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Abstract. Using Galois cohomology, Schmoyer characterizes crypto-
graphic non-trivial self-pairings of the ℓ-Tate pairing in terms of the
action of the Frobenius on the ℓ-torsion of the Jacobian of a genus 2
curve. We apply similar techniques to study the non-degeneracy of the
ℓ-Tate pairing restrained to subgroups of the ℓ-torsion which are max-
imal isotropic with respect to the Weil pairing. First, we deduce a cri-
terion to verify whether the jacobian of a genus 2 curve has maximal
endomorphism ring. Secondly, we derive a method to construct horizon-
tal (ℓ, ℓ)-isogenies starting from a jacobian with maximal endomorphism
ring.

1 Introduction

A central problem in elliptic and hyperelliptic curve cryptography is that of
constructing an elliptic curve or an abelian surface having a given number of
points on their Jacobian. The solution to this problem relies on the computation
of the Hilbert class polynomial for a quadratic imaginary field in the genus one
case. The analogous genus 2 case needs the Igusa class polynomials for quartic
CM fields. There are three different methods to compute these polynomials:
an analytic algorithm [15], a p-adic algorithm [6] and a Chinese Remainder
Theorem-based algorithm [4]. The last one relies heavily on an algorithm for
determining endomorphism rings of the jacobians of genus 2 curves over prime
fields.

Eisenträger and Lauter [4] gave the first algorithm for computing endomor-
phism rings of Jacobians of genus 2 curves over finite fields. The algorithm tales
as input a jacobian J over a finite field and a primitive quartic CM field K,
i.e. a purely imaginary quadratic extension field of a real quadratic field with
no proper imaginary quadratic fields. The real quadratic subfield K0 has class
number 1. It computes a set of generators of an order O in the CM field and tests
whether these generators are endomorphisms of J , in order to decide whether
the order O is the endomorphism ring End(J) or not. In view of application to
the CRT method for computing Igusa class polynomials, Freeman and Lauter
bring a series of improvements to this algorithm, in the particular case where we
need to decide whether End(J) is the maximal order or not.



Note that the Eisenträger-Lauter CRT method for computing class polyno-
mials searches for curves defined over some prime field Fp and belonging to a
certain isogeny class. Once such a curve is found, the algorithm keeps the curve
only if it has maximal endomorphism ring. This search is rather expensive and
ends only when all curves having maximal endomorphism ring were found. Re-
cent research in the area [1, 14, 3] has shown that we can significantly reduce the
time of this search by using horizontal isogenies, i.e. isogenies between jacobians
having the same endomorphism ring. Indeed, once a Jacobian with maximal en-
domorphism ring is found, many others can be generated from it by computing
horizontal isogenies.

In this paper, we propose a new method for checking if the endomorphism
ring is locally maximal at ℓ, for ℓ > 2 prime. Our method relies on the com-
putation of the Tate pairing. We study subgroups of the ℓ-power torsion which
are maximal isotropic with respect to the Weil pairing and such that the Tate
pairing restricted to these subgroups is kℓ,J -degenerate (in the sense of Defi-
nition 1). We show that the computation of kℓ,J suffices to check whether the
endomorphism ring is locally maximal at ℓ, in many cases. Moreover, we give a
method to distinguish kernels of horizontal (ℓ, ℓ)-isogenies from other isogenies of
principally polarized abelian varieties. Our main result is the following theorem.

Theorem 1. Let H be a hyperelliptic curve defined over a finite field Fq and
ℓ > 2 a prime number. Let J be the jacobian of H, whose endomorphism ring is
a locally maximal order at ℓ of a CM-field K. Suppose that the Frobenius endo-
morphism is exactly divisible by ℓn, n ∈ Z and that the conditions in Lemma 3
are satisfied. Then a subgroup G ⊂ J [ℓ], which is maximal isotropic with respect
to the Weil pairing, is the kernel of a descending isogeny if the Tate pairing
is kℓ,J -non-degenerate over Ḡ × Ḡ, for Ḡ ⊂ J [ℓn] such that ℓn−1Ḡ = G and
that Ḡ is maximal isotropic with respect to the ℓn-Weil pairing. The isogeny is
horizontal if the Tate pairing is kℓ,J -degenerate over Ḡ× Ḡ.

In view of application to the CRT method for Igusa polynomial computation, we
deduce an algorithm to compute kernels of horizontal isogenies efficiently. This
generalizes a result on horizontal ℓ-isogenies for genus 1 curves [8].

This paper is organised as follows. In Section 2 we recall briefly the Eisenträger-
Lauter algorithm for computing endomorphism rings. In Section 3 we give the
definition and properties of the Tate pairing. Section 4 describes our algorithm
for checking whether a Jacobian has locally maximal order at ℓ. In Section 5 we
show that we can compute kernels of horizontal (ℓ, ℓ)-isogenies by some Tate pair-
ing calculations. Finally, Section 6 gives complexity estimates for our algorithms
and compares their performance to that of the Freeman-Lauter algorithm.

Notation and assumptions. In this paper, we assume that principally polarized
abelian surfaces are simple, i.e. not isogenous to a product of elliptic curves. A
quartic CM field K is a totally imaginary quadratic extension of a totally real
field. We denote by K0 the real quadratic subfield of K and we assume that K0

has class number 1. We assume that K = Q(η), with η = i
√

a+ b
√
d if d ≡ 2, 3



mod 4 or η = i

√

a+ b
(

−1+
√
d

2

)

if d ≡ 1 mod 4. A CM-type Φ is a couple of

pairwise non-complex conjugate embeddings of K in C

Φ(z) = (φ1(z), φ2(z)).

An abelian surface over C with complex multiplication by OK is given by A(C) =
C2/Φ(a−1), where a is an ideal of OK and Φ is a CM type. This variety is said
to be of CM-type (K,Φ). A CM-type (K,Φ) is primitive is Φ cannot be obtained
as a lift of a CM-type of a CM-subfield of K. The principally polarized abelian
variety C2/Φ(a−1) is simple if and only if its CM-type is primitive [13].

