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Vector Addition Systems Reachability Problem
(A Simpler Solution)?

Jérôme Leroux1

LaBRI, Université de Bordeaux, CNRS

Abstract. The reachability problem for Vector Addition Systems (VASs) is a
central problem of net theory. The general problem is known to be decidable
by algorithms based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney
decomposition (KLMTS decomposition). Recently from this decomposition, we
deduced that a final configuration is not reachable from an initial one if and only if
there exists a Presburger inductive invariant that contains the initial configuration
but not the final one. Since we can decide if a Preburger formula denotes an induc-
tive invariant, we deduce from this result that there exist checkable certificates of
non-reachability in the Presburger arithmetic. In particular, there exists a simple
algorithm for deciding the general VAS reachability problem based on two semi-
algorithms. A first one that tries to prove the reachability by enumerating finite
sequences of actions and a second one that tries to prove the non-reachability by
enumerating Presburger formulas. In another recent paper we provided the first
proof of the VAS reachability problem that is not based on the KLMST decom-
position. The proof is based on the notion of production relations that directly
proves the existence of Presburger inductive invariants. In this paper we propose
new intermediate results that dramatically simplify this last proof.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular
formal methods for the representation and the analysis of parallel processes [2]. Their
reachability problem is central since many computational problems (even outside the
realm of parallel processes) reduce to the reachability problem. Sacerdote and Tenney
provided in [13] a partial proof of decidability of this problem. The proof was completed
in 1981 by Mayr [11] and simplified by Kosaraju [7] from [13,11]. Ten years later [8],
Lambert provided a further simplified version based on [7]. This last proof still remains
difficult and the upper-bound complexity of the corresponding algorithm is just known
to be non-primitive recursive. Nowadays, the exact complexity of the reachability prob-
lem for VASs is still an open-question. Even the existence of an elementary upper-bound
complexity is open. In fact, the known general reachability algorithms are exclusively
based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

Recently [9] we proved thanks to the KLMST decomposition that Parikh images of
languages accepted by VASs are semi-pseudo-linear, a class that extends the Presburger
sets. An application of this result was provided; we proved that a final configuration is
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not reachable from an initial one if and only if there exists a forward inductive invariant
definable in the Presburger arithmetic that contains the initial configuration but not the
final one. Since we can decide if a Presburger formula denotes a forward inductive
invariant, we deduce that there exist checkable certificates of non-reachability in the
Presburger arithmetic. In particular, there exists a simple algorithm for deciding the
general VAS reachability problem based on two semi-algorithms. A first one that tries
to prove the reachability by enumerating finite sequences of actions and a second one
that tries to prove the non-reachability by enumerating Presburger formulas.

In [10] we provided a new proof of the decidability of the reachability problem that
does not introduce the KLMST decomposition. The proof is based on transformer rela-
tions and it proves that reachability sets are almost semilinear, a class of sets inspired by
the class of semilinear sets [3] that extend the class of Presburger sets. Since the class
of almost semilinear sets is strictly included in the class of semi-pseudo linear sets, this
result is more precise than the one presented in [9]. This proof is based on a character-
ization of the conic sets definable in FO (Q,+,≤) thanks to topological closures with
vectors spaces. Unfortunately even though this characterization is simple, its proof is
rather complex. In this paper we provide a more succinct and direct proof that trans-
former relations are definable in FO (Q,+,≤). As a direct consequence topological
properties on conic sets are no longer used in this new version.

Outline of the paper: Section 2 recalls the definition of almost semilinear sets, a
class of sets inspired by the decomposition of Presburger sets into semilinear sets. Sec-
tion 3 introduces definitions related to vector addition systems. Section 4 introduces a
well-order over the runs of vector addition systems. This well-order is central in the
proof and it was first introduced by Petr Jančar in another context[5]. Based on the
definition of this well-order we introduce in Section 5 the notion of transformer rela-
tions and we prove that conic relations generated by transformer relations are definable
in FO (Q,+,≤). Thanks to this result and the well-order introduced in the previous
section we show in Section 6 that reachability sets of vector addition systems are al-
most semilinear. In Section 7 we introduce a dimension function for subsets of integer
vectors. In Section 8 the almost semilinear sets are proved to be approximable by Pres-
burger sets in a precise way based on the dimension function previously introduced.
Thanks to this approximation and since reachability sets are almost semilinear we fi-
nally prove in Section 9 that the vector addition system reachability problem can be
decided by inductive invariants definable in the Presburger arithmetic.

2 Almost Semilinear Sets

In this section we introduce the class of almost semilinear sets, a class of sets inspired
by the geometrical characterization of the Presburger sets by semilinear sets.

We denote by Z,N,N>0,Q,Q≥0,Q>0 the set of integers, natural numbers, pos-
itive integers, rational numbers, non negative rational numbers, and positive rational
numbers. Vectors and sets of vectors are denoted in bold face. The ith component of
a vector v ∈ Qd is denoted by v(i). Given two sets V 1,V 2 ⊆ Qd we denote by
V 1 + V 2 the set {v1 + v2 | (v1,v2) ∈ V 1 × V 2}, and we denote by V 1 − V 2
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the set {v1 − v2 | (v1,v2) ∈ V 1 × V 2}. Given T ⊆ Q and V ⊆ Qd we let
TV = {tv | (t,v) ∈ T × V }. We also denote by v1 + V 2 and V 1 + v2 the sets
{v1}+ V 2 and V 1 + {v2}, and we denote by tV and Tv the sets {t}V and T{v}.

A periodic set is a subset P ⊆ Zd such that 0 ∈ P and P + P ⊆ P . A conic set
is a subset C ⊆ Qd such that 0 ∈ C, C + C ⊆ C and Q≥0C ⊆ C. A periodic set
P is said to be finitely generated if there exist vectors p1, . . . ,pk ∈ P such that P =
Np1+ · · ·+Npk. A periodic set P is said to be asymptotically definable if the conic set
Q≥0P is definable in FO (Q,+,≤). Observe that finitely generated periodic sets are
asymptotically definable since the conic set Q≥0P generated by P = Np1+ · · ·+Npk
is equal to Q≥0p1 + · · ·+Q≥0pk.

