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Abstract  24 

 25 

Mass-balance and dynamic behaviour of Chhota Shigri Glacier have been investigated between 26 

2002 and 2010 and compared to data collected in 1987/1989. During the period 2002/2010, the 27 

glacier experienced a negative glacier-wide mass balance of –0.67 ± 0.40 m water equivalent per 28 

year (w.e. yr
-1

). Between 2003 and 2010, elevation and ice flow velocities are slowly decreasing 29 

in the ablation area leading to a 24 to 37% reduction in ice fluxes, an expected response of the 30 

glacier dynamics to its recent negative mass balances. The reduced ice fluxes still remain far 31 

larger than the balance fluxes calculated from the year 2002 to 2010 average surface mass 32 

balances. Therefore, further slow down, thinning and terminus retreat of Chhota Shigri Glacier 33 

are expected over the next years. Conversely, the 2003/2004 ice fluxes are in good agreement 34 

with ice fluxes calculated assuming that the glacier-wide mass balance is zero. Given the limited 35 

velocity change between 1987/1989 and 2003/2004 and the small terminus change between 1988 36 

and 2010, we suggest that the glacier has experienced a period of near zero or slightly positive 37 

mass balance in the 1990s, before shifting to a strong imbalance in the 21
st
 century. This result 38 

challenges the generally accepted idea that glaciers of Western Himalaya have been shrinking 39 

rapidly for the last decades.   40 

 41 

1. Introduction 42 

 43 

 Although Himalayan glaciers have important social and economic impacts (e.g. Barnett 44 

and others, 2005), they have never been monitored on a long-term basis and little is known about 45 

recent glacier trends or their contribution to local and regional water supplies, even giving rise to 46 
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a controversial statement in the IPCC 4
th

 assessment report saying that “the likelihood of them 47 

disappearing by the year 2035 or perhaps sooner is very high if the Earth keeps warming at the 48 

current rate” (Cogley and others, 2010). A general negative mass balance of mountain glaciers 49 

on a global level is clearly revealed from recent research (e.g. Cogley, 2009; Zemp and others, 50 

2009) but the effect of global warming in the Himalaya is still under debate (Yadav and others, 51 

2004; Roy and Balling, 2005). Though temperate glacial mass-balance change is one of the best 52 

indicators of climate change (Oerlemans, 2001; Vincent and others, 2004; Ohmura and others, 53 

2007) the paucity of mass-balance data in Himalaya makes it difficult to obtain a coherent 54 

picture of regional climate change impacts in this region. In the Indian Himalaya the first mass-55 

balance study started on Gara Glacier (Himachal Pradesh) in September 1974 (Raina and others, 56 

1977) and ended in 1983 (Dobhal and others, 2008). According to Dyurgerov and Meier (2005), 57 

eight glaciers in the Indian Himalaya were surveyed for mass balance at least for one year during 58 

the 1980s. Unfortunately each study was restricted to short periods, not more than one decade 59 

(Dobhal and others, 2008). Remote sensing studies were also attempted in this part of Himalaya, 60 

but these studies either deal with only surface area changes (e.g. Kulkarni and others, 2007; 61 

Bhambri and others, 2011) or cover short periods (Kulkarni, 1992; Berthier and others, 2007). 62 

 63 

 The present study is based on mass balance and surface ice flow velocity measurements 64 

conducted on Chhota Shigri Glacier, Himachal Pradesh, India between 2002 and 2010, and on a 65 

comparison to data collected in 1987/1989. In the Indian Himalaya, this is one of the longest 66 

continuous field mass-balance dataset. Moreover, in October 2009, a Ground Penetrating Radar 67 

(GPR) survey was also conducted to measure ice thickness. Eight years of mass-balance 68 

measurements, surface ice velocities and ice thickness data provide an opportunity to study the 69 
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behaviour of this glacier. The main objectives of this paper are (i) to present the recent mass 70 

balance of Chhota Shigri Glacier, (ii) to determine the ice fluxes at five cross sections from 71 

thickness and ice velocities, and (iii) to compare these data with the ice fluxes inferred from 72 

cumulative surface mass balance upstream of the same cross sections. These results give insights 73 

into the mass-balance trend of the glacier over the last two to three decades, and allow us to 74 

assess whether it is in equilibrium with the climate of the 21
st
 century. 75 

 76 

2. Site description and methodology 77 

 78 

2.1 Site description 79 

Chhota Shigri Glacier (32.2
o 

N and 77.5
o 

E) is a valley-type glacier located in the 80 

Chandra-Bhaga River basin of Lahaul and Spiti Valley, Pir Panjal Range, Western Himalaya. 81 

This glacier extends from 6263 m to ~4050 m a.s.l., is ~9 km long and covers 15.7 km
2
 of area. 82 

The snout of this glacier is easy to locate from one year to another because it is well defined, 83 

lying in a narrow valley and giving birth to a single proglacial stream. The main orientation of 84 

this glacier is north except for its tributaries which have a variety of orientations (Fig. 1). The 85 

lower ablation area (<4400 m a.s.l.) is partly covered by debris representing ~3.4% of the total 86 

surface area. This glacier is located in the monsoon-arid transition zone and is influenced by two 87 

atmospheric circulation systems: the Indian monsoon during summer (July–September) and the 88 

northern-hemisphere mid-latitude westerlies during winter (January–April) (Singh and others, 89 

1997; Bookhagen and Burbank, 2006; Gardelle and others, 2011). 90 

 91 

2.2 Mass balance 92 
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The first series of mass-balance measurements was performed on Chhota Shigri Glacier 93 

between 1987 and 1989 (Nizampurkar and Rao, 1992; Dobhal and others, 1995; Kumar, 1999). 94 