2 Computing the endomorphism ring of a jacobian

The endomorphism ring of an ordinary jacobian J over a finite field Fq (q = pn)
is an order in a quartic CM field K such that

Z[π, π̄] ⊂ End(J) ⊂ OK ,

where Z[π, π̄] denotes the order generated by π, the Frobenius endomorphism
and by π̄, the Verschiebung. We give a brief description of the Eisenträger-Lauter
algorithm [4] which computes the endomorphism ring of J . For a fixed order O
in the lattice of orders of K, the algorithm tests whether this order is contained
in End(J). This is done by computing a Z-basis for the order and checking
whether the elements of this basis are endomorphisms of J or not. In order to
test if α ∈ O is an endomorphism, we write

α =
a+ bπ + cπ2 + dπ3

n
, (1)

with a, b, c, d, n some integers such that a, b, c, d have no commun factor with n
(n is the smallest integer such that nα ∈ Z[π]). The LLL algorithm computes
a sequence a, b, c, d, n such that α can be written as in Equation 1. In order to
check whether α is an endomorphism or not, Eisenträger and Lauter [4] use the
following result.

Lemma 1. Let A be an abelian variety defined over a field k and n an integer
coprime to the characteristic of k. Let α : A → A be an endomorphism of A.
Then A[n] ⊂ Ker α if and only if there is another endomorphism β of A such
that α = n · β.

Using Lemma 1, we get α ∈ End(J) if and only if a + bπ + cπ2 + dπ3 acts
as zero on the n-torsion. Freeman and Lauter show that n divides the index
[OK : Z[π]] (see [5, Lemma 3.3]). Since Z[π, π̄] is 1 or p, we have that n divides
[OK : Z[π, π̄]] if (n, p) = 1. Moreover, Freeman and Lauter show that if n factors
as ℓd1

1 ℓd2
2 . . . ℓdr

r , it suffices to check if

a+ bπ + cπ2 + dπ3

ℓdi

i

,



for every prime factor ℓi in the factorization of n. The advantage of using this
family of elements instead of α is that instead of working over the extension field
generated by the coordinates of the n-torsion points, we may work over the field
of definition of the ℓdi

i -torsion, for every prime factor ℓi. For a fixed prime ℓ,
Freeman and Lauter prove the following result, which allows computing a bound
for the degree of the smallest extension field over which the ℓ-torsion points are
defined.

Proposition 1. [5, Prop. 6.2] Let J be the Jacobian of a genus 2 curve over
Fq and suppose that End(J) is isomorphic to the ring of integers OK of the
primitive quartic CM field K. Let ℓ 6= q be a prime number, and suppose Fpr is
the smallest field over which the points of J [ℓ] are defined. If ℓ is unramified in
K, then r divides one of the following:

(a) ℓ− 1, if ℓ splits completely in K;
(b) ℓ2 − 1, if ℓ splits into two or three ideals in K;
(c) ℓ3 − ℓ2 + ℓ− 1, if ℓ is inert in K.

If ℓ ramifies in K, then r divides one of the following:

(a) ℓ3 − ℓ2, if there is a prime over ℓ of ramification degree 3, or if ℓ is totally
ramified in K and ℓ ≥ 3.

(b) ℓ2−ℓ, in all other cases where ℓ factors into four prime ideals in K (counting
multiplicities).

(c) ℓ3−ℓ, if ℓ factors into two or three prime ideals in K (counting multiplicities).

Once we computed the extension field over which the ℓ-torsion is defined, the
ℓd-torsion will be computed using the following result [5].

Proposition 2. [5, Prop. 6.3] Let A be an ordinary abelian variety defined over
a finite field Fq and let ℓ be a prime number not equal to the characteristic of
Fq. Let d be a positive integer. If the ℓ-torsion points of A are defined over Fq,
then the ℓd-torsion points are defined over Fqℓd−1 .

3 Background on the Tate pairing

Consider now H a hyperelliptic genus 2 curve defined over a finite field Fq, with
q = pr, whose equation is

y2 + h(x)y = f(x), (2)

with h, f ∈ Fq[x], degh ≤ 2, f monic and deg f ≤ 4. Let J be the jacobian of H
and denote by F̄q the algebraic closure of Fq and by GF̄q/Fq

= Gal(F̄q/Fq) the
Galois group. Let m ∈ N and consider J [m] the subgroup of m-torsion, i.e. the
points of order m. We denote by µm ⊂ F̄q the group of m-th roots of unity. The
m-Weil pairing

Wm : J [m]× Ĵ [m] → µm



is a bilinear, non-degenerate map and it commutes with the action of G. If
λ : A → Â is a principal polarization, then we define the Weil pairing as

Wm : J [m]× J [m] → µm

(P,Q) → Wm(P, λ(Q)).

Given a subgroup G ⊂ J [m], we say that G is isotropic with respect to the Weil
pairing if the Weil pairing restricted to G×G is trivial. It is maximal isotropic
if it is isotropic and it is not properly contained in any other such subgroup. We
denote by Hi(GF̄q/Fq

, J) the i-th Galois cohomology group, for i ≥ 0.

Consider the exact sequence 0 → J [m] → J(F̄q) → J(F̄q) → 0. Then by
taking Galois cohomology we get the connecting morphism

δ : J(Fq)/mJ(Fq) = H0(GF̄q/Fq
, J)/mH0(GF̄q/Fq

, J) → H1(GF̄q/Fq
, J [m])

P → FP ,

where the map FP is defined as follows

FP : GF̄q/Fq
→ J(F̄q)[m]

σ → σ(P̄ )− P̄ ,

where P̄ is any point such that mP̄ = P . Using the connecting morphism and
the Weil pairing, we define the m-Tate pairing as follows

J(Fq)/mJ(Fq)× Ĵ [m](Fq) → H1(G,µm)

(P,Q) → [σ → Wm(FP (σ), Q)].

For a fixed principal polarization λ : J → Ĵ we define a pairing on J itself

tλm(·, ·) : J(Fq)/mJ(Fq)× J [m](Fq) → F∗
q/F

∗m
q

(P,Q) → tm(P, λ(Q)).

Most often, if J has a distinguished principal polarization and there is no risk
of confusion, we write simply tm(·, ·) instead of tλm(·, ·).

Lichtenbaum [10] describes a version of the Tate pairing on Jacobian varieties.
More precisely, suppose we have m|#J(Fq) and denote by k the embedding degree
with respect to m, i.e. the smallest integer k ≥ 0 such that m|qk − 1. Let
D̄1 ∈ J(Fqk) and D̄2 ∈ J [m](Fqk) two divisor classes, and let D̄1 be represented
by D1 and D̄2 by D2 such that supp(D1) ∩ supp(D2) = ∅. Since D̄2 has order
m, there is a function fm,D2 is such that div(fm,D2) = mD2. The Tate pairing
of the divisor classes D̄1 and D̄2 is computed as

tm(D̄1, D̄2) = fD2(D1).