Example 2.1. The periodic set P = {p ∈
N2 | p(2) ≤ p(1) ≤ 2p(2) − 1} is depicted
on the right. Observe that Q≥0P is the conic
set {0} ∪ {c ∈ Q2

>0 | c(2) ≤ c(1)} which is
definable in FO (Q,+,≤).

A Presburger set is a set Z ⊆ Zd definable in FO (Z,+,≤). Recall that Z ⊆ Zd is
a Presburger set iff it is semilinear, i.e. a finite union of linear sets b+P where b ∈ Zd
and P ⊆ Zd is a finitely generated periodic set [3]. The class of almost semilinear
sets [10] is obtained from the definition of semilinear sets by weakening the finiteness
condition on the considered periodic sets. More formally, an almost semilinear set is a
finite union of sets of the form b+ P where b ∈ Zd and P ⊆ Zd is an asymptotically
definable periodic set.

3 Vector Addition Systems

A Vector Addition System (VAS) is given by a finite subset A ⊆ Zd. A vector a ∈ A
is called an action. A configuration is a vector c ∈ Nd. A run ρ is a non-empty word
ρ = c0 . . . ck of configurations such that the difference aj = cj − cj−1 is in A for
every j ∈ {1, . . . , k}. In that case we say that ρ is labeled by w = a1 . . .ak, the
configurations c0 and ck are respectively called the source and the target and they are
denoted by src(ρ) and tgt(ρ). The direction of a run ρ is the pair (src(ρ), tgt(ρ)),
denoted by dir(ρ). Given a word w ∈ A∗, we introduce the binary relation w−→ over the
set of configurations by x

w−→ y if there exists a run ρ from x to y labeled byw. Observe
that in this case ρ is unique. The displacement of a word w = a1 . . .ak of actions
aj ∈ A is the vector ∆(w) =

∑k
j=1 aj . Note that x w−→ y implies x+∆(w) = y but

the converse is not true in general. The reachability relation is the relation ∗−→ over Nd
defined by x

∗−→ y if there exists a run from x to y.

The set of configurations forward reachable from a configuration x ∈ Nd is the
set {c ∈ Nd | x ∗−→ c} denoted by post∗(x). Symmetrically the set of configurations
backward reachable from a configuration y ∈ Nd is the set {c ∈ Nd | c ∗−→ y} denoted
by pre∗(y). These definitions are extended over sets of configurations X,Y ⊆ Nd by
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post∗(X) =
⋃

x∈X post∗(x) and pre∗(Y ) =
⋃

y∈Y post∗(y). A set X ⊆ Nd is said
to be a forward inductive invariant if X = post∗(X). Symmetrically a set Y ⊆ Nd is
said to be a backward inductive invariant if Y = pre∗(Y ).

In this paper we prove that for every x,y ∈ Nd such that there does not exist a run
from x to y, then there exists a pair (X,Y ) of disjoint Presburger sets X,Y ⊆ Nd such
that X is a forward inductive invariant that contains x and Y is a backward inductive
invariant that contains y. This result will provide directly the following theorem.

Theorem 3.1. The reachability problem for vector addition systems is decidable.

Proof. Let x,y ∈ Nd be two configurations. Let us consider an algorithm that enu-
merates in parallel the runs ρ and the pairs (X,Y ) of disjoint Presburger sets X,Y ⊆
setNd thanks to formulas in the Presburger arithmetic FO (Z,+,≤). If the algorithm
encounters a run from x to y then it returns “reachable” and if X is a forward induc-
tive invariant that contains x and Y is a backward inductive invariant that contains y
then it returns “unreachable”. This last condition can be effectively decided as follows.
Note that a set X ⊆ Nd is a forward inductive invariant iff the set Nd ∩ (X +A)\X
denoted by X̃ is empty, and a set Y ⊆ Nd is a backward inductive invariant iff the set
Nd ∩ (Y −A)\Y denoted by Ỹ is empty. Moreover, from Presburger formulas denot-
ing X and Y we compute in linear time formulas denoting the sets X̃ and Ỹ . Hence
deciding that X is a forward inductive invariant that contains x and Y is a backward
inductive invariant that contains y reduces to the satisfiability of formulas in the Pres-
burger arithmetic. Since this logic is decidable, we deduce a way for implementing the
last condition of our algorithm. Note that this algorithm is correct. Moreover, it termi-
nates thanks to the main result proved in this paper. ut

Remark 3.2. The set post∗(x) is a forward inductive invariant that contains x and
pre∗(y) is a backward inductive invariant that contains y. Moreover, if there does not
exist a run from x to y then these two reachability sets are disjoint. However in general
reachability sets are not definable in the Presburger arithmetic [4].

4 Well-Order Over The Runs

We introduce the relation � over the runs defined by ρ � ρ′ if ρ is a run of the form
ρ = c0 . . . ck where cj ∈ Nd and if there exists a sequence (vj)0≤j≤k+1 of vectors
vj ∈ Nd such that ρ′ is a run of the form ρ′ = ρ0 . . . ρk where ρj is a run from cj + vj
to cj + vj+1. A very similar relation was first introduced by Petr Jančar in [5]. Let us
recall that a well-order over a set S is an order v over S such that for every sequence
(sj)j∈N of elements sj ∈ S there exists j < k such that sj v sk.

Lemma 4.1. The relation � is a well-order over the runs.

Proof. A proof of this lemma with different notations can be obtained from Section 6 of
[5] with a simple reduction. For sake of completeness, we prefer to give a direct proof
of this important result. To do so, we introduce a well-order � over the runs based on
the Higman’s Lemma and we show that � and � are equal. We first associate to a run
ρ = c0 . . . ck the word α(ρ) = (a1, c1) . . . (ak, ck) over the set S = A × Nd where
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aj = cj − cj−1. The set S is ordered by the relation v defined by (a1, c1) v (a2, c2)
if a1 = a2 and c1 ≤ c2. Dickson’s lemma shows that v is a well-order. The set of
words S∗ is well-ordered thanks to the Higman’s lemma by the relation v∗ defined by
s1 . . . sk v∗ w ifw is a word in S∗s′1S

∗ . . . s′kS
∗ with sj v s′j for every j ∈ {1, . . . , k}.

