients

S = 1

2

⎡⎢⎢⎢⎣
(s+ + s−) (s+ − s−)√h/g(s+ − s−)√g/h (s+ + s−)

⎤⎥⎥⎥⎦ ,
all coefficients being evaluated at the average state of left and right face values.

Taking into account the developments presented above, the semi-discrete scheme takes the
form

d w̄i

dt
+ Fi+ 1

2

(w̄L
i+ 1

2

, w̄R
i+ 1

2

) −Fi− 1

2

(w̄L
i− 1

2

, w̄R
i− 1

2

)
∆x

= 0. (3.4)

The discretization in time of the last system of ODEs is discussed in Section 3.5. Meanwhile,
we present the employed reconstruction procedure.
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3.4. High-order reconstruction

In order to obtain a higher-order scheme in space, we need to replace the piecewise constant
data 7by a piecewise polynomial representation. This goal is achieved by various so-called
reconstruction procedures, such as MUSCL TVD [33, 53], UNO [30], ENO [29], WENO

[58] and many others. In our previous study on Boussinesq-type equations [21], the UNO2
scheme showed a good performance with low dissipation in realistic propagation and runup
simulations. Consequently, we retain this scheme for the discretization of the modified Saint-

Venant equations.

Remark 7. In TVD schemes, the numerical operator is required (by definition) not to in-
crease the total variation of the numerical solution at each time step. It follows that the

value of an isolated maximum may only decrease in time which is not a good property for the
simulation of coherent structures such as solitary waves. The non-oscillatory UNO2 scheme,
employed in our study, is only required to diminish the number of local extrema in the numer-

ical solution. Unlike TVD schemes, UNO schemes are not constrained to damp the values of
each local extremum at every time step.

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic
interpolant Q(x) to a piecewise smooth function w(x) (see [30] for more details). On each

segment containing the face xi+ 1

2

∈ [xi, xi+1], the function Q(x) = qi+ 1

2

(x) is locally a quadratic

polynomial qi+ 1

2

(x) and wherever w(x) is smooth we have

Q(x) − w(x) = O(∆x3), dQ

dx
(x ± 0) − dw

dx
= O(∆x2).

Also Q(x) should be non-oscillatory in the sense that the number of its local extrema does
not exceed that of w(x). Since qi+ 1

2

(xi) = w̄i and qi+ 1

2

(xi+1) = w̄i+1, it can be written in the

form

qi+ 1

2

(x) = w̄i + di+ 1

2

(w) x − xi
∆x

+ 1

2
Di+ 1

2

w ⋅
(x − xi)(x − xi+1)

∆x2
,

where di+ 1

2

(w) ≡ w̄i+1 − w̄i and Di+ 1

2

v is closely related to the second derivative of the in-

terpolant since Di+ 1

2

v = ∆x2q′′
i+ 1

2

(x). The polynomial qi+ 1

2

(x) is chosen to be one the least

oscillatory between two candidates interpolating w(x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).
This requirement leads to the following choice of Di+ 1

2

v

Di+ 1

2

w ∶=minmod(Diw,Di+1w), Diw = w̄i+1 − 2w̄i + w̄i−1, Di+1w = w̄i+2 − 2w̄i+1 + w̄i,

and minmod(x, y) is the usual min mod function defined as:

minmod(x, y) = 1

2
[ sign(x) + sign(y) ] ×min(∣x∣, ∣y∣).

To achieve the second order O(∆x2) accuracy, it is sufficient to consider piecewise linear
reconstructions in each cell. Let L(x) denote this approximately reconstructed function which

can be written in the form

L(x) = w̄i + si (x − xi) /∆x, xi− 1

2

⩽ x ⩽ xi+ 1

2

.
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To make L(x) a non-oscillatory approximation, we use the parabolic interpolation Q(x) con-

structed below to estimate the slopes si within each cell

si = ∆x ×minmod( dQ
dx
∣
x=x−

i

,
dQ

dx
∣
x=x+

i

) .
In other words, the solution is reconstructed on the cells while the solution gradient is esti-

mated on the dual mesh as it is often performed in more modern schemes [5]. A brief summary
of the UNO2 reconstruction can be also found in [21].

