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Abstract—In electromechanics of particles, the effective moment method relies on the knowledge of the induced multipole moments.
For arbitrary shaped particles, only linear multipole moments are usually considered in the literature. On cylindrically symmetric
particles, we show that the neglected multipole moments can be computed, and that they should be taken into consideration.

Index Terms—Electromechanical effects, multipole moments, polarization.

I. INTRODUCTION

WHEN a dielectric particle is subjected to an electro-

static field, interfacial polarization mechanisms cause

a charge accumulation on the surface between the particle and

the medium in which it is suspended [1], [2]. Usually this

polarization gives rise to an induced dipole that will interact

with the external field to create forces and torques [1], [3]. This

interaction is exploited in the dielectrophoretic phenomena

such as electrorotation and dielectrophoresis for the manipu-

lation and the characterization of biological particles [1], [3].

In the conventional dielectrophoresis theory, it is usually

assumed that only a dipole is induced [4], [5]. Although this

approximation seems to be adequate in many circumstances,

exceptions exist and higher-order multipole corrections are

required to predict the particle behavior. In particular, these

higher-order corrections can influence forces and torques

exerted on cells in planar quadrupolar traps and multilayer

structures when the particle is at a zero field, or when the

particle size becomes comparable to the dimensions of the

electrode structure used to generate the electric field [6]–[8].
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Fig. 1. Stratton’s representation of the first four linear multipoles.

The effective moment method developed by Jones and

Washizu, use higher-order multipole moments to provide a

more accurate estimation of the force and the torque exerted

upon the manipulated particle [9]–[11]. In this method, the

particle under consideration is substituted by a set of mul-

tipoles (dipole, quadrupole, octupole,...) producing the same

field distortion caused by the presence of the particle; the force

exerted on multipoles should be equal to the force exerted on

the particle by the external field [3], [12].
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Fig. 2. Example of a 3D system of electrodes and a particle.

The simplest multipole model considers only the linear

multipoles. Green and Jones use this model when determining

the dipole moment and higher-order moments [13]. The linear

multipoles can be represented by an arrangement of equally

spaced positive and negative charge centers along the axis

of the dipole (Fig. 1). However, this linear multipole model

cannot be used when the external field is not aligned with

the symmetry axis of a cylindrically symmetric particle. It

is unfortunately the most frequent situation in biological

dielectrophoretic applications where, for instance, the radial

component of the field is higher than the z-component (Fig. 2).

Here, we also take into account the neglected multipole mo-

ments to identify an equivalent model of the polarized particle

(Fig. 3) from the induced potential. The multipole expansion is

first recalled. On cylindrically symmetric particles, a procedure

is then proposed to compute all the multipole moments.

Numerical results show the relevance of the approach.

II. MODEL AND METHOD

A. Induced potential

Consider a particle immersed in a homogeneous medium

and exposed to an electric field generated by an external

system. The particle and the surrounding medium are assumed

to have linear dielectric properties. The electrostatic potential

in the system containing the different materials, is obtained by

solving a Laplace type equation.
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Fig. 3. A 3D representation of general multipoles with the corresponding
orders (n,m).

The total electric potential Utotal outside the particle is the

sum of both applied potential Uext and induced potential Uind

caused by the polarization of the particle, i.e.

Utotal = Uext + Uind

=
∑

n,m

An,mrnYm
n (θ, ϕ) +

∑

n,m

Bn,m

rn+1
Ym
n (θ, ϕ), (1)

where Ym
n are the complex spherical harmonics, and (r, θ, ϕ) a

spherical coordinate system. The magnitudes An,m and Bn,m

can be determined numerically or analytically using proper

boundary conditions.

The multipole polarization coefficients pmn are related to the

induced potential constants Bn,m by

pmn = Nm
n Bn,m, with Nm

n =
(2n+ 1)

4π

√

(n−m)!

(n+m)!
. (2)

The linear multipoles correspond to the case m = 0 in

the expression (2). For a spherical particle with radius a and

permittivity ε2 suspended in a medium with permittivity ε1,

the Bn,m can be expressed in terms of the An,m [3]:

Bn,m =
Kn

(2n+ 1)
a2n+1An,m, (3)

where

Kn =
n(2n+ 1)(ε1 − ε2)

(n+ 1)ε2 + nε1
, (4)

is the generalized Clausius-Mossotti factor.

B. Calculation of the effective multipole moments

The constants An,m extracted from the calculation of the

potential in the system without the particle are used as source

terms for a local problem including the particle. Then, based

on the spherical harmonics representation for the induced

potential, we identify the effective moments.

Using the orthogonality property of the spherical harmonics

the individual moments are determined according to

pmn = Nm
n Rn+1

∫

S

Ym
n (θ, ϕ) Uind(R, θ, ϕ)ds, (5)

where S is a spherical surface centered on the particle with a

radius R larger than the largest particle dimension (Fig. 4).
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Fig. 4. Integration surface around the particle.