The bedrock topography and surface ice velocity were also surveyed over the same period by 95 

gravimetric and stake displacement methods respectively (Dobhal and others, 1995; Kumar, 96 

1999). We re-initiated the mass-balance observations in 2002. From that year, annual surface 97 

mass-balance measurements have been carried out continuously on Chhota Shigri Glacier at the 98 

end of September or beginning of October using the direct glaciological method (Paterson, 99 

1994). Ablation was measured through a network of ~22 stakes distributed between 4300 and 100 

5000 m a.s.l. (Fig. 1) whereas in the accumulation area, the net annual accumulation was 101 

obtained at six sites (by drilling cores or pits) between 5100 and 5550 m a.s.l. (Wagnon and 102 

others, 2007). In the accumulation area, the number of sampled sites is limited due to the 103 

difficulty in access and high elevation. The glacier-wide mass balance, Ba is calculated according 104 

to:  105 

 106 

                                                 Ba = ∑ bi (si /S)      (1) 107 

 108 

Where bi stands for the mass balance of the altitudinal range (m w.e. yr
-1

), i, of map area si and S 109 

symbolizes the total glacier area. For each altitudinal range, bi is obtained from the 110 

corresponding stake readings or net accumulation measurements. 111 

 112 

2.3 Surface velocity 113 
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Annual surface ice velocities were measured at the end of each ablation season 114 

(September-October) by determining the annual stake displacements (~22 stakes) using a 115 

Differential Global Positioning System (DGPS). These geodetic measurements were performed 116 

in kinematic mode relative to two fixed reference points outside the glacier on firm rocks. The 117 

accuracy in x (easting), y (northing) and z (elevation) of each stake position is estimated at ±0.2 118 

m depending mainly on the size of the hole in which the stake has been set-up. Thus the surface 119 

ice velocities measured from stake displacements have an accuracy of ±0.3 m yr
-1

.  120 

 121 

2.4 Ice thickness 122 

Ground penetrating radar measurements were conducted in October 2009 to determine 123 

ice thickness on five transverse cross sections (Fig. 1) between 4400 and 4900 m a.s.l. A pulse 124 

radar system (Icefield Instruments, Canada) based on the Narod transmitter (Narod and Clarke, 125 

1994) with separate transmitter and receiver, was used in this study with a frequency centered 126 

near 4.2 MHz and antenna length of 10 m. Transmitter and receiver were towed in snow sledges 127 

along the transverse profile, separated by a fixed distance of 20 meters, and used to record 128 

measurements every 10 m. The positions of the receiver and the transmitter are known through 129 

DGPS measurements, within an accuracy of ±0.1 m. The speed of electromagnetic wave 130 

propagation in ice has been assumed to be 167 m µs
-1

 (Hubbard and Glasser, 2005). The field 131 

measurements were performed in such a way as to obtain reflections from the glacier bed located 132 

more or less in the vertical plane with the measurement points at the glacier surface, allowing the 133 

determination of the glacier bed in two dimensions. The surface of the bedrock was constructed 134 

as an envelope of all ellipse functions, which give all the possible reflection positions between 135 
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sending and receiving antennae. Ice thickness was measured along four transverse profiles 136 

(profiles 1-4) on the main glacier trunk and one (profile 5) on a western tributary (Fig. 1). 137 

 138 

3. Data analysis and results 139 

 140 

3.1 Glacier-wide mass balance and mass-balance profile 141 

The annual glacier-wide mass balance and cumulative mass balance of Chhota Shigri 142 

Glacier between 2002 and 2010 are plotted in Figure 2. The glacier-wide mass balance was 143 

negative except for three years (2004/2005; 2008/2009 and 2009/2010). It varies from a 144 

minimum value of –1.40 m w.e. in 2002/2003 to a maximum value of +0.33 m w.e. in 145 

2009/2010. The cumulative mass balance of Chhota Shigri is -5.37 m w.e. between 2002 and 146 

2010 while the glacier-wide mass balance averaged over the same period is –0.67 m w.e. yr
–1

. 147 

 148 

The quantitative uncertainty associated with the glaciological mass balance requires a 149 

distinction between the accumulation zone and the ablation zone. In the accumulation zone, the 150 

surface mass-balance measurements were obtained from shallow boreholes (auger). Therefore, 151 

they are based on core length and density determination. In the ablation zone, the measurements 152 

have been carried out from ablation stakes. The overall error (standard deviation) on point 153 

measurements are estimated at 0.30 m w.e. and 0.15 m w.e. in the accumulation zone and in the 154 

ablation zone, respectively. The overall error comes from a variance analysis (Thibert and others; 155 

2008) applied to all types of errors (ice/snow density, core length, stake height determination, 156 

liquid-water content of the snow, snow height). Although conducted on a glacier in the Alps, the 157 

analysis of Thibert and others (2008) can be generalized to other glaciers because it is based on 158 
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measurement errors which are similar on every glacier when using the glaciological method. 159 

However, only 6 sites are sampled in the accumulation zone (11.6 km²), and 22 sites in the 160 

ablation zone (4.1 km²). The uncaptured spatial variability of surface mass balance may cause 161 

systematic errors on the glacier-wide mass balance. In the accumulation zone, the spatial 162 

variability remains unknown and is probably very high as observed for other glaciers (e.g. 163 

