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A Direct Algorithm for 1D Total Variation Denoising

Laurent Condat∗

February 28, 2012

Abstract

We propose a very fast direct, noniterative, algorithm for denoising or smoothing one-dimensional
discrete signals by solving the total variation regularized least-squares problem, or the related fused
lasso problem. A C code implementation is available on the web page of the author.

keywords. Total variation, denoising, nonlinear smoothing, fused lasso, regularized least-squares, non-
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1 Introduction

The problem of smoothing a signal, to remove or at least attenuate the noise it contains, has numerous
applications in communications, control, machine learning, and many other fields of engineering and
science [1]. In this paper, we focus on the numerical implementation of total variation (TV) denoising for
one-dimensional (1D) discrete signals; that is, we are given a (noisy) signal y = (y[1], . . . , y[N ]) ∈ R

N for
some integer N ≥ 1, and we want to efficiently compute the denoised signal x ∈ R

N , defined implicitely
as the solution to the minimization problem

minimize
x∈RN

1

2

N∑

k=1

∣
∣y[k]− x[k]

∣
∣2 +λ

N−1∑

k=1

∣
∣x[k +1]− x[k]

∣
∣, (1)

for some regularization parameter λ ≥ 0 (whose choice is a difficult problem by itself [2]). We recall
that, as the functional to minimize is strongly convex, the solution x to the problem exists and is unique,
whatever the data y . The TV denoising problem has received large attention in the communities of signal
and image processing, inverse problems, sparse sampling, statistical regression analysis, optimization
theory, among others. It is not the purpose of this paper to review the properties of the nonlinear TV
denoising filter, as hundreds of papers can be found on this vast topic; see, e.g., [3, 4, 5, 6, 7, 8] for various
insights.

To solve the convex nonsmooth optimization problem (1), we mostly find in the literature iterative
first-order fixed-point methods [9, 10]. Until not so long ago, such methods applied to TV regularization
had rather high computational complexity [11, 12, 13, 14, 15], but the growing interest for related ℓ1-
norm problems in compressed sensing, sparse recovery, or low rank matrix completion [16, 17, 18], has
yielded advances in the field. Recent iterative methods based on operator splitting, which exploit both
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the primal and dual formulations of the problems and use variable stepsize strategies or Nesterov-style
accelerations, are quite efficient when applied to TV-based problems [19, 20, 21, 22, 23]. We also note
that graph cuts methods can be used to solve (1) approximately, by quantizing the values of x [24]. In
this paper, we present a novel and very fast algorithm, which is able to compute the denoised signal x

from the data y exactly, in a direct, noniterative, way, possibly in-place. It is appropriate for real-time
processing of an incoming stream of data, as it locates the jumps in x one after the other by forward
scans, almost online. The possibility of such an algorithm sheds light on the relatively local nature of the
TV denoising filter [25].

After this work was completed, the author found that, actually, there already exists a direct, claimed
linear time, method for 1D TV denoising, called the taut string algorithm [26], see also [27, 28, 29, 30]. To
understand its principle, define the sequence of running sums r by r [k] =

∑k
i=1 y[i ] for 1 ≤ k ≤ N , and

consider the problem:

minimize
s∈RN+1

N∑

k=1

√

1+
∣
∣s[k]− s[k −1]

∣
∣2 subject to

s[0] = 0, s[N ]= r [N ], and max
1≤k≤N

∣
∣s[k]− r [k]

∣
∣ ≤λ. (2)

Then, the problems (1) and (2) are equivalent, in the sense that their respective solutions x and s are
related by x[k] = s[k]−s[k−1], for 1 ≤ k ≤ N . Thus, the formulation (2) allows to express the TV solution x

as the discrete derivative of a string threaded through a tube around the discrete primitive of the data, and
pulled taut such that its length is minimized. This principle is illustrated in Fig. 1. The taut string method
seems to have been largely ignored, as iterative methods are regularly proposed for 1D TV denoising
[31, 32, 33, 34]. The proposed algorithm is different, as it does not manipulate any running sum; but
both approaches are principally close, so that the proposed algorithm can be interpreted as an efficient
implementation of the taut string principle.

The paper is organized as follows. In Sect. 2, we describe and discuss the new algorithm. In Sect. 3,
we briefly turn to possible applications.

