
HAL Id: hal-00674843
https://hal.science/hal-00674843

Submitted on 28 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology-based support for reconfigurable adaptive
group communication architecture

Ismael Bouassida Rodriguez, Aymen Kamoun, Sakkaravarthi Ramanathan,
Khalil Drira

To cite this version:
Ismael Bouassida Rodriguez, Aymen Kamoun, Sakkaravarthi Ramanathan, Khalil Drira. Ontology-
based support for reconfigurable adaptive group communication architecture. 2012. �hal-00674843�

https://hal.science/hal-00674843
https://hal.archives-ouvertes.fr


Ontology-based support for reconfigurable

adaptive group communication architecture

Ismael Bouassida Rodriguez1,2, Aymen Kamoun1,2, Sakkaravarthi
Ramanathan1,2 and Khalil Drira1,2

{bouassida,akamoun,sakkaravarthi,khalil}@laas.fr

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. In collaborative communication, adaptation is required to
maintain the reliable connection. Within the framework of a wireless
environment, it is very challenging for the host entities to handle a sud-
den/unexpected change in communication and available resources. This
issue is addressed in the context of save and rescue missions carried out
during natural disasters such as floods and forest fires by human and vol-
untary operators aided by ground mobile devices and autonomous robots.
This paper proposes a multi level architecture that supports reconfig-
urable adaptive group communications using semantic model. Modeling
follows the well-known SWRL (Semantic Web Rule Language) instruc-
tions which establish the degree of importance of each communication
link or component. Adaptation is then achieved through initializing be-
tween various configurations and for a given entity, the latter is modi-
fied as need be. Providing generic and scalable solutions for automated
self-reconfiguration is driven by rule-based reconfiguration policies using
ontologies. Finally, we illustrate constraints capable of meeting evolv-
ing requirements and the solutions followed by implementation of this
scenario.

1 Introduction

In autonomic communication, the design of self-configurable systems that can
adapt dynamically is a major research topic. With respect to adaptive systems,
the issue at hand is that of finding a way of enabling us to concentrate on the
important service request and also on a specific aspect relevant to a particular
situation only. An architecture that analyzes and manages the request in order
to get the best possible decision in real-time needs to be designed. Many existing
dynamic architectures provide just enough functionality to support simple dis-
tributed communications but in case of distributed software systems, more work
has to focus on managing the group membership and the nodes deployment. In
a group - wide communication under different situations, one has to ensure the
tractability of the elaborated solutions when migrating from several users, node
or components.

In our case study, we study issues related to Crisis Management Systems
(CMS). In this kind of system, there exist different nodes communicating through



various types of flows. For example, a set of smart devices communicate with
robots to achieve a given mission and to self-adapt in a dynamic environment.
Each device is embedded with software entities with properties, particularly in
terms of reliability, self-healability, etc. The system relies on autonomous entities
that manage the resources available in order to provide the communication. In
this paper, we use semantic modeling approach to solve the different aspects
related to communication challenges. Our goal is to provide a communication
architecture that can manage the resources to ensure uninterrupted connectivity
between mission participants according to the goals.

Section 2 presents related work and section 3 outlines the ROSACE project
scenario. Section 4 details our multi-level architecture followed by context repre-
sentation. Section 6 illustrates some constraints and the solutions while section
7 talks about the implementation. Conclusion and open issues are presented in
section 8.

2 Related Work

After developing an information system, there might be many reasons for adap-
tation, e.g corrective, evolutional or perspective [1]. If we consider the corrective
adaptation, application does not behave as expected. The solution is to identify
the module that causes the problem and replace it by a new module providing
the same functionality. In case of evolutional adaptation, changing user needs
is supported by adding new modules or modifying the existing functionality of
the application architecture. Finally in perspective adaptation, the idea is to
improve performance. For example, if a module receives numerous requests that
result in performance degradation, it can be duplicated to share the workload.

Several studies focus on a model-based approach with automated manage-
ment techniques for adaptation, i.e, introducing changes to a program or main-
taining functionalities and, whenever possible, improving performance. In [2], an
adaptive framework supporting multiple classes of multimedia services with dif-
ferent quality requirements in wireless cellular networks is proposed. This work
focused on communication level but the migration of adaptive policies to higher
level is not detailed. The work in [3] envisions a middleware architecture for
service adaptation based on network awareness to manage resources in an adap-
tive context. Though it highlights the necessary adaptation, there is no solution
for context-aware problem such as resource constraint. Further research [4] pro-
vides frameworks for designing transport protocols whose internal structure can
be modified according to the application requirements and network constraints.
In [5], a schema is described for dynamically managing distributed computing
resources by continuously computing and assessing quality. Here, resource uti-
lization metrics are determined a posteriori and an adaptive distributed system
reference architecture is equally put forward but the authors didn’t explain the
adaptive policies.