Moreover, in computational applications, it is convenient to work with a unique
value of the pairing. Given that F∗

qk/(Fqk)
m ≃ µm, we use the reduced Tate

pairing, given by

Tm(·, ·) : J(Fqk)/mJ(Fqk)× J [m](Fqk) → µm

(P,Q) → tm(P,Q)(q
k−1)/m.



The function fm,D2(D1) is computed using Miller’s algorithm [11] in O(logm)
operations in Fqk . Since H1(GF̄

qk
/F

qk
, µm) ≃ µm by Hilbert’s 90 theorem, it fol-

lows that there is an isomorphism H1(GF̄
qk

/F
qk
F, µm) ≃ H1(Gal(Fqkm/Fqk), µm).

Since H1(Gal(Fqkm/Fqk), µm) ≃ µm, we may compute the Tate pairing as

tm(·, ·) : J(Fqk)/mJ(Fqk)× Ĵ [m](Fqk) → µm

(P,Q) → Wm(FP (π), Q),

where π is the Frobenius of the finite field Fqk .

4 Pairings and endomorphism ring computation

In this section we relate some properties of the Tate pairing to the isomorphism
class of the endomorphism ring of the Jacobian. Let ℓ be a prime odd number.
We give a method to check whether the endomorphism ring is locally maximal
at ℓ (i.e. the index [OK : O] is not divisible by ℓ) by computing a certain number
of pairings.

Let H be a genus 2 curve defined over a finite field Fq, J its jacobian and
suppose that J [ℓn] ⊆ J(Fq) and that J [ℓn+1] * J(Fq), with ℓ different from p
and n ≥ 1. We denote by W the set of maximal isotropic subgroups in J [ℓn]
with respect to the ℓ-Weil pairing and we define kℓ,J to be

kℓ,J = max
G∈W

{k|∃P,Q ∈ G and Tℓn(P,Q) ∈ µℓk\µℓk−1}

Definition 1. Let G be a rank 2 subgroup of J [ℓn] in W. We say that the Tate
pairing is kℓ,J -non-degenerate (or simply non-degenerate) on G×G if its restric-
tion

Tℓn : G×G → µℓkℓ,J

is surjective. Otherwise, we say that the Tate pairing is kℓ,J -degenerate (or simply
degenerate) on G×G. Moreover, for two divisor classes D1, D2 ∈ G, we say that
they have non-degenerate pairing if Tℓn(D1, D2) is a ℓkℓ,J -th root of unity and
degenerate otherwise.

Lemma 2. The reduced Tate pairing defined as

Tℓn : J [ℓn]× J [ℓn] → µℓn

is kℓ,J -antisymmetric, i.e. Tℓn(D̄1, D̄2)Tℓn(D̄2, D̄1) ∈ µℓkℓ,J , for all D̄1, D̄2 ∈
J [ℓn].

Proof. Indeed, assume that there are D̄1, D̄2 ∈ J [ℓn] such that Tℓn(D̄1, D̄2)Tℓn(D2, D̄1) ∈
µℓn\µℓkℓ,J

. We denote by G = 〈D̄1, D̄2〉 and by r > kℓ,J the largest integer such
that Tℓn(D̄1, D̄2)Tℓn(D̄2, D̄1) is an ℓr-th primitive root of unity. Then the poly-
nomial

P(a, b) = logTℓn(D̄1, D̄1)a
2 + log(Tℓn(D̄1, D̄2)Tℓn(D̄2, D̄1))ab + logTℓn(D̄2, D̄2)b

2,



where the log function is computed with respect to some fixed ℓn-th root of
unity, is zero mod ℓn−r−1 and non-zero mod ℓn−r. Dividing by ℓn−r−1, we may
view P as a polynomial in Fℓ[a, b]. Since P is a quadratic non-zero polynomial,
it has at most two roots. These correspond to two divisor classes in G, with
r-degenerate self-pairing. Hence, there is at least one divisor D̄ ∈ G such that
Tℓn(D̄, D̄) is a ℓr-th root of unity. Since there is at least one maximal isotropic
subgroup W ∈ W with respect to the Weil pairing such that D̄ ∈ W , this
contradicts the definition of kℓ,J .

Let O be an order of K and let θ ∈ O. We define

vℓ,O(θ) := max
m≥0

{m : θ ∈ Z+ ℓmO}.

We denote by 1, δ, γ, η a Z-basis of O and and we write θ = a1+a2δ+a3γ+a4η.
Then we compute vℓ,O as

vℓ,O(θ) = vℓ(gcd(a2, a3, a4)). (3)

Note that the value of vℓ,O(θ) is independent of the choice of the basis. We say
that θ is divisible by t ∈ Z if we have θ ∈ tO. We say that θ is exactly divisible
by ℓn if it is divisible by ℓn and it is not divisible by ℓn+1. The following lemma
gives a criterion to check whether an order is locally maximal at ℓ or not.

Lemma 3. Let K := Q(i
√

a+ b
√
d) be a quartic CM field, with η = i

√

a+ b−1+
√
d

2 ,

if d ≡ 1 mod 4 and η = i
√

a+ b
√
d, if d ≡ 2, 3 mod 4. We assume that a, b, d ∈ Z

and that d and a2 − b2d are square free. Assume that K0 = Q(
√
d) has class

number 1. Let ℓ > 2 a prime number that does not divide lcm(a, b, d). Let
OK be the maximal order of K and O an order such that [OK : O] is di-
visible by ℓ. Let π ∈ O such that NK/K0

(π) ∈ Z is not divisible by ℓ and

that vℓ,OK
(π) > 0. We suppose that π = a1 + a2

−1+
√
d

2 + (a3 + a4
−1+

√
d

2 )η,

if d ≡ 1 mod 4 and π = a1 + a2
√
d + (a3 + a4

√
d)η, if d ≡ 2, 3 mod 4. If

vℓ(a3 − a4) < min(vℓ(a3), vℓ(a4)), then vℓ,O(π) < vℓ,OK
(π).

