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MODIFIED ‘IRROTATIONAL’ SHALLOW WATER EQUATIONS

FOR SIGNIFICANTLY VARYING BOTTOMS

DENYS DUTYKH∗ AND DIDIER CLAMOND

Abstract. In the present study we propose a modified version of the nonlinear shallow

water (Saint-Venant) equations for irrotational surface waves in the case when the bottom

undergoes some significant variations in space and time. The model is derived from a

variational principle by choosing an appropriate shallow water ansatz and imposing some

constraints. Our derivation procedure does not explicitly involve any small parameter and

is straightforward. The novel system is a non-dispersive non-hydrostatic extension of the

classical Saint-Venant equations. We also propose a finite volume discretization of the

obtained hyperbolic system. Several test-cases are presented to highlight the added value

of the new model. Some implications to tsunami wave modeling are also discussed.
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1. Introduction

The celebrated classical nonlinear shallow water or Saint-Venant equations were derived
for the first time in 1871 by A.J.C. de Saint-Venant [18], an engineer working at École
Nationale des Ponts et Chaussées in France. Currently these equations are widely used
in practice and one can find many thousands of publications devoted to the applications,
validations and numerical solutions of these equations [2, 35, 36, 39, 75, 88].

Some important attempts have been also made to improve this model from physical
point of view. The main effort was payed on various dispersive extensions of shallow
water equations. The inclusion of dispersive effects resulted in a big family of the so-called
Boussinesq-type equations [22, 27, 32, 55, 58, 59, 61, 64]. Many other families of dispersive
wave equations have been proposed as well [15, 19, 21, 43, 57, 67, 81].

However, the interaction of the waves with mild or tough bottoms has always attracted
the particular attention of researchers [59, 6, 14, 34]. There are a few studies which
attempt to include the bottom curvature effect into the classical Saint-Venant [18, 72] or
Savage-Hutter1 [66, 42, 86] equations. One of the first studies in this direction is perhaps
due to Dressler [23]. Much later, this research was pursued almost in the same time
by Berger, Keller, Bouchut and their collaborators [10, 50, 12]. We note that all
these authors used some variants of the asymptotic expansion method. Recently, the
model proposed by Dressler was validated in laboratory experiments [20]. The present
study is a further attempt to improve the classical Saint-Venant equations by including a
better representation of the bottom shape. Moreover, as a derivation procedure we choose
a variational approach based on the relaxed Lagrangian principle [17]. The derivation
presented below was already communicated by the same authors in a short note announcing
the main results [26]. In this study we investigate deeper the properties of the proposed
system along with its solutions through analytical and numerical methods. The obtained
results may improve the modeling of various types of shallow water flows such as open
channel hydraulics [16], atmospheric and oceanic flows [62], waves in coastal areas [9, 5,
31, 32], and even dense snow avalanches [66, 48, 86].

The present article is organized as follows. After some introductory remarks, the paper
begins with the derivation and discussion of some properties of the modified Saint-Venant
(mSV) equations in Section 2. Then, we investigate the hyperbolic structure and present
a finite volume scheme in Section 3. Several numerical results are shown in Section 4.
Finally, some main conclusions are outlined in the last Section 5.

2. Mathematical model

Consider an ideal incompressible fluid of constant density ρ. The horizontal independent
variables are denoted by x = (x1, x2) and the upward vertical one by y. The origin of the
Cartesian coordinate system is chosen such that the surface y = 0 corresponds to the still
water level. The fluid is bounded below by the bottom at y = −d(x, t) and above by the free

1The Savage–Hutter equations are usually posed on inclined planes and they are used to model various

gravity driven currents, such as snow avalanches [4].
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Figure 1. Definition sketch.

surface at y = η(x, t). Usually, we assume that the total depth h(x, t) ≡ d(x, t) + η(x, t)
remains positive h(x, t) > h0 > 0 at all times t ∈ [0, T ]. The sketch of the physical domain
Ω× [−d, η], Ω ⊆ R

2 is shown on Figure 1.
Traditionally in water wave modelling the assumption of flow irrotationality is also

adopted. Under these constitutive hypotheses, the governing equations of the classical
water wave problem are [53, 73, 56, 84, 49]:

∇
2φ + ∂ 2

y φ = 0, (x, y) ∈ Ω× [−d, η], (2.1)

∂tη + (∇φ) · (∇η) − ∂yφ = 0, y = η(x, t), (2.2)

∂tφ + 1
2
|∇φ|2 + 1

2
(∂yφ)

2 + gη = 0, y = η(x, t), (2.3)

∂td + (∇d) · (∇φ) + ∂yφ = 0, y = −d(x, t), (2.4)

where φ is the velocity potential (by definition, u = ∇φ and v = ∂yφ), g > 0 is the
acceleration due to gravity and ∇ = (∂x1

, ∂x2
) denotes the gradient operator in horizontal

Cartesian coordinates.
The assumptions of fluid incompressibility and flow irrotationality lead to the Laplace

equation (2.1) for the velocity potential φ(x, y, t). The main difficulty of the water wave
problem lies on the boundary conditions. Equations (2.2) and (2.4) express the free-surface
kinematic condition and bottom impermeability, respectively, while the dynamic condition
(2.3) expresses the free surface isobarity.

It is well-known that the water wave problem (2.1) – (2.4) possesses several variational
structures [65, 83, 54, 87, 13]. Recently, we proposed a relaxed Lagrangian variational
principle which allows much more freedom in constructing approximations compared to
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the classical formulations. Namely, the water wave equations can be obtained as Euler–
Lagrange equations of the functional

∫∫∫

L d2
x dt involving the Lagrangian density [17]:

L = (∂tη + µ̃ · ∇η − ν̃) φ̃ + (∂td+ µ̌ · ∇d+ ν̌) φ̌ − 1
2
g η2

+

∫ η

−d

[

µ · u− 1
2
u

2 + νv − 1
2
v2 + (∇ · µ+ ∂yν)φ

]

dy, (2.5)

where over ‘tildes’ and ‘wedges’ denote, respectively, quantities computed at the free sur-
face y = η(x, t) and at the bottom y = −d(x, t) (we shall also denote below with ‘bars’
the quantities averaged over the water depth); {u, v,µ, ν} being the horizontal velocity,
vertical velocity and associated Lagrange multipliers, respectively. The last two additional
variables {µ, ν} are called the pseudo-velocities. They formally arise as Lagrange mul-
tipliers associated to the constraints u = ∇φ, v = φy. However, once these variables
are introduced, the ansatz can be chosen regardless their initial definition, i.e., it is not
obligatory to choose an ansatz such that the relations µ = u = ∇φ, for example, are
exactly satisfied. The advantage of the relaxed variational principle (2.5) consists in the
extra freedom for constructing approximations.