C. Solution of the problem

The particle of interest in our problem is cylindrically

symmetric with permittivity ε2, immersed in a containing

medium with permittivity ε1. The particle is assumed to

be sufficiently small to consider the external electric field

constant in its neighborhood. Consequently, the 3D problem

is transformed into two axisymmetric problems (Fig. 5). The

d/2

Fig. 5. Boundary conditions for the radial and z-axis potential calculations.

electric potential in the whole space is obtained using both

solutions:

U(r, z, θ) = Uz + Ur cos(ϕ). (6)

Two linear problems for Uz and Ur are then required to be

solved in the computational domain Ω:
∫

Ω

r

(

∂Ur

∂r

∂v

∂r
+

∂Ur

∂z

∂v

∂z

)

drdz +

∫

Ω

Ur

r
vdrdz = 0, (7)

and
∫

Ω

r

(

∂Uz

∂r

∂v

∂r
+

∂Uz

∂z

∂v

∂z

)

drdz = 0. (8)

III. NUMERICAL RESULTS

The numerical solution of problems (7) and (8) is performed

by using the finite element method and the implementation is

based on the getfem++ finite element library [14] (Fig. 6).

Fig. 6. Details of the solutions Ur (left) and Uz (right). The white line is
the boundary of the particle. ε2/ε1 = 104.
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Fig. 7. Radial and z-axis components of the dipole moment for a spheroidal particle. The numerical results are plotted as symbols, while the corresponding
analytical values pr and pz , given by (9) and (10), are plotted as dotted lines.

The geometries and the adaptive mesh of the computational

domain, were built using the three-dimensional finite element

mesh generator Gmsh, and the numerical integration required

in (5), was carried out using Gaussian quadrature. The method

described in the previous section enables to handle non-

spherical particles, for which there is no analytical method

for identifying the higher-order moments. A particular shape

frequently invoked in biological cells modeling [15], is the

spheroidal shape. By changing the eccentricity ratio (Fig. 8),

the shape dependence of the particle polarization can be

identified (Fig. 9).

A. Dipole moment

An analytical representation of the dipole moment for the

ellipsoidal shape exists. In particular for a spheroid with

eccentricity ratio α = c/a (Fig. 8), the dipole polarization

factors are given by:

pr =
ca2

3

(ε2 − ε1)

[ε2 + Lr(ε1 − ε2)]
(9)

pz =
ca2

3

(ε2 − ε1)

[ε2 + Lz(ε1 − ε2)]
(10)

where the magnitudes Lr and Lz are the depolarization factors,

given for the case of an oblate spheroid by [16]:

Lr =
1

2(1− α−2)
− α−2

4(1− α−2)3/2
ln

1 +
√
1− α−2

1−
√
1− α−2

, (11)

Lz =
α−2

1− α−2
+

α−2

2(1− α−2)3/2
ln

1 +
√
1− α−2

1−
√
1− α−2

. (12)

For the spherical case, the depolarization factors verify

Lr = Lz = 1/3, and the polarization coefficients are given by

Clausius-Mossotti factor K1. In Fig. 7, these analytical values

are compared with the computed values of the dipole moment

and it shows a good agreement.

B. Higher-order moments

The higher-order moments are obtained only numerically

using the proposed approach. The first case considered is a

homogeneous spherical particle (α = 1). In this case, only

the dipole moment is non-zero and matches well with the
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Fig. 8. Oblate spheroids with eccentricities 5:1 and 2:1.

analytical values given by the Clausius-Mossotti factor K1. As

it was expected from the isotropy of the sphere, note that the

radial and the z-axis dipole moments have the same magnitude

(see upper row in Fig. 9).

For lower eccentricities i.e α < 1 (oblate spheroids), the

numerical results in Fig. 9 (middle and lower rows) indicate

that the dipole component decreases when α decreases, par-

ticularly in the z-direction. This behavior is also predictable

with the analytical description of the dipole moments with

the depolarization factors. Besides, the magnitudes of the

identified higher-order components, become significant as α
decreases (with α < 1), in particular, the octupole moments

has important magnitudes in both the radial and the z-axis

directions, with larger values when the particle permittivity is

greater than the surrounding medium permittivity.

IV. CONCLUSION

In this paper, a complete multipole model was exploited

in a numerical approach for the identification of the effective

multipole moments. This complete multipole model enables to

identify multipole components (terms) that are displaced from

the central axis (m 6= 0). Only such terms can describe the

observed interaction of a particle placed in an external field

that is not aligned with its central axis, such as in the center of

the quadrupolar electrode structure [7]. The next step in this

work is to extend this approach to layered particles model

invoked in complex biological cells modeling.
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Fig. 9. Numerical results following the radial axis (column left) and the z-axis (column right), for spheroidal (oblate) particles of different aspect ratios
(eccentricity) c/a. The five first orders are plotted as symbols against the ratio of particle permittivity to fluid medium permittivity ε2/ε1 .
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