Machguth and others, 2006). In the ablation zone, stakes set up at the same altitude show similar 164 

values except on the terminal tongue which is debris covered (0.54 km²). Consequently, the 165 

overall uncertainties on mass-balance profile have been assessed at 0.5 m w.e. in the 166 

accumulation zone, 0.25 m w.e. in the white ablation zone and 0.5 m w.e. in the debris covered 167 

area of the glacier. Moreover, the surface area estimation also causes systematic error. The 168 

uncertainty on the surface area calculated for each altitudinal range is estimated at 5%. 169 

Combining these errors at different altitudinal ranges using Equation (1), the uncertainty on the 170 

annual glacier-wide mass balance is 0.4 m w.e. yr
-1

. As revealed by other studies (e.g. Vincent, 171 

2002; Thibert and others, 2008; Huss and others, 2009), this estimation confirms that the 172 

glaciological method needs to be calibrated by a volumetric method over a long period of 173 

monitoring (i.e. >5 years) in order to limit the systematic errors and to improve the accuracy of 174 

absolute values of mass balance. Note that the uncertainty of relative changes in mass balance 175 

from year to year is smaller than those inherent in annual mass balances, given that the influence 176 

of systematic errors can be reduced. 177 

 178 

We also calculated the mass-balance profile between 2002 and 2010 (Fig. 3). For each 179 

altitudinal range, we computed the average of all available measurements. Figure 3 reveals that 180 

melting in the lowest part of the ablation area (below 4400 m a.s.l.) is reduced by about 1 m w.e. 181 
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yr
-1

 irrespective to its altitude. This is due to the debris cover (~5 to 10 cm thick debris mixed 182 

with isolated rocks) which reduces the melting in this region (Mattson and others, 1993; Wagnon 183 

and others, 2007). Moreover the lower part of Chhota Shigri Glacier flows in a north-south 184 

oriented deep and narrow valley (Fig. 1), causing the glacier tongue to receive less solar 185 

radiation due to the shading effect of the steep valley slopes. 186 

 187 

3.2 Ice thicknesses and cross section areas 188 

Thanks to clear reflections, ice-bedrock interface was generally easy to determine on all 189 

profiles. Figure 4 provides an example of the radargram obtained at cross section 2. A radar wave 190 

velocity of 167 m µs
-1 

was used for calculations of ice thickness at all the profiles. The cross 191 

sections obtained from GPR measurements reveal a valley shape with maximum ice thickness 192 

greater than 250 m (Fig. 5). The centerline ice thickness increases from 124 m at 4400 m a.s.l. 193 

(cross section 1 in Fig. 1) to 270 m at 4900 m a.s.l. (cross section 4), which confirms that the 194 

thicknesses obtained by gravimetric methods in 1989 (Dobhal and others, 1995), twice lower 195 

than the present results, were under-estimated as proposed by Wagnon and others (2007). The 196 

cross sectional areas are given in Table 1. The accuracy of the calculated ice thickness is 197 

determined, in part, by the accuracy of the measurement of the time delays and the antenna 198 

spacing. Additional errors may arise because the smooth envelope of the reflection ellipses is 199 

only a minimal profile for a deep valley-shape bed topography, with the result that the ellipse 200 

equation will be governed by arrivals from reflectors located toward the side and thus not 201 

directly beneath the points of observation. Further errors may be introduced by assuming that all 202 

reflection points lie in the plane of the profile rather than on an ellipsoid. No errors associated to 203 

radar wave velocity variations between snow and ice have been accounted for because all cross 204 
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sections were surveyed in the ablation zone or slightly above (with the firn-ice transition depth at 205 

the surface or < 2 m deep). Hence, the radar wave velocity for ice (167 m µs
-1

) was used to 206 

calculate all ice depths. The overall uncertainty in ice thickness is estimated as 15 m. Given that 207 

the uncertainty in ice surface coordinates is low (±0.1 m), the uncertainty on cross section areas 208 

mainly arises from the uncertainty in ice thickness. The uncertainties in cross section areas are 209 

16, 9, 10, 10 and 15% for the cross sections 1, 2, 3, 4 and 5 respectively. 210 

 211 

3.3 Ice velocity 212 

Annual surface ice velocities were also measured between 2002 and 2010. However, 213 

some data gaps exist due to discontinuous DGPS signal, or loss of stakes. The ice velocities from 214 

2003/2004 were used in this study because they provided the most complete dataset (Fig. 6). The 215 

center line horizontal ice velocities at each cross section were calculated by linear interpolation 216 

method along the center line between the velocities measured immediately upstream and 217 

downstream of the cross section (ablation stakes visible on Fig. 1). Mean cross section velocities 218 

are required to compute the ice fluxes (see section below). A map of the surface ice velocity field 219 

has been derived by correlating 2.5-m SPOT5 images acquired on 13 November 2004 and 21 220 

September 2005 (Berthier and others, 2005). Comparison of the satellite-derived velocities with 221 

16 nearly simultaneous DGPS velocity measurements shows a mean difference of 0.2 m yr
-1

 and 222 

a standard deviation of 1.6 m yr
-1

. The ratio between the center line horizontal velocity and the 223 

mean surface velocity (all extracted from the satellite-derived 2004/2005 velocity field) was 224 

found to be 0.80 and 0.78 for cross sections 2 and 3 respectively. Reliable velocity measurements 225 

could not be measured from SPOT5 imagery for other cross sections. Using the mean value of 226 
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0.79, the mean horizontal velocity has been calculated from the center line velocity for each gate 227 

cross section (Table 1). 228 

 229 

3.4 Ice fluxes from kinematic method 230 

The ice flux Q (m
3
 of ice per year) through each cross section was calculated using the 231 

cross sectional area Sc (m
2
) and depth-averaged horizontal ice velocity U (m yr