2.1. Constrained shallow water ansatz. In order to simplify the full water wave prob-
lem, we choose some approximate but physically relevant representations of all dependent
variables. In this study, we choose a simple shallow water ansatz, which is a velocity field
and velocity potential independent of the vertical coordinate y such that

φ ≈ φ̄(x, t), u = µ ≈ ū(x, t), v = ν ≈ v̌(x, t), (2.6)

where v̌(x, t) is the vertical velocity at the bottom. In this ansatz, we take for simplicity
the pseudo-velocities to be equal to the velocity field u = µ, v = ν. However, in
other situations they can differ (see [17] for more examples). The Lagrangian density (2.5)
becomes:

L = (∂th + ū · ∇h + h∇ · ū) φ̄ − 1
2
g η2 + 1

2
h (ū2 + v̌2), (2.7)

where we introduced the total water depth h = η + d.
The ansatz (2.6) means that, physically, we are considering a so-called columnar flow

[57], i.e., each vertical water column moves somehow like a rigid body. In presence of
bathymetry variations, the columnar flow paradigm yields that the fluid vertical velocity
must be equal to the one at the bottom. Thus, we require that the fluid particles follow
the bottom profile:

v̌ = −∂t d − ū · ∇d, (2.8)

this identity being the bottom impermeability condition expressed with the ansatz (2.6).

Remark 1. Note that for ansatz (2.6) the horizontal vorticity ω and the vertical one ζ
are given by:

ω =
(

∂x2
v̌ , −∂x1

v̌
)

, ζ = ∂x1
ū2 − ∂x2

ū1.

Consequently the flow is not exactly irrotational in general. It will be confirmed below one
more time when we establish the connection between ū and ∇φ̄.
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After substitution of the relation (2.8) into the Lagrangian density (2.7), the Euler–
Lagrange equations yield:

δφ̄ : 0 = ∂t h + ∇ · [ h ū ], (2.9)

δū : 0 = ū − ∇φ̄ − v̌∇d, (2.10)

δη : 0 = ∂t φ̄ + g η + ū · ∇φ̄ − 1
2
(ū2 + v̌2). (2.11)

Taking the gradient of (2.11) and eliminating of φ̄ from (2.10) gives us the system of
governing equations:

∂t h + ∇ · [ h ū ] = 0, (2.12)

∂t [ ū − v̌∇d ] + ∇ [ g η + 1
2
ū

2 + 1
2
v̌2 + v̌ ∂td ] = 0, (2.13)

together with relations:

ū = ∇φ̄ + v̌∇d, v̌ = − ∂t d − ū · ∇d = −∂td + (∇φ̄) · (∇d)

1 + |∇d|2 .

Remark 2. The classical irrotational nonlinear shallow water or Saint-Venant equations
[18, 72] can be recovered by substituting v̌ = 0 into the last system:

∂t h + ∇ · [ h ū ] = 0,

∂t ū + ∇ [ g η + 1
2
ū

2] = 0.

2.2. Properties of the new model. From governing equations (2.12), (2.13) one can
derive an equation for the horizontal velocity ū:

∂t ū + 1
2
∇(ū2) + g∇η = γ∇d + ū ∧ (∇v̌ ∧∇d), (2.14)

where γ is the vertical acceleration at the bottom defined as:

γ ≡ d v̌

dt
= ∂t v̌ + (ū · ∇)v̌. (2.15)

Remark 3. Note that in (2.14) the last term on the right-hand side cancels out in one
horizontal dimension. It can be seen from the following analytical representation which
degenerates to zero in one horizontal dimension:

h ū ∧ (∇v̌ ∧∇d) = (∇v̌) (hū · ∇d) − (∇d) (hū · ∇v̌).

This property has an interesting geometrical interpretation since hū ∧ (∇v̌ ∧ ∇d) is a
horizontal vector orthogonal to ū and thus vanishing for two-dimensional waves.

One can also derive an equation for the energy flux:

∂t

[

h
ū

2 + v̌2

2
+ g

η2 − d2

2

]

+ ∇ ·

[(

ū
2 + v̌2

2
+ gη

)

hū

]

= −(g + γ) h ∂td. (2.16)

Obviously, the source term on the right-hand side vanishes if the bottom is fixed d = d(x)
or, equivalently, ∂td = 0.
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The last conservation law is closely related to the Hamiltonian structure of the mSV
equations (2.9)–(2.11). Namely, these equations possess a Hamiltonian structure with
canonical variables h and φ̄, i.e.,

∂ h

∂t
=

δH
δφ̄

,
∂ φ̄

∂t
= −δH

δh
,

where the Hamiltonian is

H = 1
2

∫
{

g(h− d)2 + h|∇φ̄|2 − h [ ∂td + (∇φ̄) · (∇d) ]2

1 + |∇d|2
}

d2
x. (2.17)

One can easily check, after computing the variations, that the Hamiltonian (2.17) yields

∂t h = −∇ ·

[

h∇φ̄ − ∂td + (∇φ̄) · (∇d)

1 + |∇d|2 h∇d

]

,

∂t φ̄ = − g(h− d) − 1
2
|∇φ̄|2 +

[ ∂td + (∇φ̄) · (∇d) ]2

1 + |∇d|2 ,

which are equivalent to the system (2.9) – (2.11).

Remark 4. If we rewrite Hamiltonian (2.17) in the following equivalent form:

H = 1
2

∫

{

g η2 + h ū2 + h (v̌ + ∂td)
2 − h (∂td)

2
}

d2
x, (2.18)

one can see that Hamiltonian (2.17) is actually positive definite if the bottom is static, i.e.,
d = d(x) or ∂td = 0. In other words if there is no external input of energy into the system.