2 Proposed Method

We first introduce the dual problem to the primal problem (1) [21, 22, 13]:

minimize
u∈RN+1

N∑

k=1

∣
∣y[k]−u[k]+u[k −1]

∣
∣2 s.t.

|u[k]| ≤ λ, ∀k = 1, . . . , N −1, and u[0] = u[N ] = 0. (3)

Once the solution u to the dual problem is found, one recovers the primal solution x by

x[k] = y[k]−u[k]+u[k −1], ∀k = 1, . . . , N . (4)

Actually, the method of [13] and its accelerated version [20] solve (3) iteratively, using forward-backward
splitting [9].

The Karush-Kuhn-Tucker conditions caracterize the unique solutions x and u [22]. They yield, in
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Figure 1: Total variation denoising can be interpreted as pulling the antiderivative of the signal taut in a
tube around it. The proposed algorithm is different from the so-called taut string algorithm implement-
ing this principle. This figure is borrowed from a PDF slide of a talk by M. Grasmair in 2007, entitled “dual
settings for total variation regularization”.

addition to (4),

u[0] = u[N ]= 0 and ∀k = 1, . . . , N −1,






u[k] ∈ [−λ,λ] if x[k] = x[k +1],
u[k] =−λ if x[k] < x[k +1],
u[k] =λ if x[k] > x[k +1].

(5)

Hence, the proposed algorithm consists in running forwardly through the samples y[k]; at location
k, it tries to prolongate the current segment of x by x[k+1] = x[k]. If this is not possible without violating
(4) and (5), it goes back to the last location where a jump can be introduced in x, validates the current
segment until this location, starts a new segment, and continues. In more details, the algorithm is as
follows:
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The direct algorithm for 1D TV denoising:

(a) Set k = k0 = k− = k+ ← 1, vmin ← y[1]−λ, vmax ← y[1]+λ, umin ←λ, umax ←−λ.
(b) If k = N , set x[N ] ← vmin +umin and terminate. Else, we are at location k and we are building a
segment starting at k0, with value v = x[k0] = ·· · = x[k]. v is unknown but we know vmin and vmax such
that v ∈ [vmin, vmax]. umin and umax are the values of u[k] in case v = vmin and v = vmax, respectively.
Now, we are trying to prolongate the segment with x[k+1] = v , by updating these four variables for the
location k +1. The three possible cases (b1), (b2), (b3) are:
(b1) If y[k +1]+umin < vmin −λ, we cannot update umin without violating (4) and (5), because vmin is
too high. This means that the assumption x[k0] = ·· · = x[k +1] was wrong, so that the segment must
be broken, and the negative jump necessarily takes place at the last location k− where umin was equal
to λ. Thus, we set x[k0] = ·· · = x[k−] ← vmin, k = k0 = k− = k+ ← k−+1, vmin ← y[k], vmax ← y[k]+2λ,
umin ←λ, umax ←−λ.
(b2) Else, if y[k+1]+umax > vmax+λ, then by the same reasoning, a positive jump must be introduced
at the last location k+ where umax was equal to −λ. Thus, we set x[k0] = ·· · = x[k+] ← vmax, k = k0 =
k− = k+ ← k++1, vmin ← y[k]−2λ, vmax ← y[k], umin ←λ, umax ←−λ.
(b3) Else, no jump is necessary yet, and we can continue with k ← k+1. So, we set umin ←umin+y[k]−
vmin and umax ← umax + y[k]− vmax. It may be necessary to update the bounds vmin and vmax:
(b31) If umin ≥λ, set vmin ← vmin + (umin −λ)/(k −k0 +1), umin ←λ, k− ← k.
(b32) If umax ≤−λ, set vmax ← vmax + (umax +λ)/(k −k0 +1), umax ←−λ, k+ ← k.
(c) If k < N , go to (b). Else, we have to test if the hypothesis of a segment x[k0] = ·· · = x[N ] does not
violate the condition u[N ] = 0. The three possible cases are:
(c1) If umin < 0, then vmin is too high and a negative jump is necessary: set x[k0] = ·· · = x[k−] ← vmin,
k = k0 = k− ← k−+1, vmin ← y[k], umin ←λ, umax ← y[k]+λ− vmax, and go to (b).
(c2) Else, if umax > 0, then vmax is too low and a positive jump is necessary: set x[k0] = ·· · = x[k−] ←
vmax, k = k0 = k+ ← k++1, vmax ← y[k], umax ←−λ, umin ← y[k]−λ− vmin, and go to (b).
(c3) Else, set x[k0]= ·· · = x[N ] ← vmin +umin/(k −k0 +1) and terminate.