-1
). 232 

 233 

Q = U Sc       (2) 234 

 235 

The depth-averaged horizontal ice velocity was derived from the mean surface ice velocity 236 

calculated in the previous section. Nye (1965) gives ratios of depth-averaged horizontal ice 237 

velocity to mean surface ice velocity varying from 0.8 (no sliding) to 1 (maximum sliding). Here, 238 

we assume a mean basal sliding, with a constant ratio of 0.9. The calculated ice fluxes and 239 

maximum depth at each cross section are given in Table 1. The flux through cross section 3 at 240 

4750 m a.s.l. is higher than the flux through cross section 4 at 4900 m a.s.l. This is due to the ice 241 

influx from the western part of the glacier (flux through cross section 5) which contributes to 242 

cross section 3 and not to cross section 4 (Fig. 1). 243 

 244 

The largest uncertainty on the depth-averaged horizontal ice velocity results from the 245 

ratio between the depth velocity and the surface flow velocity. The estimated factor 0.9 and 246 

unknown variations in the basal sliding lead to an uncertainty of roughly ±10% in the calculated 247 

flux, which lies within the range of uncertainty of the other variables as discussed by Huss and 248 

others (2007). Consequently, we can assess that depth-averaged horizontal ice velocity at each 249 
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cross section is known with an accuracy of 1.0 to 3.0 m yr
-1

 depending on the cross sections. 250 

Combining these errors on the cross sectional area and mean velocity, the uncertainties on the ice 251 

fluxes are 0.21, 0.69, 0.92, 0.89 and 0.38 x 10
6
 m

3 
yr

-1
 for the cross sections 1, 2, 3, 4 and 5 252 

respectively. Here we have considered that the errors are systematic, so these uncertainties are 253 

probably over-estimated. 254 

 255 

3.5 Ice fluxes obtained from surface mass balance  256 

We also calculated ice fluxes using annual surface mass balance measured during 257 

2002/2010. Although the dynamic changes are neglected here, this method allows us to estimate 258 

the ice fluxes for each section from mass-balance data according to the following equation: 259 

 260 

i

z

z

isbQ 
max

9.0

1
      (3) 261 

  262 

Where Q is the ice flux (converted into m
3
 of ice per year using an ice density of 900 kg m

–3
, 263 

hence the factor 1/0.9) at a given elevation, z, and bi is the annual mass balance of the altitudinal 264 

range i of map area si. The altitudinal ranges taken into account in the calculation are located 265 

between z and the highest range of the glacier zmax (highest altitude of the glacier area 266 

contributing ice to the cross section). We assume here that on each point of the glacier above this 267 

altitude, z, the surface elevation has remained unchanged from one year to the next. 268 

 269 

The ice fluxes calculated from annual mass-balance data at the 5 cross sections each year 270 

are given in Table 3, while the average ice fluxes for the eight years are given in Figure 7. The 271 
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uncertainties on ice fluxes resulting from surface mass balance are directly derived from the 272 

mass-balance uncertainties (see section 3.1) applied to areas contributing to each cross section. 273 

 274 

4. Discussion 275 

The first and main objective of this section is to discuss the mass-balance change of 276 

Chhota Shigri Glacier over the last two to three decades using not only direct mass-balance 277 

observations (over the last eight years) but also ice-flux analysis. The second goal is to give 278 

insights into the specific dynamics and the future retreat of this glacier that can be expected in 279 

relation to its recent surface mass balance (hereafter referred to as SMB). 280 

 281 

4.1 Null to slightly positive mass balance during the 1990s inferred from ice fluxes 282 

The ice fluxes obtained from the kinematic method using ice thickness and 2003/2004 ice 283 

velocities are much higher than the average fluxes derived from the 2002/2010 SMBs, the latter 284 

being often negative (Table 2). Thus in this section, to assess the mean state of the glacier 285 

corresponding to the ice fluxes obtained by the kinematic method, we compare these measured 286 

ice fluxes to theoretical ice fluxes calculated from SMB assuming the glacier to be in steady 287 

state. The glacier-wide mass balance obtained by the glaciological method is -0.67 m w.e. yr
-1

 288 

over the 2002/2010 period. Consequently, the SMB needs to be increased by 0.67 m w.e. yr
-1

, for 289 

the glacier to be in steady state with the present surface area. For each year (2002/2010), we 290 

calculated the theoretical ice flux from SMB at each cross section assuming the glacier was in 291 

steady state. For this purpose, every year, a theoretical SMB at each elevation has been 292 

calculated by substracting the overall annual specific SMB of the same year. For instance, year 293 

2002/2003 was characterized by a negative annual glacier-wide SMB of -1.40 m w.e. so we 294 
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calculated a new SMB profile by adding +1.40 m w.e. to the SMB at each elevation. In contrast 295 

year 2009/2010 was characterized by a positive annual glacier-wide SMB of +0.33 m w.e. so we 296 

calculated a new SMB profile by subtracting 0.33 m w.e. from the SMB at each elevation. The 297 

resulting ice fluxes are reported in Table 3, together with the mean ice flux at each cross section 298 

over the eight years and the corresponding standard deviations. 299 

 300 

These ice fluxes are close to the 2003/2004 ice fluxes obtained by the kinematic method 301 

(Fig. 7) indicating that the dynamic behaviour of the glacier in 2003/2004 is representative for 302 

steady-state conditions. This suggests that in the years preceding 2003/2004, the glacier-wide 303 

mass balance of this glacier has probably been close to zero and that, in 2003/2004, the ice fluxes 304 

had not adjusted to previous year negative SMB. 305 

 306 

This result is also supported by other observations. First, the ice velocities measured in 307 