The well-order � over the runs is defined by ρ � ρ′ if dir(ρ) ≤ dir(ρ′) and α(ρ) v∗
α(ρ′). Now, let us prove that � and � are equal. We consider a run ρ = c0 . . . ck with
cj ∈ Nd and we introduce the action aj = cj − cj−1 for each j ∈ {1, . . . , k}.

Assume first that ρ � ρ′ for some run ρ′. Since α(ρ) = (a1, c1) . . . (ak, ck) and
α(ρ) v∗ α(ρ′) we deduce a decomposition of α(ρ′) into the following word where
c′j ≥ cj for every j ∈ {1, . . . , k} and w0, . . . , wk ∈ S∗:

α(ρ′) = w0(a1, c
′
1)w1 . . . (ak, c

′
k)wk

In particular ρ′ can be decomposed in ρ′ = ρ0 . . . ρk where ρ0 is a run from src(ρ′)
to c′1 − a1, ρj is a run from c′j to c′j+1 − aj+1 for every j ∈ {1, . . . , k − 1}, and
ρk is a run from c′k to tgt(ρ′). Let us introduce the sequence (vj)0≤j≤k+1 of vectors
defined by v0 = src(ρ′)− src(ρ), vj = c′j − cj for every j ∈ {1, . . . , k} and vk+1 =

tgt(ρ′) − tgt(ρ). Note that vj ∈ Nd for every j ∈ {0, . . . , k + 1}. Observe that for
every j ∈ {1, . . . , k− 1} we have c′j+1−aj = cj+1−aj +vj+1 = cj +vj+1. Hence
ρj is a run from cj + vj to cj + vj+1 for every j ∈ {0, . . . , k}. Therefore ρ� ρ′.

Conversely, let us assume that ρ � ρ′ for some run ρ′. We introduce a sequence
(vj)0≤j≤k+1 of vectors in Nd such that ρ′ = ρ0 . . . ρk where ρj is a run from cj + vj
to cj + vj+1. We deduce the following equality where a′j = src(ρj)− tgt(ρj−1):

α(ρ′) = α(ρ0)(a
′
1, c1 + v1)α(ρ1) . . . (a

′
k, ck + vk)α(ρk)

Observe that a′j = (cj + vj) − (cj−1 + vj) = aj . We deduce that α(ρ) v∗ α(ρ′).
Moreover, since dir(ρ) ≤ dir(ρ′) we get ρ � ρ′. ut

5 Transformer Relations

Based on the definition of �, we introduce the transformer relation with capacity c ∈
Nd as the binary relation

cy over Nd defined by x
cy y if there exists a run from c+ x

to c + y. We also associate to every run ρ = c0 . . . ck with cj ∈ Nd the transformer
relation along the run ρ denoted by

ρ
y and defined as the following composition:

ρ
y =

c0y ◦ · · · ◦ cky

In this section transformer relations are shown to be asymptotically definable periodic.
Thanks to the following Lemma 5.1, it is sufficient to prove that

cy is in this class for
every capacity c ∈ Nd.

Lemma 5.1. Asymptotically definable periodic relations are stable by composition.

Proof. Assume thatR,S ⊆ Zd×Zd are two periodic relations and observe that (0,0) ∈
R ◦ S. Let us consider two pairs (x1, z1) and (x2, z2) in R ◦ S. For each k ∈ {1, 2},
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there exists yk ∈ Zd such that (xk,yk) ∈ R and (yk, zk) ∈ S. AsR and S are periodic
we get (x,y) ∈ R and (y, z) ∈ S where x = x1+x2, y = y1+y2 and z = z1+z2.
Thus (x, z) ∈ R ◦ S and we have proved that R ◦ S is periodic. Now just observe that
Q≥0(R ◦S) = (Q≥0R) ◦ (Q≥0S). Hence if R and S are asymptotically definable then
R ◦ S is also asymptotically definable. ut

Lemma 5.2. The transformer relation
cy is periodic.

Proof. Assume that c+x1
w1−−→ c+y1 and c+x2

w2−−→ c+y2 for words w1, w2 ∈ A∗

and vectors x1,y1,x2,y2 ∈ Nd. By monotony c+ x1 + x2
w1w2−−−→ c+ y1 + y2. ut

In the remainder of this section, we show that Q≥0
cy is definable in FO (Q,+,≤).

We introduce the set Γc of triples γ = (x, c,y) such that x
cy y and the set Γ =⋃

c∈Nd Γc. Given a triple γ ∈ Γ , the vectors x, c,y implicitly denote the components
of γ. We introduce the set Ωγ of runs ρ such that dir(ρ) ∈ (c, c) + N(x,y) and the set
Qγ of configurations q ∈ Nd such that there exists a run ρ ∈ Ωγ in which q occurs. We
denote by Iγ the set of indexes i ∈ {1, . . . , d} such that {q(i) | q ∈ Qγ} is finite.

Example 5.3. Let us consider the VAS A = {a, b} where a = (1, 1,−1) and b =
(−1, 0, 1) and let γ = (x, c,y) where x = (0, 0, 0), c = (1, 0, 1) and y = (0, 1, 0).
Observe that Ωγ = {c + nx

w1...wn−−−−−→ c + ny | n ∈ N wj ∈ {ab, ba}}, Qγ =
({2} × N>0 × {0}) ∪ ({1} × N× {1}) ∪ ({0} × N× {2}), and Iγ = {1, 3}.

In section 5.1 we show that for every configuration q ∈ Qγ , there exist configu-
rations q′ ∈ Qγ that coincide with q on components indexed by Iγ and such that q′

is as large as expected on all the other components. Based on a projection of the un-
bounded components of vectors in Qγ , i.e. the components not indexed by Iγ , we show
in Section 5.3 that a finite graph Gγ called production graph can be canonically asso-
ciated to every triple γ. We also prove that the class {Gγ | γ ∈ Γc} is finite. Finally
in Section 5.2 we introduce a binary relation Rγ ⊆ Q≥0

cy definable in FO (Q,+,≤)
associated to the production graphs Gγ and such that (x,y) ∈ Rγ . By observing that
Q≥0

cy=
⋃
γ∈Γc

Rγ and the class {Rγ | γ ∈ Γc} is finite we deduce that the periodic

relation
cy is asymptotically definable.