We note that the dual solution u is not computed. We can still recover it recursively from x using (4).
We also remark that the case λ= 0 is correctly handled and yields x = y .

The algorithm was implemented in C, compiled with gcc 4.4.1, and run on a Apple laptop with a 2.4
GHz Intel Core 2 Duo processor. We obtained computation times around 30 milliseconds for N = 106,
with various test signals and noise levels. Importantly, the computation time is insensitive to the value
of λ. Although in practical cases the computation time is linear with respect to N , the complexity cannot
be proved to be in O(N ): let us consider that λ = 1 and y[1] = −2, y[k] = α(k − 2) for 2 ≤ k ≤ N − 1,
y[N ] = α(N −3)+2, where α = 4/((N −2)(N −3)). The solution x is such that x[1] = y[1]+1, x[k] = y[k]
for 2 ≤ k ≤ N −1, x[N ] = y[N ]−1. This example with a very small slope, except at the boundaries, has
complexity in O(N 2), since, for every k, the algorithm must scan the signal to the end to decide that the
current segment has size only one. However, this pathological case is only a curiosity, and there is no
interest in applying TV denoising to such an almost flat noise-free signal.

For illustration purpose, we consider the example of a discrete Lévy process, which is a stochastic pro-
cess with independent increments [8], corrupted by additive white Gaussian noise (AWGN). More pre-
cisely, y[k] = x0[k]+ e[k] for 1 ≤ k ≤ N = 1000, where the e[k] ∼ N (0,1) are independent and identically
distributed (i.i.d.), and x0 has a fixed value x0[1] and i.i.d. random increments d[k] = x0[k]− x0[k −1] for
2 ≤ k ≤ N . We chose a sparse Bernoulli-Gaussian law for the increments, since TV denoising approaches
the optimal minimum mean square error (MMSE) estimator for such piecewise constant signals [7, 8];
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Figure 2: In this example, y (in red) is a piecewise constant process of size N = 1000 (unknown ground
truth, in green) corrupted by additive Gaussian noise of unit variance. The TV-denoised signal x (in
blue), solving (1) with λ= 2, was computed by the proposed algorithm in 30 microseconds, exactly up to
machine precision.

that is, the probability density function of d[k] is

p δ(t)+
(1−p)

σ
p

2π
e
− t2

2σ2 , t ∈R, (6)

where p = 0.95, σ= 4, and δ(t) is the Dirac distribution. We found empirically that the root mean square
error (RMSE) ‖x0 − x‖2/

p
N is minimized for λ = 2. The computation time of x, averaged over several

runs and realizations, was 30 microseconds. One realization of the experiment is depicted in Fig. 2.

3 Further Applications

Besides denoising of 1D signals, the proposed algorithm can be used as a black box to solve other prob-
lems.

3.1 The Fused Lasso

The fused lasso signal approximator, introduced in [35], yields a solution that has sparsity in both the
coefficients and their successive differences. It consists in solving the problem

minimize
z∈RN

1

2

N∑

k=1

∣
∣z[k]− y[k]

∣
∣2 +λ

N−1∑

k=1

∣
∣z[k +1]− z[k]

∣
∣+µ

N∑

k=1

∣
∣z[k]

∣
∣, (7)

for some λ ≥ 0 and µ ≥ 0. The fused lasso has many applications, e.g. in bioinformatics [36, 37, 38]. As
shown in [37], the complexity of the fused lasso is the same as TV denoising, since the solution z can be
obtained by simple soft-thresholding from the solution x of (1):

z[k] =
{

x[k]−µ.sign(x[k]) if |x[k]| >µ

0 otherwise
. (8)
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It is straightforward to add soft-thresholding steps to the proposed algorithm to solve the generalization
(7) of (1), for essentially the same computation time.