3.5. Time stepping

We rewrite the semi-discrete scheme (3.4) as a system of ODEs:

∂t w̄ = L(w̄, t), w̄(0) = w̄0.

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine
method [8]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded
second-order method which is used to estimate the local error and, thus, to adapt the time

step size. Moreover, the Bogacki–Shampine method enjoys the First Same As Last (FSAL)
property so that it needs three function evaluations per step. This method is also implemented
in the ode23 function in Matlab [44]. A step of the Bogacki–Shampine method is given by

k1 = L(w̄(n), tn),
k2 = L(w̄(n) + 1

2
∆tnk1, tn +

1

2
∆t),

k3 = L(w̄(n)) + 3

4
∆tnk2, tn +

3

4
∆t),

w̄(n+1) = w̄(n) + ∆tn (29k1 + 1

3
k2 +

4

9
k3) ,

k4 = L(w̄(n+1), tn +∆tn),
w̄
(n+1)
2

= w̄(n) + ∆tn ( 4

24
k1 +

1

4
k2 +

1

3
k3 +

1

8
k4) .

Here w̄(n) ≈ w̄(tn), ∆t is the time step and w̄
(n+1)
2

is a second-order approximation to the

solution w̄(tn+1), so the difference between w̄(n+1) and w̄
(n+1)
2

gives an estimation of the local

error. The FSAL property consists in the fact that k4 is equal to k1 in the next time step,
thus saving one function evaluation.

If the new time step ∆tn+1 is given by ∆tn+1 = ρn∆tn, then according to H211b digital
filter approach [45, 46], the proportionality factor ρn is given by:

ρn = ( δ

εn
)β1 ( δ

εn−1
)β2

ρ−αn−1, (3.5)

where εn is a local error estimation at time step tn and constants β1, β2 and α are defined as

α = 1 /4, β1 = β2 = 1 /4p.
The parameter p is the order of the scheme (p = 3 in our case).

Remark 8. The adaptive strategy (3.5) can be further improved if we smooth the factor ρn
before computing the next time step ∆tn+1

∆tn+1 = ρ̂n∆tn, ρ̂n = ω(ρn).
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The function ω(ρ) is called the time step limiter and should be smooth, monotonically increas-

ing and should satisfy the following conditions

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice is suggested in [46]:

ω(ρ) = 1 + κarctan(ρ − 1
κ
) .

In our computations the parameter κ is set to 1.

4. Numerical results

The numerical scheme presented above has already been validated in several studies even
in the case of dispersive waves [21, 22]. Consequently, we do not present here the standard

convergence tests which can be found in references cited above. In the present Section we
show numerical results which illustrate some properties of modified Saint-Venant equations
with respect to their classical counterpart. In the sequel we consider only one-dimensional

case for simplicity. The physical domain will be also limited by wall-boundary conditions.
Other types of boundary conditions obviously could also be considered.

4.1. Wave propagation over oscillatory bottom

We begin the exposition of numerical results by presenting a simple test-case of a wave
propagating over a static but highly oscillatory bottom. Let us consider a one-dimensional
physical domain [−10,10] which is discretized into N = 350 equal control volumes. The
tolerance parameter δ in the time stepping algorithm is chosen to be 10−4. The initial condition

will be simply a bump localized near the center x = 0 and posed on the free surface with initial
zero velocity field

η0(x) = b sech2(κx), u0(x) = 0.

The bottom is given analytically by the function

d(x) = d0 + a sin(kx).
In other words, the bathymetry function d(x) consists of uniform level d0 which is perturbed
by uniform oscillations of amplitude a. Since the bathymetry is static, the governing equations
(3.1) and (3.2) are simplified at some point.