1987/1988 (Dobhal and others, 1995) are very close to the 2003/2004 values (Fig. 6) suggesting 308 

that the dynamic behaviour of this glacier did not change a lot between 1988 and 2004. Second, 309 

the terminus fluctuation measured between 1988 and 2010 show a moderate retreat equal to 155 310 

m, equivalent to only 7 m yr
-1

, in agreement with conditions not far from steady state. Given that 311 

Berthier and others (2007) observed a glacier-wide SMB of Chhota Shigri Glacier of 312 

approximately -1 m w.e. yr
-1

 during the period 1999 to 2004, the glacier is likely to have 313 

experienced a null to slightly positive mass balance between 1988 and the end of the 20
th

 314 

century.  315 

 316 

 317 
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4.2 Glacier dynamics starting to adjust to 21
st
 century negative SMB 318 

In theory, the response of ice fluxes to surface mass balance is immediate (Cuffey and 319 

Paterson, 2010, p. 468) but observations show a 1-5 year delay (Vincent and others, 2000; Span 320 

and Kuhn, 2003; Vincent and others, 2009). For instance, Span and Kuhn (2003) found 321 

synchronous decrease in ice velocity between eight glaciers in the Alps, which are driven by the 322 

same mass-balance changes (Vincent and others, 2005). Consequently, the recent dynamic 323 

behaviour of Chhota Shigri Glacier should be affected by the negative mass balance since 1999. 324 

However, the stake network on Chhota Shigri Glacier, originally designed for SMB 325 

measurements, is not best suited to accurately compare either the ice velocities or the thickness 326 

variations because the measurements have not been performed exactly at the same location every 327 

year and they are mainly restricted to the ablation area.  328 

 329 

In spite of the above limitation, an attempt has been made to compare ice velocities and 330 

elevations from the available stake network. For this purpose, stakes measured at the beginning 331 

and at the end of the series have been selected on five short longitudinal cross sections (A, B, C, 332 

D and E in Fig.1) along the center line of the glacier where the network is most dense. The 333 

elevations in 2003 and 2010 and the ice velocities in 2003/2004 and 2009/2010 have been 334 

reported on these longitudinal cross sections to deduce thickness and velocity changes in the 335 

ablation area (Fig. 8, Table 4). Although the accuracy of the results is affected by the distance 336 

between the point measurements, we can conclude that the part of the glacier below 4750 m a.s.l. 337 

is in strong recession. First, the thickness has decreased annually by 0.7 to 1.1 m yr
-1

 over the last 338 

seven years. Second, the ice velocities have been reduced by 7 m yr
-1

 between 2003 and 2010 339 

resulting in a 24 to 37% decrease in the ice fluxes since 2003. Despite an improvable monitoring 340 
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network, it may be surmised that the ice fluxes have been affected by the negative glacier-wide 341 

mass balance during (at least) the last eight years, and the dynamics of this glacier are 342 

progressively adjusting to the negative SMB. Consequently, we expect an accelerated terminus 343 

retreat in the coming years. If the SMB remained equal to its 2002/2010 average value in the 344 

future, the terminus would retreat by 5.6 km to reach an altitude of 4870 m a.s.l. (altitude where 345 

the ice flux is equal to zero) (Table 2). 346 

 347 

5. Conclusion 348 

 349 

The Chhota Shigri Glacier experienced negative mass balance over the 2002/2010 period. 350 

The glacier-wide mass balance of the glacier is estimated at –0.67 m w.e. yr
-1

 between 2002 and 351 

2010, revealing strong unsteady-state conditions over this period. Conversely, ice fluxes 352 

calculated through 5 transverse cross sections by the kinematic method correspond to near 353 

steady-state conditions before 2004. Given that ice velocities measured in 2003/2004 are close to 354 

those measured in 1988, and that terminus has retreated only 155 m between 1988 and 2010, it 355 

seems that the dynamic change was moderate between 1988 and 2004. Therefore, considering 356 

that Berthier and others (2007) observed a negative glacier-wide mass balance of about -1 m w.e. 357 

yr
-1

 between 1999 and 2004 using satellite images, our analysis suggests that the glacier 358 

experienced a period of slightly positive or close to zero mass balance at the end of the 20
th

 359 

century, before starting to shrink. As Chhota Shigri seems to be representative of other glaciers 360 

in the Pir Panjal Range (Berthier and others, 2007), it is possible that many Western Himalayan 361 

glaciers of northern India experienced growth during the last 10-12 years of the 20
th

 century, 362 

before starting to shrink at the beginning of the 21
st
 century. 363 
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 364 

Since 2003, ice velocities and elevation are decreasing in the ablation area. Our data 365 

suggest that the ice fluxes have diminished by 24 to 37% below 4750 m a.s.l. between 2003 and 366 

2010. Even if we account for a 37% decrease in ice fluxes calculated from 2003/2004 ice 367 

velocities to obtain present ice fluxes values, it remains a very large imbalance with ice fluxes 368 

coming from glacier-wide mass balance of the last eight years. Thus the present dynamics 369 