5.1 Intraproductions

An intraproduction for γ is a vector h ∈ Nd such that there exists n ∈ N satisfying
nx

cy h
cy ny. We denote by Hγ the set of intraproductions for γ. This set is periodic

since
cy is periodic. In particular for every h ∈ Hγ we have Nh ⊆ Hγ and the

following lemma shows that Qγ + Nh ⊆ Qγ . Hence, the components of every vector
q ∈ Qγ indexed by i such that h(i) > 0 can be increased to arbitrary large values by
adding a large number of times the vector h. In order to increase simultaneously all
the components not indexed by Iγ we are interested by intraproductions h such that
h(i) > 0 for every i 6∈ Iγ . Note that components indexed by Iγ are necessarily zero
since for every intraproduction h, from c+Nh ⊆ Qγ we get h(i) = 0 for every i ∈ Iγ .
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Lemma 5.4. We have Qγ +Hγ ⊆ Qγ .

Proof. Let q ∈ Qγ and h ∈ Hγ . As q ∈ Qγ , there exist n ∈ N and words u, v ∈ A∗

such that c + nx
u−→ q

v−→ c + ny. Since h ∈ Hγ there exist n′ ∈ N and words

u′, v′ ∈ A∗ such that c+ n′x
u′

−→ c+ h
v′−→ c+ n′y. Let m = n+ n′. By monotony,

we have c+mx
u′u−−→ q + h

vv′−−→ c+my. Hence q + h ∈ Qγ . ut

Lemma 5.5. For every q ≤ q′ in Qγ there exists h ∈Hγ such that q′ ≤ q + h.

Proof. As q, q′ ∈ Qγ there exists m,m′ ∈ N and u, v, u′, v′ ∈ A∗ such that:

c+mx
u−→ q

v−→ c+my and c+m′x
u′

−→ q′
v′−→ c+m′y

Let us introduce v = q′ − q, h = v +m(x+ y), and n = m+m′. By monotony:

c+ nx
u′

−→ q′ +mx and q + v +mx
v−→ c+ h

c+ h
u−→ q + v +my and q′ +my

v′−→ c+ ny

Since q′ + mx = q + v + mx and q + v + my = q′ + my, we have proved that

c+nx
u′v−−→ c+h

uv′−−→ c+ny. Hence h ∈Hγ . Observe that q+h = q′+m(x+y) ≥
q′. We are done. ut

Lemma 5.6. There exist h ∈Hγ such that Iγ = {i | h(i) = 0}.

Proof. Let i 6∈ Iγ . There exists a sequence (qj)j∈N of configurations qj ∈ Qγ such
that (qj(i))j∈N is strictly increasing. Since (Nd,≤) is well-ordered there exists j < k
such that qj ≤ qk. Lemma 5.5 shows that there exists an intraproduction hi for γ
such that qk ≤ qj + hi. In particular hi(i) > 0 since qj(i) < qk(i). As the set of
intraproductions Hγ is periodic we deduce that h =

∑
i 6∈I hi is an intraproduction for

γ. By construction we have h(i) > 0 for every i 6∈ Iγ . Since h ∈ Hγ we deduce that
h(i) = 0 for every i ∈ Iγ . Therefore Iγ = {i | h(i) = 0}. ut

5.2 Production Graphs

Finite graphs Gγ , called production graphs can be associated to every triple γ as fol-
lows. The set of states is obtained from Qγ by projecting away the unbounded com-
ponents. More formally, we introduce the projection function πγ : Qγ → NIγ defined
by πγ(q)(i) = q(i) for every q ∈ Qγ and for every i ∈ Iγ . We consider the finite
set of states Sγ = πγ(Qγ) and the set Tγ of transitions (πγ(q), q′ − q, πγ(q

′)) where
qq′ is a factor of a run in Ωγ . Since Tγ ⊆ Sγ ×A × Sγ we deduce that Tγ is finite.
We introduce the finite graph Gγ = (Sγ , Tγ), called the production graph of γ. Since
c ∈ Qγ we deduce that πγ(c) is a state of Gγ . This state is denoted by sγ .

Example 5.7. Let us come back to Exam-
ple 5.3. The graph Gγ is depicted on the
right where ? denotes a projected compo-
nent. Note that sγ = (1, ?, 1).

(2, ?, 0) (1, ?, 1) (0, ?, 2)

b b

aa
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Corollary 5.8. We have πγ(src(ρ)) = sγ = πγ(tgt(ρ)) for every run ρ ∈ Ωγ .

Proof. Since ρ ∈ Ωγ there exists n ∈ N such that ρ is a run from c + nx to c + ny.
In particular nx and ny are two intraproductions for γ. We get nx(i) = 0 = ny(i) for
every i ∈ Iγ . Hence πγ(src(ρ)) = πγ(c) = πγ(tgt(ρ)). ut

A path inGγ is a word p = (s0,a1, s1) . . . (sk−1,ak, sk) of transitions (sj−1,aj , sj)
in Tγ . Such a path is called a path from s0 to sk labeled by w = a1 . . .ak. When
s0 = sk the path is called a cycle. The previous corollary shows that for every run
ρ = c0 . . . ck in Ωγ the following word θρ is a cycle on sγ in Gγ labeled by w:

θρ = (πγ(c0),a1, πγ(c1)) . . . (πγ(ck−1),ak, πγ(ck))

Corollary 5.9. The graph Gγ is strongly connected.

Proof. Let s ∈ Sγ . There exists q ∈ Qγ that occurs in a run ρ ∈ Ωγ such that s =

πγ(q). Hence there exist u, v ∈ A∗ such that src(ρ) u−→ q
v−→ tgt(ρ). Note that θρ is

the concatenation of a path from sγ to s and a path from s to sγ labeled by u, v. ut

Corollary 5.10. States in Sγ are incomparable.