Proof. We denote by O1 = OK0 + OK0η. Since ℓ > 2, it suffices to show that
vO∩O1(π) < vO1(π). We will therefore assume, without restricting the generality,

that O ⊂ O1. Let δ = −1+
√
d

2 if d ≡ 1 mod 4 and δ =
√
d, if d ≡ 2, 3 mod 4 and

let γ := δη. Then 1, δ, γ, η is a basis for O1. We write π = a1 + a2δ + a3γ + a4η.
By writing down the norm condition for d ≡ 2, 3 mod 4

(

a1 + a2
√
d+ (a3 + a4

√
d)i

√

a+ b
√
d

)(

a1 + a2
√
d− (a3 + a4

√
d)i

√

a+ b
√
d

)

∈ Z,

we get that

2a1a2 + a23b+ a24bd+ 2aa3a4 = 0. (4)



Similarly, for d ≡ 1 mod 4, we have

−a22
2

+ a1a2 −
aa24
2

+ aa3a4 +
a23b

2
+

a24(1 + d)b

2
= 0. (5)

Since ℓ ∤ a1, equations (4) and (4) imply that vℓ(a2) > max(vℓ(a3), vℓ(a4)).
Since there is always an order O′ such that O ⊂ O′ ⊂ O1 such that [OK :
O′] is a power of ℓ, it suffices to prove the lemma in the case [O1 : O] is a
power of ℓ. For the order O, we choose {1, δ′, γ′, η′} a HNF basis with respect to
{1, δ, γ, η}. We denote by (ai,j)1≤i,j≤4 the corresponding transformation matrix.
Then [OK : O] =

∏

1≤i≤4 ai,i. Note that neither η nor γ are in O. Otherwise, O
is the maximal order. Indeed, assume η ∈ O. Since ℓ divides neither a nor b, it
follows that δ ∈ O. This implies that O is the maximal order. We consider the
decomposition of π over the basis {1, δ′, γ′, η′}

π = a′1 + a′2δ
′ + a′3γ

′ + a′4η
′, a′i ∈ Z.

Since η /∈ O, we know that a44 is ℓ. If a33 is divisible by ℓ, then vℓ(a
′
3) < vℓ(a3).

If a34 = 1, then a′4 = −(a3 − a4)/ℓ. If a34 = 0, then a′4 = a4/ℓ. If a33 = 1,
it follows that a34 = 1 (otherwise we would have γ ∈ O). Then a′3 = a3 and
a′4 = −(a3 − a4)/ℓ. We conclude that vℓ,O(π) < vℓ,OK

(π).

Since we know that J [ℓn] is Fq-rational, while J [ℓn+1] is not, Lemma 1 implies
that π−1 is exactly divisible by ℓn. Moreover, the Frobenius matrix on the Tate
module is the identity matrix I4 mod ℓn. The following lemma computes the
precision up to which the Frobenius matrix on the Tate module is of the form
λI4, with λ ∈ Z.

Lemma 4. Let J be a abelian surface defined over a finite field Fq and π the
Frobenius endomorphism. Then the largest integer m such that the matrix of the
Frobenius endomorphism on the ℓ-Tate module is of the form









λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ









mod ℓm (6)

is vℓ,O(π), where O is the endomorphism ring of J .

Proof. Let m be the largest integer such that the matrix of the Frobenius on
J [ℓm] has the form given in Equation (6). Let O be the endomorphism ring of J .
We denote by {1, δ, γ, η} the Z-basis of O and by π = a1 + a2δ + a3γ + a4η the
decomposition of π over this basis. It is obvious that m ≥ vℓ(gcd(a2, a3, a4)). For
the converse, we note that π−λ kills the ℓm-torsion, hence we may write π−λ =
ℓmα, with α ∈ End(J). We write down the decomposition of α over the basis
{1, δ, γ, η} and conclude that ℓm| gcd (a2, a3, a4). Hence m ≤ vℓ(gcd(a2, a3, a4)).
We conclude that m = vℓ(gcd(a2, a3, a4)), hence m = vℓ,O(π) by (3).



Using Galois cohomology, Schmoyer [12] computes the matrix of the Frobenius
on the Tate module, up to a certain precision, if the self-pairings of the Tate
pairing are degenerate. We use a similar approach and show that the precision
up to which the Frobenius acts on the Tate module as a multiple of the identity
is 2n−kℓ,J . Consequently, we recover information on the conductor of the endo-
morphism ring of J by computing kℓ,J . For m ∈ Z, we will use a symplectic basis
of J [ℓm], i.e. a basis such that the matrix associated to the ℓm-Weil pairing is

(

0 I
−I 0

)

mod ℓm. (7)

Proposition 3. Let H be a hyperelliptic curve defined over a finite field Fq, and
J its jacobian. Suppose that the Frobenius endomorphism π is such that π− 1 is
exactly divisible by ℓn, for ℓ ≥ 3 prime. Then if vℓ,End(J)(π) < 2n, we have

vℓ,End(J)(π) = 2n− kℓ,J . (8)

Proof. Let {Q1, Q2, Q−1, Q−2} a symplectic basis for the ℓ2n-torsion (whose ma-

trix is given by Equation (7)) and let π(Qg) =
∑2

h=−2 ah,gQh, with (ah,g)h,g∈{−2,−1,1,2}
in Z. By bilinearity, we have that

Tℓn(ℓ
nQi, ℓ

nQj) = Wℓ2n(Qi, π(Qj)−Qj) = Wℓ2n(Qi,

2
∑

h=−2
h 6=0

ah,jQh −Qj) (9)

= Wℓ2n(Qi, Qj)
aj,j−1

2
∏

h=−2
h 6=0,j

Wℓ2n(Qi, Qh)
ah,j . (10)

If j 6= −i, we have that Tℓn(ℓ
nQi, ℓ

nQj) ∈ µℓkℓ,J . It follows that

a−i,j ≡ 0 (mod ℓ2n−kℓ,J ),

for i 6= −j. If j = −i, then Tℓn(ℓ
nQi, ℓ

nQj) = Wℓ2n(Qi, Qj)
aj,j−1. Since the Tate

pairing is kℓ,J -antisymmetric we get

ai,i ≡ a−i,−i (mod ℓ2n−k).

It remains to prove that ai,i ≡ aj,j , for i, j ∈ {−2,−1, 1, 2}. Note that by Galois
invariance, we have Wℓ2n(π(Qi), π(Qj)) = π(Wℓ2n(Qi, Qj)) = Wℓ2n(Qi, Qj)

q.
For i = −j we have

Wℓ2n(π(Qi), π(Q−i)) = Wℓ2n(
2

∑

h=−2
h 6=0

ah,iQh,
2

∑

g=−2
g 6=0

ag,−iQg)

=

2
∏

h=−2
h 6=0

2
∏

g=−2
g 6=0

Wℓ2n(ah,iQh, ag,−iQg) = Wℓ2n(Qi, Q−i)
ai,ia−i,−i

2
∏

h=−2
h 6=0,i

Wℓ2n(ah,iQh, a−i,−iQ−i)

·
2
∏

g=−2
g 6=0,−i

Wℓ2n(ai,iQi, ag,−iQg)

2
∏

s=−2
s6=0,i

2
∏

t=−2
t6=0,−i

Wℓ2n(Qs, Qt)
as,iat,−i



Since {Q1, Q2, Q−1, Q−2} is a symplectic basis and that ah,g ≡ 0 (mod ℓn), for
h 6= −q, then

Wℓ2n(π(Qi), π(Q−i)) = W
ai,ia−i,−i

ℓ2n (Qi, Q−i).