Moreover, the Hamiltonian structure of the classical Saint-Venant equations can be re-
covered substituting v̌ = 0 into the last Hamiltonian (2.18):

H0 = 1
2

∫

{

g η2 + h ū2
}

d2
x.

2.3. Steady solutions. We consider here the two-dimensional case in order to derive a
closed form solution for a steady state flow over a general bathymetry. We assume the
following upstream conditions at x → −∞:

η → 0, d → d0, ū → u0 > 0.

Physically, these conditions mean that far upstream we consider a uniform current over a
horizontal bottom. The mass conservation in steady condition yields

h ū = d0 u0,

while the momentum conservation equation becomes

g h + 1
2
ū2
[

1 + (∂xd)
2
]

= g d0 + 1
2
u 2
0 .

Combining the last two relations yields the following cubic equations for the total water
depth

g h3 − ( g d0 + 1
2
u 2
0 ) h

2 + 1
2
( d0 u0 )

2 [ (1 + (∂xd)
2 ] = 0. (2.19)

As it is well known, a cubic equation has three (in general complex) roots. From physical
interpretation of h, we are only interested in real positive roots.
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Remark 5. It is straightforward to derive a similar equation for steady solutions to the
classical Saint-Venant equations

g h3 − ( g d0 + 1
2
u 2
0 ) h

2 + 1
2
( d0 u0 )

2 = 0.

The last relation can be also obtained from equation (2.19) by taking ∂xd = 0. Consequently,
we can say that steady solutions to classical Saint-Venant equations do not take into account
the bottom slope local variations.

One solution of (2.19) is

h = d0
/[

AC−1/3 + 1
3
C1/3

]

, C ≡ 3
√

B2 − 3A3 − 3B, (2.20)

with

A(x) ≡ 1 + 2 g d0 u
−2
0

1 + (∂xd)2
> 0, B(x) ≡ 9 g d0 u−2

0

1 + (∂xd)2
> 0.

This solution is real only if B2 > 3A3 (in that case equation (2.19) has only one real root)
or equivalently if

27F 2 (∂xd)
2 − (F 2 − 1)2 (F 2 + 8) > 0, F ≡ u0 /

√

g d0 ,

where F is a Froude number. In the case of the classical Saint-Venant equations (i.e., taking
∂xd = 0), the last condition is satisfied only for the critical regime F = 1. In the modified
model solution, (2.20) is real in a vicinity of F = 1, which depends on the magnitude of
the bottom local slope ∂xd. However, if this solution is real, it is necessary negative —
see the definition of C in (2.20). Hence, it is unphysical and must be rejected. In other
words it means that under condition B2 > 3A3, the flow cannot be steady. Physically, a
singularity such as wave breaking does not allow the flow to reach the steady state.

If B2 < 3A3, the equation (2.19) has three real roots, two of them being positive. The
first root h = h+ corresponds to the subcritical regime:

h+ = d0

/[

2
√

A/3 cos
(

1
3
arccos

(

−3−1/2BA−3/2
)

− 2
3
π
)

]

,

and one supercritical root h = h−:

h− = d0

/[

2
√

A/3 cos
(

1
3
arccos

(

−3−1/2BA−3/2
))

]

.

We note that h− < h+.
Finally, in the limiting case B2 = 3A3, for a given Froude number F , there is only one

absolute value of the slope for which this identity is satisfied, that is

(∂xd)
2 = (F 2 − 1)2 (F 2 + 8) / (26F 2). (2.21)

For instance, if ∂xd = 0 then B2 = 3A3 if and only if F = 1.
Consider now the opposite case when the slope is given dx 6= 0. In this case condition

(2.21) is satisfied for two values of the Froude number F = F ±:

(F −)2 = 6
√

1 + (∂xd)2 cos
(

1
3
arccos

(

−[1 + (∂xd)
2]−1/2

)

− 2
3
π
)

− 2 6 1,

(F +)2 = 6
√

1 + (∂xd)2 cos
(

1
3
arccos

(

−[1 + (∂xd)
2]−1/2

))

− 2 > 1.
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Gravity acceleration g: 1ms
−2

Undisturbed water depth d0: 1m
Deformation amplitude a: 0.5m
Half-length of the uplift area b: 2.5m
Upstream flow speed, u0 2.0ms

−1

Table 1. Values of various parameters used for the steady state computation.

If F − < F < F +, we have B2 > 3A3 and there are no steady states. Therefore, we must
have F 6 F − or F > F +.

In order to illustrate the developments made above, we compute a steady flow over a
bump. The bottom takes the form

d(x) = d0 − a b−4
(

x2 − b2
)2
H(b2 − x2),

where H(x) is the Heaviside step function [1], a and b being the bump amplitude and its half-
length, respectively. The values of various parameters are given in Table 1. We consider
here for illustrative purposes the supercritical case for the classical and new models. The
result are shown on Figure 2 where some small differences can be noted with respect to
the classical Saint-Venant equations.

3. Numerical methods

In this Section we discuss some properties of the system (2.12), (2.13) and then, we
propose a space discretization procedure based on the finite volume method along with a
high-order adaptive time stepping.

3.1. Hyperbolic structure. ¿From now on, we consider equations (2.12), (2.13) posed
in one horizontal space dimension for simplicity:

∂t h + ∂x [ h ū ] = 0, (3.1)

∂t [ ū − v̌ ∂x d ] + ∂x
[

g η + 1
2
ū2 + 1

2
v̌2 + v̌ ∂t d

]

= 0. (3.2)

In order to present the equations in a more suitable conservative form, we will introduce
the potential velocity variable U = ∂xφ̄. From equation (2.10) it is straightforward to see
that U satisfies the relation

U = ū − v̌ ∂x d,

Depth averaged and vertical bottom velocities can be also easily expressed in terms of the
potential velocity U

ū =
U − (∂td) (∂xd)

1 + (∂xd)2
, v̌ = −∂td + U ∂xd

1 + (∂xd)2
.
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Figure 2. Supercritical steady state solutions over a bump for the Froude
number F = 2. Comparison between the classical and modified Saint-Venant
equations.