Proof. Let us consider s ≤ s′ in Sγ . There exists q, q′ ∈ Qγ such that s = πγ(q) and
s′ = πγ(q

′). Lemma 5.6 shows that there exists an intraproduction h′ ∈ Hγ such that
Iγ = {i | h′(i) = 0}. By replacing h′ by a vector in N>0h

′ we can assume without
loss of generality that q(i) ≤ q′(i) + h′(i) for every i 6∈ Iγ . As q(i) = s(i) ≤ s′(i) =
q′(i) = q′(i) + h′(i) for every i ∈ Iγ we deduce that q ≤ q′ + h′. Lemma 5.4 shows
that q′ + h′ ∈ Qγ . Lemma 5.5 shows that there exists an intraproduction h ∈ Hγ

such that q′ + h′ ≤ q + h. As h ∈ Hγ we deduce that h(i) = 0 for every i ∈ Iγ . In
particular q′(i) ≤ q(i) for every i ∈ Iγ . Hence s′ ≤ s and we get s = s′. ut

Corollary 5.11. The class {Gγ | γ ∈ Γc} is finite.

Proof. Given I ⊆ {1, . . . , d} we introduce the state sc,I ∈ NI defined by sc,I(i) =
c(i) for every i ∈ I . We also introduce the set Γc,I of triples γ ∈ Γc such that Iγ = I .
Assume by contradiction that Sc,I =

⋃
γ∈Γc,I

Sγ is infinite. For every s ∈ Sc,I there
exists γ ∈ Γc,I such that s ∈ Sγ . Hence there exists a path ps inGγ from sc,I to s. Since
the states in Sγ are incomparable, we can assume that the states occurring in ps are
incomparable. By inserting the paths ps in a tree rooted by sc,I with transitions labeled
by actions in A we deduce an infinite tree such that each node has a finite number of
children (at most |A|). The Koenig’s lemma shows that this tree has an infinite branch.
Since (NI ,≤) is well-ordered, there exists two comparable distinct nodes in this branch.
There exists s ∈ Sc,I such that these two comparable states occurs in ps. We get a
contradiction. Thus Sc,I is finite. We deduce the corollary. ut

5.3 Kirchhoff’s Functions

We associate to the production graph Gγ a binary relation Rγ included in Q≥0
cy and

such that (x,y) ∈ Rγ . This relation is based on the Kirchhoff’s functions.
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A Kirchhoff’s function for γ is a function f : Tγ → Q>0 labeling transitions of
the production graph Gγ by some positive rational numbers satisfying the following
equality for every s ∈ Sγ :∑

t∈Tγ∩({s}×A×Sγ)

f(t) =
∑

t∈Tγ∩(Sγ×A×{s})

f(t)

A cycle θ in Gγ is said to be total for γ if every transition in Tγ occurs in θ. The
Parikh image of a path is the function f : Tγ → N where f(t) denotes the number of
occurrences of t in the path. The Euler’s lemma shows that a function f : Tγ → N>0 is
a Kirchhoff’ function for γ if and only if f is the Parikh image of a total cycle for γ.

The displacement of a function f : Tγ → Q is the sum
∑
t∈Tγ f(t)∆(t) where

∆(t) = a if a is the label of the transition t. This vector is denoted by ∆(f). Let
us observe that if f is the Parikh’s image of a path in Gγ labeled by a word w then
∆(f) = ∆(w). Intuitively the displacement of w only depends on the number of times
transitions in Tγ occur in the path.

We introduce the relation Rγ of pairs (u,v) ∈ Qd≥0 ×Qd≥0 satisfying u(i) > 0 iff
x(i) > 0, v(i) > 0 iff y(i) > 0, and such that there exists a Kirchhoff’s function f for
γ such that v − u = ∆(f). Observe that Rγ is definable in FO (Q,+,≤).

Example 5.12. Let us come back to Examples 5.3 and 5.7. The relation Rγ is equal to
{((0, 0, 0), (0, n, 0)) | n ∈ Q>0}.

Lemma 5.13. We have (x,y) ∈ Rγ .

Proof. Assume that Tγ = {t1, . . . , tk}. By definition of Tγ , for every j ∈ {1, . . . , k},
there exists a run ρj such that tj occurs in the cycle θρj . Let wj be the label of ρj and
nj ∈ N such that dir(ρj) ∈ (c, c)+nj(x,y). As x

cy y there exists a run ρ from c+x
to c + y labeled by a word w. The cycle θρ shows that w is the label of a cycle on sγ .
Let us consider n = 1 +

∑k
j=1 nj and σ = ww1 . . . wk. Observe that σ is the label of

a total cycle on sγ . Hence the Parikh’s image of this total cycle provides a Kirchhoff’s
function f for γ such that ∆(σ) = ∆(f). Observe that ∆(σ) = n(y − x). Hence
y − x = ∆( 1nf) and we have proved that (x,y) ∈ Rγ . ut

Lemma 5.14. We have Rγ ⊆ Q≥0
cy.

Proof. Lemma 5.6 shows that there exists h′ ∈ Hγ such that Iγ = {i | h′(i) = 0}.
From h′ ∈ Hγ we have a run ρ of the form c + nx

w1−−→ c + h′
w2−−→ c + ny for

some n ∈ N and w1, w2 ∈ A∗. The cycle θρ shows that there exist cycles θ1, θ2 on
sγ labeled by w1, w2. We denote by f1 and f2 the Parikh images of these two cycles.
Let (u,v) ∈ Rγ . By replacing (u,v) by a pair in N>0(u,v) we can assume without
loss of generality that u′ = u − nx and v′ = v − ny are both in Nd, and there exists
a Kirchhoff’s function f such that f(t) ∈ N>0 and f(t) > f1(t) + f2(t) for every
t ∈ Tγ , and such that v−u = ∆(f). Since g = f − (f1+ f2) is a Kirchhoff’s function
satisfying g(t) ∈ N>0 for every t ∈ Tγ , the Euler’s Lemma shows that g is the Parikh’s
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image of a total cycle θ in Gγ on sγ . Let σ be the label of this cycle and observe that
∆(σ) = ∆(g) = ∆(f)−(∆(f1)+∆(f2)) = v−u−((h′−nx)+(ny−h′)) = v′−u′.
Since c+ nx

w1−−→ c+ h′
w2−−→ c+ ny and nx ≤ u, ny ≤ v we deduce by monotony

that for every k ∈ N we have:

c+ ku
wk1−−→ c+ k(h′ + u′) c+ k(h′ + v′)

wk2−−→ c+ kv

Since θ is a cycle in Gγ on sγ labeled by σ and Iγ = {i | h′(i) = 0}, there exists
a run from c + kh′ labeled by σ for some k ∈ N>0 large enough. Let us consider
j ∈ {0, . . . , k} and let us introduce zj = (k − j)u′ + jv′. Note that zj ∈ Nd. By
monotony there exists a run from c+kh′+zj labeled by σ. Since ∆(σ) = v′−u′, we
get zj +∆(σ) = zj+1. We deduce that c+ kh′ + zj