Since ai,i ≡ a−i,−i (mod ℓ2n−kℓ,J ), it follows that

a2i,i ≡ q for all i ∈ {−2,−1, 1, 2}.

Since ai,i ≡ 1 (mod ℓn), it follows that ai,i ≡ b (mod ℓ2n−kℓ,J ), for some b ∈ Z.
By Lemma 6, we have 2n−kℓ,J ≤ vℓ(π). For the converse, let k = 2n−vℓ,EndJ(π)
and R,S be two points in J [ℓn] such that Wℓ(R,S) = 1. It suffices to show that
Tℓn(R,S) is k-degenerate. We write π−1 = a1+a2α+a3β+a4θ, where 1, α, β, θ
are a Z-basis of End(J). We take S̄ such that S = ℓnS̄ and we get

Tℓn(R,S) = Wℓn(R, (π − 1)(S̄)) =

= Wℓn(R,S)
a1
ℓn Wℓn(R, (

a2
ℓn

δ +
a3
ℓn

γ +
a4
ℓn

η)(S))ℓ
n−k

.

Since Wℓ(R,S) = 1 and vℓ(gcd(a2, a3, a4)) = ℓ2n−k, we have Tℓn(R,S) ∈ µℓk .
Hence k ≥ kℓ,J . This concludes the proof.

Proposition 3 gives a method to compute to compute vℓ,EndJ (π) using pairings.
Together with Lemma 3, this gives a criterion to check whether the endomor-
phism ring of a jacobian is locally maximal at ℓ.

Theorem 2. Let H be a hyperelliptic curve defined over a finite field Fq and J
its jacobian. Suppose that the Frobenius endomorphism π is exactly divisible by
ℓn, n ∈ Z and that the conditions in Lemma 3 are satisfied. Then if vℓ,OK

(π) <
2n, End(J) is a locally maximal order at ℓ if and only if kℓ,J equals 2n−vℓ,OK

(π).

Proof. By Proposition 3, kℓ,J equals 2n − vℓn,O(π), where O ≃ End(J). By
Lemma 3, the value of vℓn,OK

(π) uniquely characterizes orders which are locally
maximal at ℓ.

The following corollary reformulates the condition under which we may apply
the criterion in Theorem 2.

Corollary 1. Let H be a hyperelliptic curve defined over a finite field Fq and
J its jacobian. Let π = 1 + a1 + a2δ + a3γ + a4η be the decomposition of the
Frobenius over a Z-basis of OK . Then kℓ,J > 0 if and only if vℓ(gcd(a2, a3, a4)) <
2vℓ(gcd (a1, a2, a3, a4)).

We conclude this section by giving in Algorithm 1 a computational method
which verifies whether the jacobian J of a genus 2 curve has locally maximal
endomorphism ring. If kℓ,J = 0, the algorithm aborts. By Lemma 4, computing
kℓ,J is equivalent to computing the greatest power of ℓ dividing all coefficients
ai,j , with i 6= j of the matrix of the Frobenius on the Tate module. Equation 9
shows that in order to compute the ℓ-adic valuation of these coefficients, it
suffices to determine all the values Tℓn(Qi, Qj), for i 6= −j.



Algorithm 1 Checking whether the endomorphism ring is locally maximal

INPUT: A jacobian J of a genus 2 curve defined over Fq such that J [ℓn] ⊂ J(Fq),
the Frobenius π, a symplectic basis (Q1, Q2, Q−1, Q−2) for J [ℓn]

OUTPUT: The algorithm outputs true if End(J) is maximal at ℓ if vℓ,OK
(π) < 2n.

1: for all i, j ∈ {1, 2,−1,−2} do

2: if i 6= −j then

3: Compute ti,j ← Tℓn(Qi, Qj),
4: else

5: ti,j ← 1
6: end if

7: end for

8: Let Count← 0 and check← −1.
9: while check 6= Count do

10: check← Count
11: for all i, j ∈ {1, 2,−1,−2} do

12: if ti,j 6= 1 then

13: Let ti,j = tℓi,j
14: Let Count = Count + 1
15: end if

16: end for

17: end while

18: kℓ,J ← n− Count
19: if Count = 0 then

20: abort

21: end if

22: if kℓ,J = 2n− vℓ,OK
(π) then

23: return true
24: else

25: return false
26: end if

5 Application to horizontal isogeny computation

In this section, we are interested in computing horizontal isogenies, i.e. isogenies
between Jacobians having the same endomorphism ring. Note that if I : J1 → J2
is an isogeny such that J1 has maximal endomorphism ring at ℓ, we distinguish
two cases: either End(J2) is locally maximal at ℓ, or End(J2) ⊂ End(J1). In the
last case we say that the isogeny is descending.

Over the complex numbers, horizontal isogenies are given in terms of the ac-
tion of the Shimura class group [13]. Let Φ be a CM-type and let A be an abelian
surface over C with complex multiplication by OK , given by A = C2/Φ(I−1),
where I is an ideal of OK . The surface is principally polarized if there is a purely
imaginary ξ ∈ OK with Im(Φi(ξ)) > 0, for i ∈ {1, 2}, and such that ξDK = IĪ
(where DK is the different {α ∈ OK : TrK/Q(αOK) ⊂ Z}). Computing horizon-
tal isogenies is usually done by using the action of the Shimura class group [13].
This group, that we denote by C(K), is defined as

{(a, α)|a is a fractional OK-ideal with aā = (α) with α ∈ K0 totally positive},



where (a, α) ∼ (b, β) if and only if there exists u ∈ K∗ with b = ua and β = uūα.
The action of (a, α) ∈ C(K) on an principally polarized abelian surface given by
(I, ξ) is given by the ideal (aI, αξ). This action is transitive and free [13, §14.6].