3.2 Using the Algorithm as a Proximity Operator

As is classical in convex analysis, we introduce the set Γ0(RN ) of proper, lower semi-continuous, convex
functions from R

N to R∪ {+∞} [9]. Many problems in signal and image processing can be formulated as
finding a minimizer x ∈ R

N of the sum of functions Fi ∈ Γ0(RN ), where each Fi is introduced to enforce
some constraint or promote some property on the solution [9, 6, 16, 18]. To solve such problems, convex
nonsmooth optimization theory provides us with first-order proximal splitting methods [9, 22], which
call the gradient operator or the proximity operator of each function Fi , individually and iteratively. The
Moreau proximity operator of a function F ∈Γ0(RN ) is defined as

proxF : s ∈R
N 7→ argmin

s ′∈RN

1

2
‖s − s′‖2 +F (s′). (9)

Thus, if we define T V : r ∈ R
N 7→

∑N−1
k=1 |r [k +1]− r [k]|, we can rewrite (1) as x = proxλT V (y). In other

words, the proposed algorithm computes the proximity operator of the 1D TV. Hence, we are equipped
to solve any convex minimization problem which can be expressed in terms of the 1D TV. For instance,
we can denoise an image y of size N1 ×N2 by applying the proximity operator of the 2D anisotropic TV:

minimize
x∈RN

1

2
‖x − y‖2 +λ

N1∑

k1=1
T Vv,k1 (x)

︸ ︷︷ ︸

F1(x)

+λ
N2∑

k2=1
T Vh,k2 (x)

︸ ︷︷ ︸

F2(x)

, (10)

where T Vv,k1 (x) and T Vh,k2 (x) are the TV of the k1-th column and k2-th row of the image x, seen as 1D
signals, respectively, and N = N1N2. To find a minimizer of the sum of two proximable functions F1 and
F2 of Γ0(RN ), we propose the new
accelerated Douglas-Rachford algorithm (ADRA):

Fix γ> 0, x0, s0 ∈R
N , and iterate, for n = 0,1, . . .

rn+1 = sn − xn +proxγF1
(2xn − sn),

sn+1 = rn+1 + n
n+3 (rn+1 − rn),

xn+1 = proxγF2
(sn+1).

Establishing convergence properties of splitting algorithms is a hot topic in the community of convex
optimization, and the ongoing concern of the author [22]. Although there is currently no convergence
proof of xn to the minimizer x of F1+F2 as n →+∞ with ADRA, it was found empirically to converge and
to be remarkably effective for the problem (10), with γ = 1 and s0 = x0 = y . For the example illustrated
in Fig. 3, we considered the classical Lena image of size 512×512, with gray values in [0,255], corrupted
by AWGN of std. dev. 30. When used to solve (10) with λ = 30, ADRA consists in applying the 1D TV
denoising algorithm on the rows and columns of the image, iteratively. Remarkably, the convergence is
very fast and the image x5 after five iterations is visually identical to the image x obtained at convergence,
with a RMSE of 0.5 gray levels, for a computation time of 0.27s. This is about four times less than the
times reported in [24] with state-of-the-art graph-cuts approaches and a similar quantization step of 1
gray level. To be fair, the latter remain faster if the machine precision of 2−16 is to be reached.
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(a) (b)

(c)

Figure 3: (a) The image Lena corrupted by AWGN of std. dev. 30; (b) the image after 5 iterations of the
proposed ADRA method for 2D anisotropic TV denoising; (c) log-log plot of the RMSE between the iterate
xn and the solution x of (10) with λ= 30, in term of the number n of iterations.

4 Conclusion

In this article, we proposed a direct and very fast algorithm for denoising 1D signals by total variation
(TV) minimization or fused lasso approximation. Since the algorithm computes the proximity operator
of the 1D TV, it can be used as a basic unit within iterative splitting methods, like the new proposed
accelerated Douglas-Rachford algorithm, to solve more complex problems.

This work opens the door for a variety of extensions and applications. Future work will include the
extension of the algorithm to generalized forms of the TV, where the two-tap finite difference is replaced
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by another discrete differential operator, to favor piecewise polynomial reconstruction of higher degree
or other types of signals [32]. Also, the algorithm should be extended to complex-valued or multi-valued
signals [38]. The extension to data of higher dimensions, like 2D images or graphs, deserves further
investigation as well [29]. Furthermore, we should consider replacing the data fidelity term based on the
ℓ2 norm by other penalties, like the anti-log-likelihood of Poisson noise [30].

Besides, path-following, a.k.a. homotopy, algorithms have been proposed for ℓ1 penalized problems;
they can find the smallest value of λ and the associated x in (1) such that x has at most m segments, with
complexity O(mN ) [27, 37, 39, 18, 40, 41]. The relationship between such algorithms and the proposed
one should be studied.
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