Hereafter, we fix two wavenumbers k1 and k2 (k1 < k2) and perform a comparison between
numerical solutions to the classical and modified Saint-Venant equations. The main idea
behind this comparison is to show the similarity between two solutions for mild bottoms and,

correspondingly, to highlight the differences for stronger gradients. The values of various
physical parameters used in numerical simulations are given in Table 2.

Several snapshots of the free surface elevation during the wave propagation test-case are

presented on Figures 3 – 9. The left image refers to the mild bottom gradient case (k1 = 2)
while the right image corresponds to the oscillating bottom (k2 = 6). Everywhere, the solid
blue line represents a solution to the modified Saint-Venant equations, while the dotted black

line refers to the classical solution. Numerical results on left images indicate that both
models give very similar results when bathymetry gradients are gentle. Two solutions are
almost indistinguishable to grahic resolutions, especially at the beginning. However, some
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Parameter Value

Initial wavenumber κ: 1m−1

Gravity acceleration g: 1ms
−2

Final simulation time T : 24 s

Initial wave amplitude b: 0.2m

Undisturbed water depth d0: 1m

Bathymetry oscillation amplitude a: 0.1m

Low bathymetry oscillation wavelength k1: 2m−1

High bathymetry oscillation wavelength k2: 6m−1

Table 2. Values of various parameters used for the wave propagation over an

oscillatory bottom test-case.
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Figure 3. Wave propagation over an oscillatory bottom, t = 2 s.

divergences are accumulated with time. At the end of the simulation some differences become

to be visible to the graphic resolution. On the other hand, numerical solutions on right
images are substantially different from first instants of the wave propagation. In accordance
with theoretical predictions (see Remark 6), the wave in mSV equations propagates with

speed effectively reduced by bottom oscillations. This fact explains a certain lag between two
numerical solutions in the highly oscillating case. We note that the wave shape is also different
in classical and improved equations. Finally, on Figure 10 we show the evolution of the local

time step during the simulation. It can be easily seen that the time adaptation algorithm very
quickly finds the optimal value of the time step which is then maintained during the whole
simulation. This observation is even more flagrant on the right image corresponding to the

highly oscillating case.
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Figure 4. Wave propagation over an oscillatory bottom, t = 5 s.
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Figure 5. Wave propagation over an oscillatory bottom, t = 9 s.

4.2. Wave generation by sudden bottom uplift

We continue to investigate various properties of the modified Saint-Venant equations. In

this section, we present a simple test-case which involves the bottom motion. More precisely,
we will investigate two cases of slow and fast uplifts of a portion of bottom. This simple
situation has some important implications to tsunami genesis problems [28, 52, 20].
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Figure 6. Wave propagation over an oscillatory bottom, t = 16 s.
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Figure 7. Wave propagation over an oscillatory bottom, t = 18 s.

The physical domain and discretization parameters are inherited from the last section. The
bottom is given by the following function:

d(x, t) = d0 − aT (t)H(b2 − x2)[(x
b
)2 − 1]2 , T (t) = 1 − e−αt,

where H(x) is the Heaviside step function [1], a is the deformation amplitude and b is the half-

length of the uplifting sea floor area. The function T (t) provides us a complete information
on the dynamics of the bottom motion. In tsunami wave literature, it is called a dynamic
scenario [28, 18, 32]. Obviously, other choices of the time dependence are possible. Initially
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Figure 8. Wave propagation over an oscillatory bottom, t = 20 s.
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Figure 9. Wave propagation over an oscillatory bottom, t = 24 s.

the free surface is undisturbed and the velocity field is taken to be identically zero. The values
of various parameter are given in Table 3.

Numerical results of the moving bottom test-case are shown in Figures 11–16. On all these

images the blue solid line corresponds to the mSV equations, while the black dashed line refers
to its classical counterpart. The dash-dotted line shows the bottom profile which evolves in
time as well.