If the norm of a is coprime to the discriminant of Z[π, π̄], the kernel of the
horizontal isogeny corresponding to a is a subgroup of the ℓ-torsion invariate
under the Frobenius endomorphism. Hence in order to compute the kernel, we
need to compute the matrix of the Frobenius for some basis of the ℓ-torsion and
then determine subspaces invariated by this matrix (see [2, Algorithm VI.3.4]).
We show that, when a Jacobian with locally maximal order at ℓ is given, kernels
of (ℓ, ℓ)-horizontal isogenies are subgroups on which the Tate pairing is degen-
erate. This result holds for any ℓ > 2 and is independent of the value of the
discriminant of Z[π, π̄]. The resulting algorithm, whose complexity is analysed
in Section 6, computes kernels of horizontal isogenies with only a few pairing
computations. We state the following lemma for jacobians of genus 2 curves over
finite fields, which are the framework for this paper. We note that the result
holds for abelian varieties.

Lemma 5. (a) Let J1, J2 be jacobians of genus 2 curves defined over a finite
field Fq and I : J1 → J2 an isogeny defined over Fq which splits multiplication

by d. Let λ : J1 → Ĵ1 be a principal polarization. Then for P ∈ J1(K),
Q ∈ J1[m](K) we have

T λI
m (I(P ), I(Q)) = T λ

m(P,Q)d,

where λI : J2 → Ĵ2 is the principal polarization such that I ◦ λI ◦ Ǐ = d ◦ λ.
(b) Let J1, J2 be jacobians of genus 2 curves defined over Fq and I : J1 → J2

an isogeny defined over Fq which splits multiplication by m. Let P ∈ J1(K),
Q ∈ J1[mm′](K) such that I(Q) is a m′-torsion point.

T λI

m′ (I(P ), I(Q)) = T λ
mm′(P,Q)m,

where λI is a principal polarization of J2 such that I ◦ λI ◦ Ǐ = m ◦ λ.

Proof. (a) It is easy to check that δ(I(P )) = I(δ(P )). Hence for σ ∈ GK we have

Wm(FI(P )(σ), I(Q)) = Wm(I(FP (σ)), I(Q)).

By using [9, Proposition 13.2.b]

WλI
m (I(FP (σ)), I(Q)) = W Ǐ◦λI◦I

m (FP (σ), Q).

(b) The proof is immediate by using (a) and the fact that Tmm′(I(P ), I(Q)) =
Tm′(I(P ), I(Q)).

Lemma 6. Let H/Fq be a hyperelliptic curve and D1, D2 are two elements of
J(Fq) of order ℓn, n ≥ 1. Let D̄1, D̄2 ∈ JH(Fq) such that ℓD̄1 = D1 and ℓD̄2 =
D2. Then we have



(a) If D̄1, D̄2 ∈ J(Fq), then

Tℓn+1(D̄1, D̄2)
ℓ2 = Tℓn(D1, D2).

(b) Suppose ℓ ≥ 3. If D̄1 ∈ J(F̄q)\JH(Fq), then

Tℓn+1(D̄1, D̄2)
ℓ = Tℓn(D1, D2).

Proof. The proof is similar to to the one of [7, Lemma 4.6]. For completeness,
we detail it in Appendice 9.

Remark 1. Let G ∈ W . By an argument similar to the one in Lemma 2, in order
to determine the largest integer k such that Tℓn : G × G → µℓk is surjective,
it suffices to determine the largest k such that all the self-pairings Tℓn(P, P ),
with P ∈ G, are primitive ℓk-th roots of unity. Let G and G′ in W such that
ℓn−1G = ℓn−1G′. First note that P ′ ∈ G′ can be written as P ′ = P + L, with
P ∈ G and L ∈ J [ℓn−1]. Then by bilinearity

Tℓn(P
′, P ′) = Tℓn(P, P )(Tℓn(P,L)Tℓn(L, P ))Tℓn(W,W )

By Lemma 2 and given that L ∈ J [ℓn−1], we have that Tℓn(P
′, P ′) is a ℓkℓ,J -th

primitive root of unity if and only if Tℓn(P, P ) is a ℓkℓ,J -th primitive root of
unity. This implies that in order to compute kℓ,J it suffices to compute pairings
over a set of representatives of W modulo the equivalence relation G ∼ G′ if and
only if ℓn−1G = ℓn−1G′.

We may now prove Theorem 1.

Proof of Theorem 1. We assume that kJ ≥ 2. Otherwise, we use Lemma 6 and
work over an extension field of Fq. We denote by I : J → J ′ the isogeny of kernel
G. Suppose that Ḡ is such that the Tate pairing is non-degenerate over Ḡ× Ḡ.
Then by applying Lemma 5 we have

Tℓn−1(I(P1), I(P2)) ∈ µ
ℓkℓ,J−1\µℓkℓ,J−2 ,

for P1, P2 ∈ Ḡ. If J ′[ℓn] is not defined over Fq, then its endomorphism ring cannot
be maximal at ℓ, hence the isogeny is descending. Assume then that J ′[ℓn] is
defined over Fq. Let P̄1, P̄2 ∈ J ′[ℓn] be such that I(P1) = ℓP̄1, I(P2) = ℓP̄2. Then
Tℓn(P̄1, P̄2) ∈ µℓkℓ,J+1\µℓkℓ,J . We denote by G′ =< P̄1, P̄2 >. The subgroup
G′ may be chosen such that it is maximal isotropic with respect to the ℓn-
Weil pairing. It follows that kJ′ ≥ kJ + 1. By Theorem 2, we deduce that
the endomorphism ring of J ′ is not locally maximal at ℓ, hence the isogeny is
descending.
Suppose now that the Tate pairing is degenerate over Ḡ× Ḡ. We distinguish two
cases.
Case 1. Suppose that J ′[ℓn] is defined over Fq. With the same notations as above,
we get that Tℓn(P̄1, P̄2) ∈ µℓkℓ,J . Let L ⊂ J ′[ℓn] be a subgroup of rank 2 maximal
isotropic with respect to the Weil pairing and consider Q1, Q2 ∈ L\G′. Then



ℓn−1Q1, ℓ
n−1Q2 ∈ Ker I†. Since Tℓn−1(I†(Q1), I

†(Q2)) ∈ µℓkℓ,J−2 , it follows
that Tℓn(Q1, Q2) ∈ µℓkℓ,J−1 . Hence kJ′ ≤ kℓ,J . By Theorem 2, we conclude that
the endomorphism ring of J ′ is locally maximal at ℓ.
Case 2. Suppose that J ′[ℓn] is not defined over Fq. Hence I is descending. We
have

Tℓn−1(I(P1), I(P2)) ∈ µℓkℓ,J−2 .