σ−→ c+ kh′ + zj+1. Therefore:

c+ k(h′ + u′)
σk−−→ c+ k(h′ + v′)

We have proved the lemma by observing that c+ ku
wk1σ

kwk2−−−−−→ c+ kv. ut

Corollary 5.15. Transformer relations are asymptotically definable periodic relations.

Proof. Lemma 5.13 and Lemma 5.14 show that Q≥0
cy=

⋃
γ∈Γc

Rγ . Since the class
{Gγ | γ ∈ Γc} is finite we deduce that the class {Rγ | γ ∈ Γc} is finite. Recall that
relations Rγ are definable in FO (Q,+,≤). ut

6 Reachability Relations Are Almost Semilinear

In this section the intersection of the reachability relation ∗−→ with any Presburger re-
lation R ⊆ Nd × Nd is proved to be almost semilinear. As a direct corollary we will
deduce that post∗(X)∩Y and pre∗(Y )∩X are almost semilinear for every Presburger
sets X,Y ⊆ Nd. Since Presburger relations are finite unions of linear relations, we can
assume that R = r + P where r ∈ Nd × Nd and P ⊆ Nd × Nd is a finitely generated
periodic relation. We introduce the set Ω of runs ρ such that dir(ρ) ∈ R equipped with
the order v defined by ρ v ρ′ if dir(ρ′) ∈ dir(ρ) + P and ρ � ρ′. Since P is finitely
generated, the Dickson’s lemma shows that v is a well-order.

Lemma 6.1. The intersection of ∗−→ with R is equal to:⋃
ρ∈minv(Ω)

dir(ρ) + (
ρ
y ∩P )

Proof. Let us first prove that dir(ρ) + (
ρ
y ∩P ) is included in ∗−→ ∩R for every run ρ ∈

Ω. Assume that ρ = c0 . . . ck with cj ∈ Nd and let (m,n) ∈ P such that m
ρ
y n. As

ρ ∈ Ω we deduce that (c0, ck) ∈ R. As m
ρ
y n there exists a sequence (vj)0≤j≤k+1

of vectors vj ∈ Nd such that v0 = m, vk+1 = n and such that vj
cjy vj+1 for every

j ∈ {0, . . . , k}. In particular there exists a run from cj + vj to cj + vj+1 labeled by a
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word wj ∈ A∗. Now just observe that we have a run from c0+v0 to ck+vk+1 labeled
by w0a1w1 . . .akwk where aj = cj − cj−1. Since (c0, ck) ∈ r + P and (m,n) ∈ P
we deduce that (c0 + m, ck + n) ∈ r + P + P ⊆ R. Hence dir(ρ) + (m,n) is in
∗−→ ∩R.

Now, let us prove that for every (x,y) ∈ R such that x ∗−→ y there exists ρ ∈
minv(Ω) such that (x,y) ∈ dir(ρ) + (

ρ
y ∩P ). There exists a run ρ′ ∈ Ω such that

dir(ρ′) = (x,y). Since v is a well-order, there exists a run ρ ∈ minv(Ω) such that
ρ v ρ′. By definition of v we deduce that dir(ρ′) ∈ dir(ρ) + (

ρ
y ∩P ). ut

Since
ρ
y ∩P is an asymptotically definable periodic relation, from the previous

lemma we deduce that the intersection of the reachability relation ∗−→ with every Pres-
burger relation is almost semilinear. We deduce the following corollary.

Corollary 6.2. The sets post∗(X) ∩ Y and pre∗(Y ) ∩X are almost semilinear for
every Presburger sets X,Y ⊆ Nd.

Proof. Let us consider the Presburger relationR = X×Y and observe that post∗(X)∩
Y = f(

∗−→ ∩R) and pre∗(Y ) ∩X = g(
∗−→ ∩R) where f, g : Qd ×Qd → Qd and de-

fined by f(x,y) = y and g(x,y) = x. Now just observe that for every r ∈ Nd×Nd, for
every asymptotically definable periodic relation P ⊆ Nd×Nd, and for every h ∈ {f, g}
we have h(r + P ) = h(r) + h(P ). Moreover h(P ) is a periodic set and the conic set
Q≥0h(P ) is equal to h(Q≥0P ) which is definable in FO (Q,+,≤). ut

7 Dimension

In this section we introduce a dimension function for the subsets of Zd and we charac-
terize the dimension of periodic sets.

A vector space is a set V ⊆ Qd such that 0 ∈ V , V + V ⊆ V and such that
QV ⊆ V . Let X ⊆ Qd. The following set V is a vector space called the vector space
generated by X .

V =


k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X


This vector space is the minimal for the inclusion among the vector spaces that con-
tain X . Let us recall that every vector space V is generated by a finite set. The rank
rank(V ) of a vector space V is the minimal natural number m ∈ N such that there
exists a finite set X with m vectors that generates V . Let us recall that rank(V ) ≤ d
for every vector space V ⊆ Qd and rank(V ) ≤ rank(W ) for every pair of vector
spaces V ⊆W . Moreover, if V is strictly included in W then rank(V ) < rank(W ).