First, we present numerical results (see Figures 11–12) corresponding to a relatively slow
uplift of a portion of the bottom (α1 = 2.0). There is a very good agreement between two
computations. We note that the amplitude of bottom deformation a/d = 0.25 is strong which
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Figure 10. Local time step size during the simulation of a wave propagating over

an oscillatory bottom test case.

Parameter Value

Slow uplift parameter α1: 2.0 s−1

Fast uplift parameter α2: 12.0 s−1

Gravity acceleration g: 1ms
−2

Final simulation time T : 5 s

Undisturbed water depth d0: 1m

Deformation amplitude a: 0.25m

Half-length of the uplift area b: 2.5m

Table 3. Values of various parameters used for the wave generation by a moving bottom.

explains some small discrepancies in Figure 12(a) between two models. This effect is rather

due to the bottom shape than to its dynamic motion.
Then we test the same situation but the bottom uplift is fast with the inverse characteristic

time α2 = 12.0. In this case the differences between two models are very flagrant. As it can

be seen in Figure 14, for example, the mSV equations give a wave with almost two times
higher amplitude. Some differences in the wave shape persist even during the propagation
(see Figure 16). This test-case clearly shows another advantage of the modified Saint-Venant

equations in better representation of the vertical velocity field.
On Figure 17 we show the evolution of the local time step adapted while solving the mSV

equations with moving bottom (up to T = 5 s). We can observe a behaviour very similar to

the result presented above (see Figure 10) for the wave propagation test-case.
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Figure 11. Slow bottom uplift test-case (α1 = 2).
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Figure 12. Slow bottom uplift test-case (α1 = 2).

4.3. Application to tsunami waves

Tsunami waves continue to pose various difficult problems to scientists, engineers and local
authorities. There is one question initially stemming from the Ph.D. thesis of C. Synolakis

[49]. On page 85 of his manuscript, one can find a comparison between a theoretical (NSWE)
and an experimental wavefront paths during a solitary wave runup onto a plane beach. In
particular, his results show some discrepancy whose importance was not completely recognized

until the wide availability of videos of the Tsunami Boxing Day 2004 [2, 40, 51]. In the same
line of thinking, we quote here a recent review by Synolakis and Bernard [50] which contains
a very interesting paragraph:
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Figure 13. Fast bottom uplift test-case (α2 = 12).
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Figure 14. Fast bottom uplift test-case (α2 = 12).

“In a video taken near the Grand Mosque in Aceh, one can infer that the
wavefront first moved at speeds less than 8 km h−1, then accelerated to 35
km h−1. The same phenomenon is probably responsible for the mesmerization

of victims during tsunami attacks, first noted in series of photographs of the
1946 Aleutian tsunami approaching Hilo, Hawaii, and noted again in countless
photographs and videos from the 2004 mega-tsunami. The wavefront appears

slow as it approaches the shoreline, leading to a sense of false security, it
appears as if one can outrun it, but then the wavefront accelerates rapidly as
the main disturbance arrives.”
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Figure 15. Fast bottom uplift test-case (α2 = 12).

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.5

0

0.5

x [m]

η
(x
,
t)

[m
]

Free surface elevation at t = 3.00

 

 

mSV

SV

Bathymetry

(a) t = 3.0 s

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.5

0

0.5

x [m]

η
(x
,
t)

[m
]

Free surface elevation at t = 5.00

 

 

mSV

SV

Bathymetry

(b) t = 5.0 s

Figure 16. Fast bottom uplift test-case (α2 = 12).

Since our model is able to take into account the local bottom slope into the wave speed
computation, we propose below a simple numerical setup which intends to shed some light

on possible mechanisms of the reported above wave front propagation anomalies. Consider a
one-dimensional domain [−20,20] with wall boundary conditions. This domain is discretized
into N = 4000 control volumes in order to resolve local bathymetry oscillations. The bottom

has a uniform slope which is perturbed on the left side (x < 0) by fast oscillations which model
the bottom “roughness”

d(x) = d0 − x tan(δ) + a [1 −H(x) ] sin(kx), (4.1)
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Figure 17. Local time step size evolution during the simulation of a wave

generation by moving bottom.