Consequently, using this new variable equations (3.1), (3.2) can be rewritten as a system
of conservation laws

∂t h + ∂x

[

h
U − (∂td) (∂xd)

1 + (∂xd)2

]

= 0,

∂t U + ∂x

[

g (h− d) +
1

2

U2 − 2U (∂td) (∂xd)− (∂td)
2

1 + (∂xd)2

]

= 0.

For the sake of simplicity, we rewrite the above system in the following quasilinear vectorial
form:

∂t w + ∂x f(w) = 0, (3.3)

where we introduced the vector of conservative variables w and the advective flux f(w):

w =

(

h
U

)

, f(w) =









h
U − (∂td)(∂xd)

1 + (∂xd)2

g(h− d) +
U2 − 2U(∂xd)(∂td)− (∂td)

2

2 [1 + (∂xd)2]









.
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The Jacobian matrix of the advective flux f(w) can be easily computed:

A(w) =
∂ f(w)

∂w
=

1

1 + (∂xd)2

[

U − (∂td)(∂xd) h
g (1 + (∂xd)

2) U − (∂td)(∂xd)

]

=





ū
h

1 + (∂xd)2

g ū



 .

The matrix A(w) has two distinct eigenvalues:

λ± =
U − (∂td) (∂xd)

1 + (∂xd)2
± c = ū ± c, c2 ≡ g h

1 + (∂xd)2
.

Remark 6. Physically, the quantity c represents the phase celerity of long gravity waves.
In the framework of the Saint-Venant equations, it is well known that c =

√
gh. Both

expressions differ by the factor
√

1 + (∂xd)2. In our model, the long waves are slowed
down by strong bathymetric variations since fluid particles are constrained to follow the
seabed.

Right and left eigenvectors coincide with those of the Saint-Venant equations and they
are given by the following matrices

R =

[

−h h√
gh

√
gh

]

, L =
1

2

[

−h−1 (gh)−1/2

h−1 (gh)−1/2

]

.

Columns of the matrix R constitute eigenvectors corresponding to eigenvalues λ− and λ+

respectively. Corresponding left eigenvectors are conventionally written in lines of the
matrix L.

3.2. Group velocity. We would like to compute also the group velocity in the framework
of the modified Saint-Venant equations. This quantity is traditionally associated to the
wave energy propagation speed [73, 29]. Recall, that in the classical linearized shallow
water theory, the phase c and group cg velocities are equal [73]:

c =
ω

k
=
√

gh, cg =
dω

dk
=
√

gh,

where ω = k
√
gh is the dispersion relation for linear long waves, k being the wavenumber

and ω being the angular frequency.
In order to assess the wave energy propagation speed we will consider a quasilinear

system of equations composed of mass and energy conservation laws:

∂th + ∂x

[

h
U − (∂xd)(∂td)

1 + (∂xd)2

]

= 0,

∂tE + ∂x

[

(E + 1
2
gh2)

U − (∂xd)(∂td)

1 + (∂xd)2

]

= −(g + γ) h ∂td,

where γ is defined in (2.15) and E is the total energy considered already above (2.16):

E = h
ū2 + v̌2

2
+

g (η2 − d2)

2
=

h

2

U2 + (∂td)
2

1 + (∂xd)2
+

g (h2 − 2hd)

2
.
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The last formula can be inverted to express the potential velocity in terms of the wave
energy:

U2 = [ 1 + (∂xd)
2 ]

(

2E

h
− gh + 2gd

)

− (∂td)
2.

In the spirit of computations performed in the previous section, we compute the Jacobian
matrix J of the mass-energy advection operator:

J =
1

1 + (∂xd)2







U − (∂xd)(∂td) + h
∂ U

∂h
h
∂ U

∂E

gh[U − (∂xd)(∂td)] + (E + 1
2
gh2)

∂ U

∂h
U − (∂xd)(∂td) + (E + 1

2
gh2)

∂ U

∂E






,

where partial derivatives are given here:

∂ U

∂h
= − [ 1 + (∂xd)

2 ]
gh2 + 2E

2 h2U
,

∂ U

∂E
=

1 + (∂xd)
2

hU
.

Computation of the Jacobian J eigenvalues leads the following expression for the group
velocity of the modified Saint-Venant equations:

c 2
g =

g h

1 + (∂xd)2
U − (∂xd)(∂td)

U
.

The last formula is very interesting. It means that in the moving bottom case, the group
velocity cg is modified and does not coincide anymore with the phase velocity c2 = gh[1 +
(∂xd)

2]−1. This fact represents another new and non-classical feature of the modified Saint-
Venant equations. The relative difference between phase and group velocities squared is

c2 − c 2
g

c2
=

(∂xd) (∂td)

U
, (3.4)

which is not necessarily always positive. When it is negative, the energy is injected into
the system at a higher rate than can be spread, thus leading to energy accumulation and
possibly favoring the breaking events.

3.3. Finite volume scheme. Let us fix a partition of R into cells (or finite volumes)
Ci = [xi− 1

2

, xi+ 1

2

] with cell center xi =
1
2
(xi− 1

2

+ xi+ 1

2

), i ∈ Z. Let ∆xi denotes the length

of the cell Ci. Without any loss of generality we assume the partition to be uniform, i.e.,
∆xi = ∆x, ∀i ∈ Z. The solution w(x, t) is approximated by discrete values and, in order
to do so, we introduce the cell average of w over the cell Ci, i.e.,

w̄i(t) ≡ 1

∆h

∫

Ci

w(x, t) dx.

A simple integration of (3.3) over the cell Ci leads the following exact relation

d w̄i

dt
+

f
(

w(xi+ 1

2

, t)
)

− f
(

w(xi− 1

2

, t)
)

∆x
= 0.
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Since the discrete solution is discontinuous at cell the interfaces xi+ 1

2

, i ∈ Z, the heart

of the matter in the finite volume method is to replace the flux through cell faces by the
so-called numerical flux function

f
(

w(xi± 1

2

, t)
)

≈ Fi± 1

2

(

w̄L
i± 1

2

, w̄R
i± 1

2

)

,

where w̄L,R

i± 1

2

are reconstructions of conservative variables w̄ from left and right sides of

each cell interface [8, 80]. The reconstruction procedure employed in the present study is
described below.