Example 7.1. Vector spaces V included in Q2 satisfy rank(V ) ∈ {0, 1, 2}. Moreover
these vectors spaces can be classified as follow : rank(V ) = 0 if and only if V = {0},
rank(V ) = 1 if and only if V = Qv with v ∈ Q2\{0}, and rank(V ) = 2 if and only
if V = Q2.
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The dimension of a set X ⊆ Zd is the minimal integer m ∈ {−1, . . . , d} such
that X ⊆

⋃k
j=1 bj + V j where bj ∈ Zd and V j ⊆ Qd is a vector space satisfying

rank(V j) ≤ m for every j. We denote by dim(X) the dimension of X . Observe
that dim(v + X) = dim(X) for every X ⊆ Zd and for every v ∈ Zd. More-
over we have dim(X) = −1 if and only if X is empty. Note that dim(X ∪ Y ) =
max{dim(X),dim(Y )} for every subsets X,Y ⊆ Zd.

Lemma 7.2. Let P ⊆ Zd be a periodic set included in
⋃k
j=1 bj +V j where k ∈ N>0,

bj ∈ Zd and V j ⊆ Qd is a vector space. There exists j ∈ {1, . . . , k} such that P ⊆ V j

and bj ∈ V j .

Proof. Let us first prove by induction over k ∈ N>0 that for every periodic set P ⊆ Zd
included in

⋃k
j=1 V j where V j ⊆ Qd is a vector space, there exists j ∈ {1, . . . , k}

such that P ⊆ V j . The rank k = 1 is immediate. Assume the rank k proved and let us
prove the rank k + 1. Let P be a periodic set included in

⋃k+1
j=1 V j where V j ⊆ Qd

is a vector space. If P ⊆ V k+1 the induction is proved. So we can assume that there
exists p ∈ P \V k+1. Let x ∈ P . Since p + nx ∈ P for every n ∈ N, the pigeon-
hole principle shows that there exist j ∈ {1, . . . , k + 1} and n < n′ such that np + x
and n′p + x are both in V j . In particular the difference of this two vectors is in V j .
Since this difference is (n′ − n)p and p 6∈ V k+1 we get j ∈ {1, . . . , k}. Observe that
n(n′p + x) − n′(np + x) is the difference of two vectors in V j . Thus this vector is
in V j and we deduce that x ∈ V j . We have shown that P ⊆

⋃k
j=1 V j . By induction

there exists j ∈ {1, . . . , k} such that P ⊆ V j . We have proved the induction.
Finally, assume that P ⊆ Zd is a periodic set included in

⋃k
j=1 bj + V j where

k ∈ N>0, bj ∈ Zd and V j ⊆ Qd is a vector space. Let J be the set of j ∈ {1, . . . , k}
such that bj ∈ V j and let us prove that P ⊆

⋃
j∈J V j . Let p ∈ P . Since np ∈ P

for every n ∈ N, there exist j ∈ {1, . . . , k} and n < n′ such that np and n′p are both
in bj + V j . The difference of these two vectors shows that (n′ − n)p is in V j . From
bj ∈ np−V j ⊆ V j we deduce that j ∈ J . Thus P ⊆

⋃
j∈J V j . As 0 ∈ P we deduce

that J 6= ∅ and from the previous paragraph, there exists j ∈ J such that P ⊆ V j . ut

Lemma 7.3. We have dim(P ) = rank(V ) for every periodic set P where V is the
vector space generated by P .

Proof. Since P ⊆ V we deduce that dim(P ) ≤ rank(V ). For the converse inequality,
there exist k ∈ N, (bj)1≤j≤k a sequence of vectors bj ∈ Zd and a sequence (V j)1≤j≤k
of vector spaces V j ⊆ Qd such that P ⊆

⋃k
j=1 bj + V j and such that rank(V j) ≤

dim(P ) for every j. Since P is non empty we deduce that k ∈ N>0. Lemma 7.2 proves
that there exists j ∈ {1, . . . , k} such that P ⊆ V j and bj ∈ V j . By minimality of the
vector space generated by P we get V ⊆ V j . Hence rank(V ) ≤ rank(V j). From
rank(V j) ≤ dim(P ) we get rank(V ) ≤ dim(P ). ut

8 Linearizations

A linearization of an almost semilinear set X is a set
⋃k
j=1 bj + (P j −P j)∩Q≥0P j

where bj ∈ Zd and P j ⊆ Zd is an asymptotically definable periodic set such that X =
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j=1 bj + P j . Let us recall that every subgroup of (Zd,+) is finitely generated[14].

Moreover, since FO (Q,+,≤, 0) admits a quantifier elimination algorithm, we deduce
that linearizations are definable in the Presburger arithmetic. In this section we show
that if X,Y ⊆ Zd are two non-empty almost semilinear sets with an empty intersection
then every linearizations S,T of X,Y satisfy:

dim(S ∩ T ) < dim(X ∪ Y )

Lemma 8.1. Assume that b+M ⊆ (P −P )∩Q≥0P where b ∈ Zd and M ,P ⊆ Zd
are two periodic sets. Let a be a vector of the form m1 + · · ·+mk where (mj)1≤j≤k
is a sequence of vectors mj ∈M that generates a vector space that contains P . There
exists k ∈ N>0 such that b+ kN>0a ⊆ P .

Proof. Since b ∈ P − P there exists p+,p− ∈ P such that b = p+ − p−. As the se-
quence (mj)1≤j≤k generates a vector space that contains P , we get p+ ∈

∑k
j=1 Qmj .

Hence there exists z ∈ N>0 such that −zp+ ∈
∑k
j=1 Zmj . By definition of a, there

exists n ∈ N>0 such that −zp+ + na ∈
∑k
j=1 Nmj . Hence b − zp+ + na ∈

b+
∑k
j=1 Nmj . Since this set is included in Q≥0P and (z−1)p+ ∈ P we deduce that

(b−zp++na)+(z−1)p+ is in Q≥0P . Note that this vector is equal to−p−+na since
b = p+ − p−. Hence, there exists s ∈ N>0 such that s(−p− + na) ∈ P . Let k = sn
and observe that −p− + ka = s(−p− + na) + (s − 1)p−. Hence −p− + ka ∈ P .
Since b+ka = (−p−+ka)+p+ and ka = (−p−+ka)+p− we deduce that b+ka
and ka are both in P . In particular b+ kN>0a ⊆ P . ut