Let L ⊂ J ′[ℓn−1] be a subgroup of rank 2 such that ℓn−2L is maximal isotropic
with respect to the Weil pairing and consider Q1, Q2 ∈ L\G′. Then ℓn−2Q1, ℓ

n−2Q2 ∈
Ker I†. Since Tℓn−1(I†(Q1), I

†(Q2)) ∈ µℓkℓ,J−4 , it follows that Tℓn−1(Q1, Q2) ∈
µ
ℓkℓ,J−3 . Hence vℓ,EndJ′(π) = vℓ,EndJ(π) which contradicts the hypothesis that

I is descending.

In order to find all kernels of horizontal isogenies we search, among subgroups
G ∈ W (modulo the ℓn−1-torsion), those for which the Tate pairing restricted
to G×G maps to µℓkℓ,J−1 . If {Q1, Q2, Q−1, Q−2} is a symplectic basis for J [ℓn],
then a subgroup of rank 2 generated by λ1Q1 + λ−1Q−1 + λ2Q2 + λ−2Q−2 and
λ′
1Q1 + λ′

−1Q−1 + λ′
2Q2 + λ′

−2Q−2, with λi, λ
′
j ∈ Fℓ, i, j ∈ {−2,−1, 1, 2}, is

maximal isotropic with respect to the Weil pairing if the following equation is
satisfied

λ1λ
′
−1 − λ−1λ

′
1 + λ2λ

′
−2 − λ−2λ2 = 0. (11)

Moreover, this subgroup has degenerate Tate pairing if the following equations
are satisfied

∑

i,j∈{1,2,−1,−2}
λiλj logTℓn(Qi, Qj) = 0 mod ℓn−kJ+1 (12)

∑

i,j∈{1,2,−1,−2}
λiλ

′
j logTℓn(Qi, Qj) = 0 mod ℓn−kJ+1 (13)

∑

i,j∈{1,2,−1,−2}
λ′
iλ

′
j logTℓn(Qi, Qj) = 0 mod ℓn−kJ+1 (14)

Example 1. We consider the jacobian of the hyperelliptic curve

y2 = 5x5 + 4x4 + 98x2 + 7x+ 2,

defined over the finite field F127. The jacobian has maximal endomorphism ring
at 5 and [EndJ : Z[π, π̄]] = 50. The ideal (5) decomposes as 5 = a1a2 in OK .
Hence there are two horizontal isogenies, which correspond to ideals a1 and a2

under the Shimura class group action. The 5-torsion is defined over an extension
field of degree 8 of the field F127, that we denote F127(t). Our computations with
MAGMA found two subgroups of J [5], maximal isotropic with respect to the
Weil pairing and with degenerate 5-Tate pairing. For lack of space, we give here
the Mumford coordinates of the generators of one of these subgroups.



(x2 + (74t7 + 25t6 + 6t5 + 110t4 + 96t3 + 75t2 + 29t+ 20)x

+39t7 + 62t6 + 77t5 + 47t4 + 9t3 + 62t2 + 97t+ 15,

(116t7 + 61t6 + 13t5 + 38t4 + 70t3 + 109t2 + 62t+ 71)x+ 98t7

+77t6 + 17t5 + 76t4 + 81t3 + 5t2 + 36t+ 33)

(x2 + (66t7 + 89t6 + 50t5 + 124t4 + 91t3 + 102t2 + 100t+ 52)x

+119t7 + 14t6 + 126t5 + 42t4 + 42t3 + 85t2 + 12t+ 77,

(92t7 + 90t6 + 94t5 + 57t4 + 59t3 + 24t2 + 72t+ 11)x

+103t7 + 16t6 + 7t5 + 111t4 + 95t3 + 79t2 + 45t+ 34)

6 Complexity analysis

In this section, we evaluate the complexity of Algorithm 1 and compare its
performance to that of the Freeman-Lauter algorithm. Note that for a fixed
ℓ > 2, both algorithms perform computations in extension fields over which the
ℓd-torsion, for a certain ℓd dividing [OK : Z[π, π̄]], is rational.

Checking locally maximal endomorphism rings. In Freeman and Lauter’s algo-
rithm, in order to check if End(J) is locally maximal at ℓ, for ℓ > 2, it suf-
fices to check that

√
d and η are endomorphisms of J (see [4, Lemma 6]). If

π = c1 + c2
√
d+ (c3 + c4

√
d)η1 then we have

2c2
√
d = π + π̄ − 2c1 (15)

(4c2(c
2
3 − c24d))η = (2c2c3 − c4(π + π̄ − 2c1))(π − π̄). (16)

Moreover, Eisenträger and Lauter show that the index is [OK : Z[π, π̄]] =
2sc2(c

2
3 − c24d), for some s ∈ N. Hence, for a fixed ℓ > 2 dividing the index

[OK : Z[π, π̄]], we need to consider an extension field over which J [ℓu] is defined,
where u is the ℓ-adic valuation of the index. Meanwhile, Algorithm 1 performs
computations over the smallest extension field containing the ℓ-torsion points.
The degree of this extension field is smaller than ℓ3, by Proposition 1.

Notation. We denote by r the degree of the smallest extension field Fqr such that
the ℓ-torsion is Fqr -rational.

We suppose that πr − 1 is exactly divisible by ℓn. First, we need to compute
a basis for the ℓn-torsion. We assume that the zeta function of J/Fqr and the
factorization #J(Fqr ) = ℓsm are known in advance. In order to compute the
generators of J [ℓn], we use Freeman and Lauter’s probabilistic algorithm [5],
which needs O(rM(r) log q) operations in Fq. We then compute a symplectic

1 Note that we cannot always write π in this form, but if this is not case, we can
always replace π by 2sπ, for some s ∈ Z.



basis of J [ℓn], by using an algorithm similar to Gram–Schmidt orthogonalization.
In order to compute kℓ,J , we use the values of the Tate pairing Tℓn(Qi, Qj) for
i, j ∈ {1,−1, 2,−2}. Computing the Tate pairing costs O(M(r)(n log ℓ+r log q))
operations in Fq, where the first term is the cost of Miller’s algorithm and the
second one is the cost for the final exponentiation. We conclude that the cost
of Algorithm 1 is O(M(r)(r log q + n log ℓ)). The complexity of Freeman and
Lauter’s algorithm for endomorphism ring computation is dominated by the
cost of computing the ℓ-Sylow group of the Jacobian defined over the extension
field containing the ℓu-torsion, whose degree is r+ ℓu−r (by Proposition 2). The
costs of the two algorithms are given in Table 1.