In order to discretise the advective flux f(w), we use the so-called FVCF scheme [40, 41]

F(v, w) =
f(v) + f(w)

2
− S(v, w) f(w) − f(v)

2
.

The first part of the numerical flux F(v, w) is centered, while the second part is the
upwinding introduced according to local waves propagation directions

S(v, w) = sign

(

A

(

v + w

2

))

, sign(A) = R · diag(s−, s+) · L, s± ≡ sign(λ±).

After some simple algebraic computations one can find expressions for sign matrix S coef-
ficients

S =
1

2

[

(s+ + s−) (s+ − s−)
√

h/g

(s+ − s−)
√

g/h (s+ + s−)

]

,

all coefficients being evaluated at the average state of left and right face values.
Taking into account the developments presented above, the semi-discrete scheme takes

the form

d w̄i

dt
+

Fi+ 1

2

(

w̄L
i+ 1

2

, w̄R
i+ 1

2

)

− Fi− 1

2

(

w̄L
i− 1

2

, w̄R
i− 1

2

)

∆x
= 0. (3.5)

The discretization in time of the last system of ODEs is discussed in Section 3.5. Meanwhile,
we present the employed reconstruction procedure.

3.4. High-order reconstruction. In order to obtain a higher-order scheme in space,
we need to replace the piecewise constant data by a piecewise polynomial representation.
This goal is achieved by various so-called reconstruction procedures, such as MUSCL TVD
[52, 79, 80], UNO [47], ENO [46], WENO [85] and many others. In our previous study on
Boussinesq-type equations [32], the UNO2 scheme showed a good performance with low
dissipation in realistic propagation and runup simulations. Consequently, we retain this
scheme for the discretization of the modified Saint-Venant equations.

Remark 7. In TVD schemes, the numerical operator is required (by definition) not to
increase the total variation of the numerical solution at each time step. It follows that the
value of an isolated maximum may only decrease in time which is not a good property for
the simulation of coherent structures such as solitary waves. The non-oscillatory UNO2
scheme, employed in our study, is only required to diminish the number of local extrema in
the numerical solution. Unlike TVD schemes, UNO schemes are not constrained to damp
the values of each local extremum at every time step.
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The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic
interpolant Q(x) to a piecewise smooth function w(x) (see [47] for more details). On each
segment containing the face xi+ 1

2

∈ [xi, xi+1], the function Q(x) = qi+ 1

2

(x) is locally a

quadratic polynomial qi+ 1

2

(x) and wherever w(x) is smooth we have

Q(x) − w(x) = O(∆x3),
dQ

dx
(x± 0) − dw

dx
= O(∆x2).

Also Q(x) should be non-oscillatory in the sense that the number of its local extrema does
not exceed that of w(x). Since qi+ 1

2

(xi) = w̄i and qi+ 1

2

(xi+1) = w̄i+1, it can be written in

the form

qi+ 1

2

(x) = w̄i + di+ 1

2

(w)
x− xi

∆x
+ 1

2
Di+ 1

2

w · (x− xi)(x− xi+1)

∆x2
,

where di+ 1

2

(w) ≡ w̄i+1 − w̄i and Di+ 1

2

v is closely related to the second derivative of the

interpolant sinceDi+ 1

2

v = ∆x2q′′
i+ 1

2

(x). The polynomial qi+ 1

2

(x) is chosen to be one the least

oscillatory between two candidates interpolating w(x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).
This requirement leads to the following choice of Di+ 1

2

v

Di+ 1

2

w := minmod
(

Diw,Di+1w
)

, Diw = w̄i+1−2w̄i+w̄i−1, Di+1w = w̄i+2−2w̄i+1+w̄i,

and minmod(x, y) is the usual min mod function defined as:

minmod(x, y) = 1
2
[ sign(x) + sign(y) ]×min(|x|, |y|).

To achieve the second order O(∆x2) accuracy, it is sufficient to consider piecewise linear
reconstructions in each cell. Let L(x) denote this approximately reconstructed function
which can be written in the form

L(x) = w̄i + si (x− xi) /∆x, xi− 1

2

6 x 6 xi+ 1

2

.

To make L(x) a non-oscillatory approximation, we use the parabolic interpolation Q(x)
constructed below to estimate the slopes si within each cell

si = ∆x×minmod

(

dQ

dx

∣

∣

∣

∣

x=x−

i

,
dQ

dx

∣

∣

∣

∣

x=x+

i

)

.

In other words, the solution is reconstructed on the cells while the solution gradient is
estimated on the dual mesh as it is often performed in more modern schemes [7, 8]. A brief
summary of the UNO2 reconstruction can be also found in [32].

3.5. Time stepping. We rewrite the semi-discrete scheme (3.5) as a system of ODEs:

∂t w̄ = L(w̄, t), w̄(0) = w̄0.

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine
method [11]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded
second-order method which is used to estimate the local error and, thus, to adapt the
time step size. Moreover, the Bogacki–Shampine method enjoys the First Same As Last
(FSAL) property so that it needs three function evaluations per step. This method is also
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implemented in the ode23 function in Matlab [68]. A step of the Bogacki–Shampine
method is given by

k1 = L(w̄(n), tn),

k2 = L(w̄(n) + 1
2
∆tnk1, tn +

1
2
∆t),

k3 = L(w̄(n)) + 3
4
∆tnk2, tn +

3
4
∆t),

w̄(n+1) = w̄(n) + ∆tn
(

2
9
k1 +

1
3
k2 +

4
9
k3
)

,

k4 = L(w̄(n+1), tn +∆tn),

w̄
(n+1)
2 = w̄(n) + ∆tn

(

4
24
k1 +

1
4
k2 +

1
3
k3 +

1
8
k4
)

.

Here w̄(n) ≈ w̄(tn), ∆t is the time step and w̄
(n+1)
2 is a second-order approximation to the

solution w̄(tn+1), so the difference between w̄(n+1) and w̄
(n+1)
2 gives an estimation of the

local error. The FSAL property consists in the fact that k4 is equal to k1 in the next time
step, thus saving one function evaluation.