Corollary 8.2. Let X,Y ⊆ Zd be two non-empty almost semilinear sets with an empty
intersection. For every linearizations S,T of X,Y we have:

dim(S ∩ T ) < dim(X ∪ Y )

Proof. We can assume that X = u + P , Y = v +Q where u,v ∈ Zd and P ,Q ⊆
Zd are two asymptotically definable periodic sets such that X ∩ Y = ∅ and we can
assume that S = u + P ′ where P ′ = (P − P ) ∩ Q≥0P and T = v + Q′ where
Q′ = (Q −Q) ∩ Q≥0Q. Let U and V be the vector spaces generated by P and Q.
Lemma 7.3 shows that dim(X) = rank(U) and dim(Y ) = rank(V ). Note that S∩T
is a Presburger set and in particular a finite union of linear sets. If this set is empty the
corollary is proved. Otherwise there exists b ∈ Zd and a finitely generated periodic set
M ⊆ Zd such that b +M ⊆ S ∩ T and such that dim(S ∩ T ) = dim(b +M). Let
W be the vector space generated by M . Observe that b+M ⊆ (u+U) ∩ (v + V ).
Hence for every m ∈ M since b + m − u and b + 2m − u are both in U the
difference is also in U . Hence m ∈ U . We deduce that M ⊆ U and symmetrically
M ⊆ V . As M is included in the vector space U ∩ V , by minimality of W , we
get W ⊆ U ∩ V . Assume by contradiction that W = U and W = V . Since M is
finitely generated, there exists a sequence (mj)1≤j≤k of vectors mj ∈ M such that
M = Nm1+· · ·+Nmk. Let a = m1+· · ·+mk. From b−u+M ⊆ (P−P )∩Q≥0P
and Lemma 8.1 we deduce that there exists k ∈ N>0 such that b − u + kN>0a ⊆ P .
From b − v + M ⊆ (Q − Q) ∩ Q≥0Q and Lemma 8.1 we deduce that there exists
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k′ ∈ N>0 such that b−v+k′N>0a ⊆ Q. In particular b+kk′a ∈ (u+P )∩ (v+Q)
and we get a contradiction since this intersection is empty. Thus W 6= U or W 6= V .
Since W ⊆ U ∩ V we deduce that W is strictly included in U or in V . Hence
rank(W ) < max{rank(U), rank(V )} = dim(X ∪ Y ). From Lemma 7.3 we get
dim(M) = rank(W ) and since dim(M) = dim(S ∩ T ) the corollary is proved. ut

9 Presburger Invariants

We introduce the notion of separators. A separator is a pair (X,Y ) of Presburger
sets X,Y ⊆ Nd such that there does not exist a run from a configuration in X to a
configuration in Y . In particular X ∩ Y = ∅. The Presburger set D = Nd\(X ∪ Y )
is called the domain of (X,Y ). We observe that a separator (X,Y ) with an empty
domain is a partition of Nd such that X is a Presburger forward inductive invariant and
Y is a Presburger backward inductive invariant.

Lemma 9.1. Let (X0,Y 0) be a separator with a non-empty domain D0. There exists
a separator (X,Y ) with a domain D such that X0 ⊆ X , Y 0 ⊆ Y and dim(D) <
dim(D0).

Proof. As X0,D0 are Presburger sets, Corollary 6.2 shows that H = post∗(X0)∩D0

is an almost semilinear set. We introduce a linearization S of this set. Since post∗(X0)∩
D0 ⊆ S, we deduce that the set Y = Y 0 ∪ (D0\S) is such that post∗(X0)∩Y = ∅.
Hence (X0,Y ) is a separator. Symmetrically, as D0,Y are Presburger sets, Corol-
lary 6.2 shows that K = pre∗(Y ) ∩D0 is an almost semilinear set. We introduce a
linearization T of this set. Since pre∗(Y ) ∩ D0 ⊆ T , we deduce that the set X =
X0 ∪ (D0\T ) is such that pre∗(Y ) ∩X = ∅. Hence (X,Y ) is a separator.

Let us introduce the domain D of (X,Y ) and observe that D = D0 ∩ S ∩ T . If
H or K is empty then S or T is empty and in particular D is empty and the lemma
is proved. So we can assume that H and K are non empty. Since H ⊆ post∗(X0) ⊆
post∗(X) and K ⊆ pre∗(Y ) and (X,Y ) is a separator, we deduce that H ∩K = ∅.
Moreover as H,K ⊆ D0 we deduce that dim(H ∪ K) ≤ dim(D0). As S and
T are linearizations of the non-empty almost semilinear sets H , K and H ∩K = ∅,
Corollary 8.2 shows that dim(S∩T ) < dim(H∪K). Therefore dim(D) < dim(D0).

ut

We deduce the main theorem of this paper.

Theorem 9.2. For every x,y ∈ Nd such that there does not exist a run from x to y,
then there exists a pair (X,Y ) of disjoint Presburger sets X,Y ⊆ Nd such that X is
a forward inductive invariant that contains x and Y is a backward inductive invariant
that contains y.

Proof. Observe that ({x}, {y}) is a separator.Thanks to Lemma 9.1 with an immediate
induction over the dimension of the domains we deduce that there exists a separator
(X,Y ) with an empty domain such that x ∈X and y ∈ Y . ut
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10 Conclusion

The reachability problem for vector addition systems can be solved with a simple al-
gorithm based on inductive invariants definable in the Presburger arithmetic. This al-
gorithm does not require the classical KLMST decomposition. Note however that the
complexity of this algorithm is still open. In fact, the complexity depends on the mini-
mal length of a run from x to y when such a run exists, or the minimal length of a Pres-
burger formula denoting a forward inductive invariant X such that x ∈ X and y 6∈ X
when such a formula exists. We left as an open question the problem of computing lower
and upper bounds for these lengths. Note that the VAS exhibiting a large (Ackermann
size) but finite reachability set given in [12] does not directly provide an Ackermann
lower-bound for these sizes since Presburger forward invariants can over-approximate
reachability sets. Note that the existence of a primitive recursive upper bound of com-
plexity for the reachability problem is still open since the Zakaria Bouziane’s paper[1]
introducing such a bound was proved to be incorrect by Petr Jančar[6].
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