(thickness and ice velocities) of this glacier are far from surface mass balance and climate 370 

conditions of the last eight years, even if it is progressively adjusting. Therefore the glacier is 371 

likely to undergo accelerated retreat in the near future. 372 

 373 

This glacier is almost free of debris and thus its mass-balance variations are closely 374 

related to climate changes. This glacier has the longest running series of mass balance 375 

measurements in the Himalaya range. In the future, the dynamic behaviour and the mass balance 376 

need more detailed investigations, although such field measurements are demanding due to the 377 

very high altitude. In order to investigate the annual thickness and the ice velocity changes, we 378 

recommend performing elevation and ice velocity measurements on ~12 cross sections including 379 

some in the accumulation zone. We also recommend measuring the ice velocities from a dense 380 

network of stakes to be set up on longitudinal center lines in order to compare the annual 381 

velocity changes at the same points. Finally, we recommend calibrating and checking the mass-382 

balance field measurements from a volumetric method (from photogrammetry or remote sensing 383 

techniques). 384 

 385 

Acknowledgements  386 



 18 

This work has been supported by the IFCPAR/CEFIPRA under the project n°3900-W1 and by 387 

the French Service d’Observation GLACIOCLIM as well as the Department of Science and 388 

Technology (DST), and Space Application Centre, Government of India. The French National 389 

Research Agency through ANR-09-CEP-005-01/PAPRIKA provided DGPS devices to perform 390 

field measurements. We thank J. E. Sicart, J. P. Chazarin, our field assistant Mr. B. B. Adhikari 391 

and the porters who have been involved in successive field trips, sometimes in harsh conditions. 392 

We would also like to thank Dr D. P. Dobhal for his kind cooperation in answering our queries 393 

regarding the earlier research on Chhota Shigri Glacier. E. Berthier acknowledges support from 394 

the French Space Agency (CNES) through the TOSCA and ISIS proposal #0507/786 and from 395 

the Programme National de Télédétection Spatiale (PNTS). We thank Jawaharlal Nehru 396 

University for providing all the facilities to carry out this work. Prof. K. A. Brugger and another 397 

anonymous reviewer have provided constructive suggestions and comments which helped to 398 

significantly improve the manuscript. They are greatly acknowledged here. 399 

 400 

References 401 

Barnett, T.P., J.C. Adam and D.P. Lettenmaier. 2005. Potential impacts of a warming climate on 402 

water availability in snow-dominated regions. Nature, 438(7066), 303–309. 403 

Berthier, E., H. Vadon, D. Baratoux, Y. Arnaud, C. Vincent, K. L. Feigl, F. Remy, and B. 404 

Legresy. 2005. Surface motion of mountain glaciers derived from satellite optical imagery. 405 

Remote Sens. Environ., 95(1), 14-28. 406 

Berthier, E., Y. Arnaud, R. Kumar, S. Ahmad, P. Wagnon and P. Chevallier. 2007. Remote 407 

sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, 408 

India). Remote Sens. Environ., 108(3), 327–338. 409 



 19 

Bhambri, R., T. Bolch, R. K. Chaujar and S. C. Kulshreshtha. 2011. Glacier changes in the 410 

Garhwal Himalayas, India 1968-2006 based on remote sensing. J. Glaciol., 57(203): 543-411 

556. 412 

Bookhagen, B. and D.W. Burbank. 2006. Topography, relief, and TRMM-derived rainfall 413 

variations along the Himalaya. Geophys.Res. Lett., 33(8), L08405. 414 

(10.1029/2006GL026037). 415 

Cogley, J. G. 2009. Geodetic and direct mass-balance measurements: comparison and joint 416 

analysis. Ann. Glaciol., 50(50), 96-100. 417 

Cogley, J.G., J.S. Kargel, G. Kaser and C.J. Van der veen. 2010. Tracking the Source of Glacier 418 

Misinformation. Science, 327, 522. 419 

Cuffey, K.M. and W.S.B. Paterson. 2010. The Physics of Glaciers, fourth edition, Butterworth-420 

Heinemann, Elsevier, 468. 421 

Dobhal, D.P., S. Kumar and A.K. Mundepi. 1995. Morphology and glacier dynamics studies in 422 

monsoon–arid transition zone: an example from Chhota Shigri glacier, Himachal 423 

Himalaya, India. Current Sci., 68(9), 936–944. 424 

Dohbal, D.P., J.G. Gergan and R.J. Thayyen. 2008. Mass balance studies of the Dokriani Glacier 425 

from 1992 to 2000, Garhwal Himalaya, India. Bull. Glaciol. Res., 25, 9-17. 426 

Dyurgerov, M.B. and M.F. Meier. 2005. Glaciers and the changing Earth System: a 2004 427 

snapshot. Boulder, CO, Institute of Arctic and Alpine Research. Ocassional Paper 58.  428 

Gardelle, J., Y. Arnaud and E. Berthier. 2011. Contrasted evolution of glacial lakes along the 429 

Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet. Change, 430 

75(1-2), 47-55. 431 



 20 

Hubbard B. and N. Glasser. 2005. Field Techniques in Glaciology and Glacial Geomorphology, 432 

Wiley & Sons Ltd, Chichester, England, 400 pp. 433 

Huss, M., S. Sugiyama, A. Bauder and M. Funk. 2007. Retreat scenarios of Unteraargletscher, 434 

Switzerland, using a combined ice-flow mass-balance model. Arctic, Antarc. Alp. Res., 39 435 

(3), 422-431. 436 

Huss, M., A. Bauder and M. Funk. 2009. Homogenization of long-term mass-balance time 437 

series. Ann. of Glaciol., 50, 198-206. 438 

IPCC. 2007. Summary for Policymakers in Climate Change 2007: The Physical Science Basis. 439 

Contribution of Working Group I to the Fourth Assessment Report of the 440 

Intergovernmental Panel on Climate Change [Solomon, S., & others (eds.)]. Cambridge 441 

University Press, Cambridge, United Kingdom and New York, NY, USA. 442 

Kulkarni, A.V. 1992. Mass balance of Himalayan glaciers using AAR and ELA methods. J. 443 