If the new time step ∆tn+1 is given by ∆tn+1 = ρn∆tn, then according to H211b digital
filter approach [69, 70], the proportionality factor ρn is given by:

ρn =

(

δ

εn

)β1
(

δ

εn−1

)β2

ρ−α
n−1, (3.6)

where εn is a local error estimation at time step tn and constants β1, β2 and α are defined
as

α = 1 / 4, β1 = β2 = 1 / 4 p.

The parameter p is the order of the scheme (p = 3 in our case).

Remark 8. The adaptive strategy (3.6) can be further improved if we smooth the factor
ρn before computing the next time step ∆tn+1

∆tn+1 = ρ̂n ∆tn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and should be smooth, monotonically
increasing and should satisfy the following conditions

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice is suggested in [70]:

ω(ρ) = 1 + κ arctan

(

ρ− 1

κ

)

.

In our computations the parameter κ is set to 1.
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Initial wavenumber κ: 1m−1

Gravity acceleration g: 1ms
−2

Final simulation time T : 24 s
Initial wave amplitude b: 0.2m
Undisturbed water depth d0: 1m
Bathymetry oscillation amplitude a: 0.1m
Low bathymetry oscillation wavelength k1: 2m−1

High bathymetry oscillation wavelength k2: 6m−1

Table 2. Values of various parameters used for the wave propagation over
an oscillatory bottom test-case.

4. Numerical results

The numerical scheme presented above has already been validated in several studies even
in the case of dispersive waves [32, 33]. Consequently, we do not present here the standard
convergence tests which can be found in references cited above. In the present Section we
show numerical results which illustrate some properties of modified Saint-Venant equations
with respect to their classical counterpart.

In the sequel we consider only one-dimensional case for simplicity. The physical domain
will be also limited by wall-boundary conditions. Other types of boundary conditions
obviously could also be considered.

4.1. Wave propagation over oscillatory bottom. We begin the exposition of numer-
ical results by presenting a simple test-case of a wave propagating over a static but highly
oscillatory bottom. Let us consider a one-dimensional physical domain [−10, 10] which is
discretized into N = 350 equal control volumes. The tolerance parameter δ in the time
stepping algorithm is chosen to be 10−4. The initial condition will be simply a bump
localized near the center x = 0 and posed on the free surface with initial zero velocity field

η0(x) = b sech2(κx), u0(x) = 0.

The bottom is given analytically by the function

d(x) = d0 + a sin(kx).

In other words, the bathymetry function d(x) consists of uniform level d0 which is perturbed
by uniform oscillations of amplitude a. Since the bathymetry is static, the governing
equations (3.1) and (3.2) are simplified at some point.

Hereafter, we fix two wavenumbers k1 and k2 (k1 < k2) and perform a comparison
between numerical solutions to the classical and modified Saint-Venant equations. The
main idea behind this comparison is to show the similarity between two solutions for mild
bottoms and, correspondingly, to highlight the differences for stronger gradients. The
values of various physical parameters used in numerical simulations are given in Table 2.

Several snapshots of the free surface elevation during the wave propagation test-case are
presented on Figures 3 – 9. The left image refers to the mild bottom gradient case (k1 = 2)
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 3. Wave propagation over an oscillatory bottom, t = 2 s.

while the right image corresponds to the oscillating bottom (k2 = 6). Everywhere, the solid
blue line represents a solution to the modified Saint-Venant equations, while the dotted
black line refers to the classical solution.

Numerical results on left images indicate that both models give very similar results when
bathymetry gradients are gentle. Two solutions are almost indistinguishable to grahic reso-
lutions, especially at the beginning. However, some divergences are accumulated with time.
At the end of the simulation some differences become to be visible to the graphic resolu-
tion. On the other hand, numerical solutions on right images are substantially different
from first instants of the wave propagation. In accordance with theoretical predictions (see
Remark 6), the wave in modified Saint-Venant equations propagates with speed effectively
reduced by bottom oscillations. This fact explains a certain lag between two numerical
solutions in the highly oscillating case. We note that the wave shape is also different in
classical and improved equations.

Finally, on Figure 10 we show the evolution of the local time step during the simulation.
It can be easily seen that the time adaptation algorithm very quickly finds the optimal value
of the time step which is then maintained during the whole simulation. This observation
is even more flagrant on the right image corresponding to the highly oscillating case.

4.2. Wave generation by sudden bottom uplift. We continue to investigate various
properties of the modified Saint-Venant equations. In this section, we present a simple
test-case which involves the bottom motion. More precisely, we will investigate two cases
of slow and fast uplifts of a portion of bottom. This simple situation has some important
implications to tsunami genesis problems [44, 78, 30, 28, 51, 24, 58, 25].
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(a) Low oscillations, k1

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x [m]
η
(x
,
t)

[m
]

Free surface elevation at t = 5.00

 

 

mSV

SV

(b) High oscillations, k2

Figure 4. Wave propagation over an oscillatory bottom, t = 5 s.
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 5. Wave propagation over an oscillatory bottom, t = 9 s.

The physical domain and discretization parameters are inherited from the last section.
The bottom is given by the following function:

d(x, t) = d0 − a T (t) H(b2 − x2)

[

(x

b

)2

− 1

]2

, T (t) = 1 − e−αt,

where H(x) is the Heaviside step function [1], a is the deformation amplitude and b is
the half-length of the uplifting sea floor area. The function T (t) provides us a complete
information on the dynamics of the bottom motion. In tsunami wave literature, it is called
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 6. Wave propagation over an oscillatory bottom, t = 16 s.
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 7. Wave propagation over an oscillatory bottom, t = 18 s.

a dynamic scenario [45, 44, 28, 51, 24]. Obviously, other choices of the time dependence
are possible. Initially the free surface is undisturbed and the velocity field is taken to be
identically zero. The values of various parameter are given in Table 3.

Numerical results of the moving bottom test-case are shown on Figures 11–16. On all
these images the blue solid line corresponds to the modified Saint-Venant equations, while
the black dashed line refers to its classical counterpart. The dash-dotted line shows the
bottom profile which evolves in time as well.
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(a) Low oscillations, k1
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(b) High oscillations, k2

Figure 8. Wave propagation over an oscillatory bottom, t = 20 s.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x [m]

η
(x
,
t)

[m
]

Free surface elevation at t = 24.00

 

 

mSV

SV

(a) Low oscillations (k1)
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(b) High oscillations (k2)

Figure 9. Wave propagation over an oscillatory bottom, t = 24 s.