Parameter Value

Undisturbed water depth d0: 1m

Gravity acceleration g: 1ms
−2

Bottom slope tan(δ): 0.02

Oscillation amplitude a: 0.1m

Oscillation wavenumber k: 20m−1

Final simulation time T : 19 s

Solitary wave amplitude A: 0.3m

Solitary wave initial position x0: −12.0m

Table 4. Values of various physical parameters used for the wave propagation over

a sloping bottom.

where H(x) is the Heaviside function. The initial condition is a solitary wave moving right-
wards as it was chosen in [49]:

η0(x)
d(x0) = A sech2(1

2
κ(x − x0)) , u0(x) = c0 η0(x)

d(x0) + η0(x) ,
κd(x0) =

√
3A

1 +A
,

c2
0

g d(x0) = 1 + A.

This configuration aims to model a wave transition from rough to gentle bottoms. The values

of various physical parameters are given in Table 4.
Then, the wave propagation and transformation over the sloping bottom (4.1) was com-

puted using the classical and modified Saint-Venant equations. The wave front position was
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Figure 18. Wave front position computed with modified and classical Saint-Venant

equations.

measured along this simulation and the computation result is presented in Figure 18. The
slope of these curves represents physically the wave front propagation speed. Recall also that
the point x = 0 corresponds to the transition between rough and gentle regions of the sloping

beach.
As one can expect, the classical model does not really ‘see’ a region with bathymetry

variations, except from tiny oscillations. An observer situated on the beach, looking at the

upcoming wave modeled by the classical Saint-Venant equations, will not see any change in
the wave celerity. More precisely, the slope of the black dashed curve in Figure 18 is rather
constant up to the graphical resolution. On the other hand, one can see a drastic change in

the wave front propagation speed predicted by the mSV equations when the bottom variation
disappear.

The scenario we present in this section is only a first attempt to shed some light on the re-

ported anomalies in tsunami waves arrival time on the beaches. For instance, a comprehensive
study of P. Wessel [55] shows that the reported tsunami travel time is often exceeds slightly
the values predicted by the classical shallow water theory (see, for example, Figures 5 and 6

in [55]). This fact supports indirectly our theory. Certainly this mechanism does not apply to
laboratory experiments but it can be a good candidate to explain the wave front anomalies in
natural environments. The mechanism we propose is only an element of explanation. Further

investigations are needed to bring more validations to this approach.
We underline that the computational results rely on sound physical modeling without any

ad hoc phenomenological terms in the governing equations. Only an accurate bathymetry

description is required to take the full advantage of the mSV equations.
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5. Conclusions

In this study, we derived a novel non-hydrostatic non-dispersive model of shallow water type
which takes into account large bathymetric variations. Previously, some attempt was already

made in the literature to derive shallow water systems for arbitrary slopes and curvature [7,
10, 16, 31]. However, our study contains a certain number of new elements with respect to the
existing state of the art. Namely, our derivation procedure relies on a generalised Lagrangian

principle of the water wave problem [13] which allows easily the derivations of approximations
that cannot be obtained with more conventional asymptotic expansions. Indeed, we do not
introduce explicitly any small parameter and our approximation is made through the choice

of a suitable ansatz. Resulting governing equations have a simple form and physically sound
structure. Another new element is the introduction of arbitrary bottom time variations.

The proposed model is discretised with a finite volume scheme with adaptive time stepping

to capture the underlying complex dynamics. The performance of this scheme is then illus-
trated on several test cases. Some implications to tsunami wave modelling are also suggested
at the end of this study. For ocean modelling, the most interesting feature of the model is

perhaps the prediction of a wave slow down due to the bottom slope.
Among various perspectives, we would like to underline the importance of a robust runup

algorithm development using the current model. This research should shift forward the accu-

racy and our comprehension of a water wave runup onto complex shores [21, 23].
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