Glaciol., 38, 101-104. 444 

Kulkarni, A.V. and 6 others. 2007. Glacial retreat in Himalaya using Indian remote sensing 445 

satellite data. Current Sci., 92(1), 69–74. 446 

Kumar, S. 1999. Chhota Shigri Glacier: its kinematic effects over the valley environment, in the 447 

northwest Himalaya. Current Sci., 77(4), 594–598. 448 

Machguth, H., O. Eisen, F. Paul and M. Hoelzle. 2006. Strong spatial variability of snow 449 

accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. 450 

Geophys. Res. Lett., 33, L13503. (10.1029/2006GL026576.) 451 

Mattson, L. E., J. S. Gardner and G. J. Young. 1993. Ablation on debris covered glacier, Punjab, 452 

Himalaya. IAHS Publ., 218, 289-296. 453 



 21 

Narod, B.B. and G.K.C. Clarke. 1994. Miniature high-power impulse transmitter for radio-echo 454 

sounding. J. Glaciol., 40(134), 190-194. 455 

Nijampurkar, V.N. and D.K. Rao. 1992. Accumulation and flow rates of ice on Chhota Shigri 456 

Glacier, central Himalaya, using radio-active and stable isotopes. J. Glaciol., 38(128), 43–457 

50. 458 

Nye, J.F. 1965. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross 459 

section. J. Glaciol., 5(41), 661-690. 460 

Oerlemans, J. 2001. Glaciers and climate change. Lisse, etc., A.A. Balkema, Brookfield, Vt. 461 

Ohmura, A., A. Bauder, H. Mu¨ ller and G. Kappenberger. 2007. Long-term change of mass 462 

balance and the role of radiation. Ann. Glaciol., 46, 367–374. 463 

Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier. 464 

Raina, V.K., M.K. Kaul and S. Singh. 1977. Mass balance studies of Gara Glacier. J. Glaciol. 465 

18(80), 415-423. 466 

Roy, S.S. and R.C. Balling. 2005. Analysis of trends in maximum and minimum temperature, 467 

diurnal temperature range, and cloud cover over India. Geophys. Res. Lett., 32(12), 468 

L12702. (10.1029/2004GL022201.) 469 

Singh P., S.K. Jain and N. Kumar. 1997. Estimation of snow and glacier-melt contribution to the 470 

Chenab river, Western Himalaya, Mount. Res. Dev. 17(1), 49-56. 471 

(10.1029/2004GL022201.) 472 

Span, N. and M. Kuhn. 2003. Simulating annual glacier flow with a linear reservoir model. J. 473 

Geophys. Res., 108(D10), 4313. (10.1029/2002JD002828.) 474 



 22 

Thibert, E., R. Blanc, C. Vincent and N. Eckert. 2008. Glaciological and volumetric mass-475 

balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. 476 

J. Glaciol., 54(186), 522–532. 477 

Vincent, C. 2002. Influence of climate change over the 20
th

 century on four French glacier mass 478 

balances. J. Geophys. Res., 107(D19), 4375. (10.1029/2001JD000832.) 479 

Vincent, C., M. Vallon, L. Reynaud and E. Le Meur. 2000. Dynamic behaviour analysis of 480 

glacier de Saint Sorlin, France, from 40 years of observations, 1957–97. J. Glaciol., 481 

46(154), 499–506.  482 

Vincent, C., G. Kappenberger, F. Valla, A. Bauder, M. Funk and E. Le Meur. 2004. Ice ablation 483 

as evidence of climate change in the Alps over the 20th century. J. Geophys. Res., 484 

109(D10), D10104. (10.1029/2003JD003857.) 485 

Vincent, C., E. Le Meur, D. Six and M. Funk. 2005. Solving the paradox of the end of the Little 486 

Ice Age in the Alps. Geophys. Res. Lett., 32(9), L09706. (10.1029/2005GL022552.) 487 

Vincent, C., A. Soruco, D. Six and E. Le Meur. 2009. Glacier thickening and decay analysis 488 

from 50 years of glaciological observations performed on Glacier d’Argentière, Mont 489 

Blanc area, France. Ann. Glaciol.. 50, 73-79. 490 

Wagnon, P., A. Linda, Y. Arnaud, R. Kumar, P. Sharma, C. Vincent, G. J. Pottakkal, E. Berthier, 491 

Al. Ramanathan, S. I. Hasnain and P. Chevallier. 2007. Four years of mass balance on 492 

Chhota Shigri Glacier, Himachal Pradesh, India, A New Benchmark Glacier In the Western 493 

Himalaya. J. Glaciol., 53(183), 603-610. 494 

Yadav, R.R., W.K. Park, J. Singh and B. Dubey. 2004. Do the western Himalayas defy global 495 

warming? Geophys. Res. Lett., 31(17), L17201. (10.1029/2004GL020201.) 496 



 23 

Zemp, M., M. Hoezle and W. Haeberli. 2009. Six decades of glacier mass-balance observations: 497 

a review of worldwide monitoring network. Ann. Glaciol., 50(50), 101-111. 498 

499 



 24 

Table and figure captions 500 

Table 1: Calculated ice flux, mean surface ice velocity and maximum ice depth at each cross 501 

section. The mean surface horizontal ice velocities are from DGPS measurements performed 502 

in 2003/2004. The satellite-derived mean ice velocities are from the correlation of satellite 503 

images acquired on 13 November 2004 and 21 September 2005 (NA: Not available). 504 