First, we present numerical results (see Figures 11–12) corresponding to a relatively slow
uplift of a portion of the bottom (α1 = 2.0). There is a very good agreement between two
computations. We note that the amplitude of bottom deformation a/d = 0.25 is strong
which explains some small discrepancies on Figure 12(a) between two models. This effect
is rather due to the bottom shape than to its dynamic motion.

Then we test the same situation but the bottom uplift is fast with the inverse character-
istic time α2 = 12.0. In this case the differences between two models are very flagrant. As
it can be seen on Figure 14, for example, the modified Saint-Venant equations give a wave
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Figure 10. Local time step size during the simulation of a wave propagating
over an oscillatory bottom test case.

Slow uplift parameter α1: 2.0 s−1

Fast uplift parameter α2: 12.0 s−1

Gravity acceleration g: 1ms
−2

Final simulation time T : 5 s
Undisturbed water depth d0: 1m
Deformation amplitude a: 0.25m
Half-length of the uplift area b: 2.5m

Table 3. Values of various parameters used for the wave generation by a
moving bottom.

with almost two times higher amplitude. Some differences in the wave shape persist even
during the propagation (see Figure 16). This test-case clearly shows another advantage of
the modified Saint-Venant equations in better representation of the vertical velocity field.

On Figure 17 we show the evolution of the local time step adapted while solving the
modified Saint-Venant equations with moving bottom (up to T = 5 s). We can observe a
behaviour very similar to the result presented above (see Figure 10) for the wave propaga-
tion test-case.

4.3. Application to tsunami waves. Tsunami waves continue to pose various difficult
problems to scientists, engineers and local authorities. There is one question initially
stemming from the Ph.D. thesis of C. Synolakis [74]. On page 85 of his manuscript,
one can find a comparison between a theoretical (NSWE) and an experimental wavefront
paths during a solitary wave runup onto a plane beach. In particular, his results show some
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(a) t = 0.5 s
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(b) t = 1.0 s

Figure 11. Slow bottom uplift test-case (α1 = 2).
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(a) t = 2.0 s
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Bathymetry

(b) t = 5.0 s

Figure 12. Slow bottom uplift test-case (α1 = 2).

discrepancy whose importance was not completely recognized until the wide availability
of videos of the Tsunami Boxing Day 2004 [3, 60, 77]. In the same line of thinking, we
quote here a recent review by Synolakis and Bernard [76] which contains a very interesting
paragraph:

“In a video taken near the Grand Mosque in Aceh, one can infer that the
wavefront first moved at speeds less than 8 km h−1, then accelerated to 35 km
h−1. The same phenomenon is probably responsible for the mesmerization
of victims during tsunami attacks, first noted in series of photographs of the
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(a) t = 0.5 s
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(b) t = 0.9 s

Figure 13. Fast bottom uplift test-case (α2 = 12).
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(a) t = 1.0 s
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(b) t = 1.5 s

Figure 14. Fast bottom uplift test-case (α2 = 12).

1946 Aleutian tsunami approaching Hilo, Hawaii, and noted again in count-
less photographs and videos from the 2004 mega-tsunami. The wavefront
appears slow as it approaches the shoreline, leading to a sense of false se-
curity, it appears as if one can outrun it, but then the wavefront accelerates
rapidly as the main disturbance arrives.”

Since our model is able to take into account the local bottom slope into the wave speed
computation, we propose below a simple numerical setup which intends to shed some light
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Figure 15. Fast bottom uplift test-case (α2 = 12).
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Figure 16. Fast bottom uplift test-case (α2 = 12).

on possible mechanisms of the reported above wave front propagation anomalies. Con-
sider a one-dimensional domain [−20, 20] with wall boundary conditions. This domain is
discretized into N = 4000 control volumes in order to resolve local bathymetry oscilla-
tions. The bottom has a uniform slope which is perturbed on the left side (x < 0) by fast
oscillations which model the bottom “roughness”

d(x) = d0 − x tan(δ) + a [ 1 −H(x) ] sin(kx), (4.1)
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Figure 17. Local time step size evolution during the simulation of a wave
generation by moving bottom.

Undisturbed water depth d0: 1m
Gravity acceleration g: 1ms

−2

Bottom slope tan(δ): 0.02
Oscillation amplitude a: 0.1m
Oscillation wavenumber k: 20m−1

Final simulation time T : 19 s
Solitary wave amplitude A: 0.3m
Solitary wave initial position x0: −12.0m

Table 4. Values of various physical parameters used for the wave propaga-
tion over a sloping bottom.

where H(x) is the Heaviside function. The initial condition is a solitary wave moving
rightwards as it was chosen in [74, 75]:

η0(x)

d(x0)
= A sech2

(

1
2
κ(x− x0)

)

, u0(x) =
c0 η0(x)

d(x0) + η0(x)
,

κd(x0) =

√

3A

1 + A
,

c 2
0

g d(x0)
= 1 + A.

This configuration aims to model a wave transition from rough to gentle bottoms. The
values of various physical parameters are given in Table 4.

Then, the wave propagation and transformation over the sloping bottom (4.1) was com-
puted using the classical and modified Saint-Venant equations. The wave front position
was measured along this simulation and the computation result is presented on Figure 18.
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The slope of these curves represents physically the wave front propagation speed. Recall
also that the point x = 0 corresponds to the transition between rough and gentle regions
of the sloping beach.

As one can expect, the classical model does not really ‘see’ a region with bathymetry
variations, except from tiny oscillations. An observer situated on the beach, looking at the
upcoming wave modeled by the classical Saint-Venant equations, will not see any change in
the wave celerity. More precisely, the slope of the black dashed curve on Figure 18 is rather
constant up to the graphical resolution. On the other hand, one can see a drastic change in
the wave front propagation speed predicted by the modified Saint-Venant equations when
the bottom variation disappear.