Table 1. Cost for checking locally maximal endomorphism rings at ℓ

Freeman and Lauter This work (Algorithm 1)

O((r + ℓu−r)M(r + ℓu−r) log q) O(M(r)(r log q + n log ℓ))

Computing horizontal isogenies. Both classical algorithms and our algorithm
need to compute first a basis for the ℓ-torsion. As stated before, this costs
O(rM(r) log q). The classical algorithm (see [2, Algorithm VI.3.4]) computes
subspaces which are invariant under the action of Frobenius. More precisely,
this algorithm needs to compute the matrix of the Frobenius endomorphism
(in O(ℓ2) operations in Fqr using a baby-step giant-step approach). We conclude
that the overall complexity of this algorithm is O(M(r)(log q+ℓ2)). The method
described in Section 5 computes a symplectic basis of the ℓn-torsion and solves a
system of 4 homogenous equations of degree 2, with coefficients in Fℓ. The cost
of solving this system is polynomial in ℓ and thus negligible (ℓ is small). Our
method for horizontal isogeny computation has the same cost as Algorithm 1.

7 Conclusion

For an ordinary jacobian defined over a finite field, we have described a rela-
tion between its endomorphism ring and some properties of the ℓ-Tate pairing.
We deduced an efficient criterion for checking whether the jacobian is locally
maximal at ℓ and an algorithm computing kernels of (ℓ, ℓ)-isogenies.

8 Acknowledgements

This work was supported by the Direction Générale de l’Armement through the
AMIGA project under contract 2010.60.055 and by the French Agence Nationale
de la Recherche through the CHIC project. The author thanks David Gruenewald
for helpful discussions and is particularly indebted to Ben Smith for valuable
comments and proofreading of previous versions of this manuscript.



References

1. J. Belding, R. Broker, A. Enge, and K. Lauter. Computing Hilbert class polyno-
mials. In A.J. van der Poorten and A. Stein, editors, Algorithmic Number Theory
Symposium-ANTS VIII, volume 5011 of Lecture Notes in Computer Science, pages
282–295. Springer Verlag, 2008.

2. G. Bisson. Endomorphism rings in cryptography. PhD thesis, Institut National
Polytechnique de Lorraine, 2011.

3. R. Bröker, D. Gruenewald, and K. Lauter. Explicit CM theory for level 2-structures
on abelian surfaces. Algebra & Number Theory, 5(4):495–528, 2011.

4. K. Eisenträger and K. Lauter. A CRT algorithm for constructing genus 2 curves
over finite fields. In Arithmetic, Geometry and Coding Theory (AGCT -10), Sémi-
naires et Congrès 21, pages 161–176. Société Mathématique de France, 2009.

5. D. Freeman and K. Lauter. Computing endomorphism rings of jacobians of genus
2 curves. In Symposium on Algebraic Geometry and its Applications, Tahiti, 2006.

6. P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenhaler, and A. Weng. The 2-adic CM
method for genus 2 curves with applications in cryptography. In Xuejia Lai and
Kefei Chen, editors, ASIACRYPT06, volume 4284 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2006.

7. S. Ionica and A. Joux. Another approach to pairing computation in Edwards
coordinates. In D. R. Chowdhury, V. Rijmen, and A. Das, editors, Progress in
Cryptography- Indocrypt 2008, volume 5365 of Lecture Notes in Computer Science,
pages 400–413. Springer, 2008.

8. S. Ionica and A. Joux. Pairing the volcano. Mathematics of Computation, 2012.
to appear.

9. J.S.Milne. Abelian varieties. http://www.jmilne.org/math/CourseNotes/av.html.
10. S. Lichtenbaum. Duality theorems for curves over p-adic fields. Invent.Math.7,

pages 120–136, 1969.
11. V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,

17(4):235–261, September 2004.
12. S.L. Schmoyer. The Triviality and Nontriviality of Tate-Lichtenbaum Self-Pairings

on Jacobians of curves, 2006. http://www-users.math.umd.edu/ schmoyer/.
13. G. Shimura. Abelian varieties with complex multiplication and modular functions.

Princeton Mathematical Series. Princeton University Press, 1998.
14. Andrew Sutherland. Computing Hilbert Class Polynomials with the CRT.

http://arxiv.org/abs/0903.2785, 2009.
15. A. Weng. Constructing hyperelliptic curves of genus 2 suitable for crpytography.

Math. Comp., 72:435–458, 2003.

9 Appendix A

We detail the proof of Lemma 6.

Proof. (a) We can easily check that

fℓn+1,D̄2
= (fℓ,D̄2

)ℓ
n · fℓn,D2 .

Note that these functions are Fq-rational. By evaluating them at D1 and raising
to the power (q−1)/ℓn, we obtain the desired equality. (b) Since div (fℓn+1,D2

) =



div (f ℓ
ℓn,D2

), we have Tℓn+1(D̄1, D̄2) = T
(F

qℓ
)

ℓn (D̄1, D2), where T
(F

qℓ
)

ℓn is the ℓn-Tate
pairing defined over Fqℓ . We only need to show that

T
(F

qℓ
)

ℓn (D̄1, D̄2) = Tℓn(D1, D2)

Note that we have π(D̄1) = D̄1+Dℓ, where Dℓ is a point of order ℓ. This implies
that

D̄1 + π(D̄1) + π2(D̄1) + . . .+ πℓ−1(D̄1) ∼ ℓD̄1 ∼ D̄1.

Hence we get

T
(F

qℓ
)

ℓn (D1, D̄2) = fℓn,D2(D̄1)
(1+q+...+qℓ−1)(q−1)

ℓn

= fℓn,D1(D̄1 + π(D̄1) + . . .+ πℓ−1(D̄1))
(q−1)

ℓn .

By applying Weil’s reciprocity law, we obtain

T
(F

qℓ
)

ℓn (D̄1, D2) = fℓn,D2(D1)
(q−1)
ℓn f(D2)

q−1,

where f is such that div(f) = (D̄1) + (π(D̄1)) + . . . + (π(D̄1)) − ℓD̄1 and that
supp(f) ∩ supp(D2) = ∅. Note that f is Fq-rational, so f(D2)

q−1 = 1. This
concludes the proof.