Table 2: Ice fluxes (in 10
6
 m

3
 ice yr

-1
), inferred at each cross section from annual mass-balance 505 

data. 506 

Table 3: Ice fluxes (in 10
6
 m

3
 ice yr

-1
), obtained at every cross section, using steady state mass-507 

balance assumption for every surveyed year.  508 

Table 4: Thickness and surface velocity changes between 2003 and 2010 on 5 longitudinal cross 509 

sections (NA: Not available). 510 

Figure 1: Map of Chhota Shigri Glacier with the measured transverse cross-sections (lines 1 to 511 

5), the ablation stakes (dots) and the accumulation sites (squares). Also shown are 512 

longitudinal sections (lines A-E) used to calculate thickness and ice velocity variations (see 513 

section 4.2). The map (contour lines, glacier delineation) was constructed using a 514 

stereoscopic pair of SPOT5 (Systeme Pour l’Observation de la Terre) images acquired 12 515 

and 13 November 2004 and 20 and 21 September 2005 (Wagnon and others, 2007). The 516 

map coordinates are in the UTM43 (north) WGS84 reference system. 517 

Figure 2: Cumulative (line) and annual glacier-wide mass balances (histograms) of Chhota Shigri 518 

Glacier during 2002/2010. 519 
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Figure 3: The 2002/2010 average mass-balance profile and the hypsometry of Chhota Shigri 520 

Glacier. Altitudinal ranges are of 50 m (for instance, 4400 stands for the range 4400-4450 m, 521 

except for 4250 and 5400 which stand for 4050-4300 m and 5400-6250 m respectively). 522 

Figure 4: Radargram of cross section 2: radar signals plotted side by side from west to east in 523 

their true spatial relationship to each other (interval between each signal of 10 m). The x-524 

axis gives the amplitude of each signal (50 mV per graduation); the y-axis is the double-time 525 

interval (µs). 526 

Figure 5: Ice depth and surface topography of cross-sections 1-5. The horizontal and vertical 527 

scales are the same for all cross-sections. All cross sections are oriented from west to east 528 

except cross section 5 which is north-south oriented. 529 

Figure 6: Measured ice velocities plotted as a function of the distance from the 2010 terminus 530 

position. Measurements were collected along the central flow line. 531 

Figure 7: Ice fluxes at every cross section derived (i) from 2003/2004 ice velocities and section 532 

areas (open squares) and (ii) from mass balance method for a glacier-wide SMB = 0 m w.e. 533 

(plain squares) or a glacier-wide SMB = -0.67 m w.e. (triangles). The error range for mass 534 

balance fluxes calculated from the mass balance method assuming a steady state (±1 535 

standard deviation: hyphenes) is also given. 536 

Figure 8: Elevation (dots) and surface ice velocity (triangles) between 2003 (continuous lines) 537 

and 2010 (dashed lines) along the longitudinal sections A, B, C, D and E shown in Figure 1. 538 

539 
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  540 

Cross 

section 

Altitude  

(m a.s.l.) 

Area 

(10
4 

m
2
) 

Mean surface 

ice- velocity 

from field data 

(m yr
-1

) 

(central line 

velocity*0.79) 

Satellite-

derived mean 

surface 

velocities 

(m yr
-1

) 

Ice flux 

(10
6 

m
3 

yr
-1

) 

Max. depth at 

center of cross 

section (m) 

1 4400 4.230.68 20.3 NA 0.78 0.21 124 

2 4650 12.141.09 31.2 30.7 3.41 0.69 240 

3 4750 16.491.65 29.2 29.2 4.35 0.92 245 

4 4900 15.531.55 30.1 NA 4.20 0.89 270  

5 4850 6.010.90 27.1 25.5 1.47 0.38 175 

 541 

Table 1 542 

 543 
 544 

Cross 

section 

Altitude 

(m a.s.l) 

Hydrological years (October – September) Mean  

2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2002/10 

Snout 4050 -22.26 -19.28 2.27 -22.21 -15.59 -14.65 2.06 5.24 -10.55 

1 4400 -22.83 -19.55 3.78 -22.65 -15.43 -14.82 3.19 6.84 -10.18 

2 4670 -14.31 -11.49 6.57 -14.35 -8.63 -8.21 6.03 8.70 -4.46 

3 4735 -9.88 -7.68 6.89 -10.04 -5.45 -5.46 6.16 8.43 -2.13 

4 4900 -1.41 -1.36 4.84 -2.30 0.05 -0.16 4.14 5.72 1.19 

5 4870 -1.61 -1.30 2.08 -2.19 -0.57 -0.82 1.86 2.80 0.03 

 545 
Table 2 546 

 547 

Cross 

section 

Altitude 

(m a.s.l) 

Hydrological years (October – September) Mean 
 

STD
*
 

2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2002/10 

Snout 4050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

1 4400 1.25 1.32 1.33 1.38 1.43 1.03 0.96 1.17 1.23 0.17 

2 4670 5.07 5.30 4.59 4.99 4.94 4.55 4.24 4.14 4.73 0.41 

3 4735 6.04 6.11 5.27 5.85 5.70 5.02 4.69 4.68 5.42 0.58 

4 4900 5.78 4.87 4.11 4.88 5.09 4.58 3.48 4.02 4.60 0.72 

5 4870 2.76 2.48 1.63 2.17 2.49 2.06 1.46 1.77 2.10 0.46 

*STD = standard deviation. 548 

Table 3 549 
550 
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 551 

Longitudinal section Elevation change (m)  Velocity change (m yr
-1

)  

A -5.3 -6.6 

B -8.6 -8.8 

C -7.5 -7.4 

D -2.8 NA 

E -5.6 +4.8 

 552 

Table 4 553 
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Figure 4 562 
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Figure 6 569 
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