The scenario we present in this section is only a first attempt to shed some light on
the reported anomalies in tsunami waves arrival time on the beaches. For instance, a
comprehensive study of P. Wessel [82] shows that the reported tsunami travel time is
often exceeds slightly the values predicted by the classical shallow water theory (see, for
example, Figures 5 and 6 in [82]). This fact supports indirectly our theory. Certainly this
mechanism does not apply to laboratory experiments but it can be a good candidate to
explain the wave front anomalies in natural environments. The mechanism we propose is
only an element of explanation. Further investigations are needed to bring more validations
to this approach.

We underline that the computational results rely on sound physical modeling without any
ad hoc phenomenological terms in the governing equations. Only an accurate bathymetry
description is required to take the full advantage of the modified Saint-Venant equations.

5. Conclusions

In this study we derived a novel non-hydrostatic non-dispersive model of shallow water
type which takes into account large bathymetric variations. Previously some attempt was
already made in the literature to derive shallow water systems for arbitrary slopes and
curvature [23, 12, 10, 50]. However, our study contains a certain number of new elements
with respect to the existing state of the art. Namely, our derivation procedure relies
on a generalized Lagrangian principle of the water wave problem [17]. Moreover, we do
not introduce any small parameter and our approximation is made through the choice
of a suitable constrained ansatz. Resulting governing equations have a simple form and
physically sound structure. Another new element is the introduction of arbitrary bottom
time variations.

The proposed model is discretized with a finite volume scheme with adaptive time step-
ping to capture the underlying complex dynamics. The performance of this scheme is then
illustrated on several test cases. Some implications to tsunami wave modeling are also
suggested at the end of this study.

Among various perspectives we would like to underline the importance of a robust runup
algorithm development using the current model. This research should shift forward the
accuracy and our comprehension of a water wave runup onto complex shores [63, 37, 38,
31, 71, 34].
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pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sci. I,

322:981–988, 1996. 12

[41] J.-M. Ghidaglia, A. Kumbaro, and G. Le Coq. On the numerical solution to two fluid models via cell

centered finite volume method. Eur. J. Mech. B/Fluids, 20:841–867, 2001. 12

[42] J.M.N.T. Gray, M Wieland, and K Hutter. Gravity-driven free surface flow of granular avalanches

over complex basal topography. Proc. R. Soc. Lond. A, 455:1841–1874, 1998. 2

[43] A. E. Green and P. M. Naghdi. A derivation of equations for wave propagation in water of variable

depth. J. Fluid Mech., 78:237–246, 1976. 2

[44] J. Hammack. A note on tsunamis: their generation and propagation in an ocean of uniform depth. J.

Fluid Mech., 60:769–799, 1973. 16, 18

[45] J. L. Hammack. Tsunamis - A Model of Their Generation and Propagation. PhD thesis, California

Institute of Technology, 1972. 18

[46] A. Harten. ENO schemes with subcell resolution. J. Comput. Phys, 83:148–184, 1989. 12

[47] A. Harten and S. Osher. Uniformly high-order accurate nonscillatory schemes, I. SIAM J. Numer.

Anal., 24:279–309, 1987. 12, 13

[48] K. Hutter, Y. Wang, and S. P. Pudasaini. The Savage-Hutter avalanche model. How far can it be

pushed? Phil. Trans. R. Soc. Lond. A, 363:1507–1528, 2005. 2

[49] R. S. Johnson. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge

University Press, 2004. 3

[50] J. B. Keller. Shallow-water theory for arbitrary slopes of the bottom. J. Fluid Mech, 489:345–348,

2003. 2, 25

[51] Y. Kervella, D. Dutykh, and F. Dias. Comparison between three-dimensional linear and nonlinear

tsunami generation models. Theor. Comput. Fluid Dyn., 21:245–269, 2007. 16, 18



MODIFIED SHALLOW WATER EQUATIONS 29

[52] N. E. Kolgan. Finite-difference schemes for computation of three dimensional solutions of gas dynamics

and calculation of a flow over a body under an angle of attack. Uchenye Zapiski TsaGI [Sci. Notes

Central Inst. Aerodyn], 6(2):1–6, 1975. 12

[53] H. Lamb. Hydrodynamics. Cambridge University Press, 1932. 3

[54] J. C. Luke. A variational principle for a fluid with a free surface. J. Fluid Mech., 27:375–397, 1967. 3

[55] P. A. Madsen, H. B. Bingham, and H. A. Schaffer. Boussinesq-type formulations for fully nonlinear

and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. Lond. A, 459:1075–1104,

2003. 2

[56] C. C. Mei. The applied dynamics of ocean surface waves. World Scientific, 1994. 3

[57] J. W. Miles and R. Salmon. Weakly dispersive nonlinear gravity waves. J. Fluid Mech., 157:519–531,

1985. 2, 4

[58] D. E. Mitsotakis. Boussinesq systems in two space dimensions over a variable bottom for the generation

and propagation of tsunami waves. Math. Comp. Simul., 80:860–873, 2009. 2, 16

[59] A. Nachbin. A terrain-following Boussinesq system. SIAM Appl. Math., 63(3):905–922, 2003. 2

[60] S. Neetu, I. Suresh, R. Shankar, D. Shankar, S. S. C. Shenoi, S. R. Shetye, D. Sundar, and B. Na-

garajan. Comment on “The Great Sumatra-Andaman Earthquake of 26 December 2004”. Science,

310:1431a–1431b, 2005. 21

[61] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway,

Port, Coastal and Ocean Engineering, 119:618–638, 1993. 2

[62] J. Pedlosky. Geophysical Fluid Dynamics. Springer, 1990. 2

[63] E. N. Pelinovsky and R. Kh. Mazova. Exact analytical solutions of nonlinear problems of tsunami

wave run-up on slopes with different profiles. Nat. Hazards, 6(3):227–249, 1992. 25

[64] D. H. Peregrine. Long waves on a beach. J. Fluid Mech., 27:815–827, 1967. 2

[65] A. A. Petrov. Variational statement of the problem of liquid motion in a container of finite dimensions.

Prikl. Math. Mekh., 28(4):917–922, 1964. 3

[66] S. B. Savage and K. Hutter. The motion of a finite mass of granular material down a rough incline.

J. Fluid Mech., 199:177—-215, 1989. 2

[67] F. Serre. Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille

blanche, 8:374–872, 1953. 2

[68] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM Journal on Scientific Com-

puting, 18:1–22, 1997. 14
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