Recently, ontology has been the subject of much attention as it allows se-
mantics of the managed systems to be represented. As described in [6], ontology



Fig. 1. The CMS Activity Description

supports heterogeneous management entities by capturing semantics from the
organizational, environmental and operational viewpoints of overall distributed
environment. In [7], the combined use of ontologies and policies is proposed
to enforce, in a context-aware approach, the adaptive behavior of autonomous
management entities.We also found that in the case of architecture adapta-
tion, model-based strategies are widely used for system transformations that
changes according to the environment and requirement. To cope with evolving
constraints, behavioral and architectural adaptability is required at several lev-
els. This entails coordination management without which performance would
drop much below target.

Motivated by the above discussion, we present a novel ontology-based support
for reconfigurable adaptive group communication architecture. Our framework
is divided into many levels and the adaptive decision at higher level is migrated
to lower for execution. Similarly, decision could be also at lower level thus over-
coming the bottleneck associated with waiting for the response from the upper
ones.

3 ROSACE Project Scenario

This scenario involves various types of mobile actors using a heterogeneous com-
munication devices. Ground and aerial communicating robots along with human
actors utilizing mobile devices operate within a wireless communication context.
A distinction is made between the professionals with specific communication de-
vices or occasional actors that carry a mobile device (e.g. PDAs, Phones). Like-
wise, robot actors such as Autonomous Aerial Vehicles (AAV) are differentiated
from Autonomous Ground Vehicle (AGV). However in all cases, the communi-
cation system must deal with the evolution of user needs and with the changes
due to device constraints. The idea is to exchange information between mobile
participants to achieve a common mission. The three major roles assigned to this



scenario are: mission supervisor, coordinators, and field investigators (Figure 1).
Each participant plays his own role and is associated with an identifier and the
devices he uses. The performed functions are as follows:

– The supervisor’s function is to monitor, manage and authorize actions to co-
ordinators and investigators. This entity supervises the whole mission. Once
the data (information) has been received from the coordinators, the supervi-
sor reviews the current situation. When he makes a decision, he then passes
to the appropriate coordinators. He is equipped with permanent energy re-
sources, high communication and CPU Capabilities;

– Coordinator’s job is to report to the supervisor. He manages the group of
investigators during the mission and assign tasks to each one of them. The
coordinator has to collect, interpret, summarize and diffuse information from
and towards investigators. The coordinator has high software and hardware
capabilities;

– The investigator’s role is to explore the operational field, observe, analyze,
and report about the situation. They also take care of helping, rescuing and
repairing.

To support this schema, network-oriented services should be dynamically acti-
vated to respond actor requests. They should provide ubiquitous access to peers
and be technically transparent, taking into account different context require-
ments depending on the targeted activity, users’ mobility, exchanged data flows
(e.g. audio, video), and constraints such as variable communication and device
resources. Moreover, changes in the cooperation structure need to be focussed in
response to coordinator’s decision or information acquired by the participants.

There exist two major steps, i.e., “Exploration step” (localizing and iden-
tifying the crisis situation) and “Action step” (decision making and allocating
tasks). To support this, there are two types of communication flows i.e. coordi-
nation and cooperation flows.

Coordination flows take place between investigators and their coordinator
and between the coordinators and the supervisor. The investigators send D (De-
scriptive) data and P (Produced) data describing the situation to the coordi-
nator. The following steps explain data exchanges for the coordination in the
exploration step:

– Investigators continuously send type D data to their assigned coordinator
and, periodically, type P data.

– Coordinators periodically send P data to the supervisor describing the cur-
rent state of exploration. All coordinators under exploration step have the
same priority to communicate with the supervisor.

– When a critical situation is discovered by an investigator, exploration step
ends. The architecture is then reconfigured and the mission moves to a new
step called the “action step”.

Cooperation flows occur between the investigators within the same group
(A2A type: fireman2fireman, robot2robot, etc.) or between the investigators of



different groups (A2B type: robot2fireman, AAV2fireman, etc.). In case of A2A,
a distinction is made between the flows such as cooperation notifications, coop-
eration requests and cooperation suggestions. In the case of A2B cooperation
flows, the flows are: cooperation notifications and cooperation requests.

Challenges are here to analyze and distribute requests equitably among a
group of investigators and to actively monitor, control and allow the actors to
make decision on their own. Although centralized control is simpler to design
and implement, it introduces a single point of failure, which can impede ser-
vice reliability and scalability. By distribution, we can retain the picture of cur-
rent scenario thus influencing the results of future situation (a prior knowledge
database is used). The following describes the messages between the different
actors:

1. An investigator makes a request which is transparently intercepted by the
coordinator.

2. The coordinator gets a decision from the knowledge database (supervisor)
and a solution is provided.

3. At times, decision has to be made by the coordinator itself. In this case, it
is stored in the local database, then notified to the supervisor.

4 Multi-level architecture for CMS Scenario

In order to clearly separate different concerns in our approach, a multi-level
architecture is proposed. Each level encapsulates issues into a specific model,
thus abstracting complexity to a higher level. The modules at the higher level are
abstract system representations, that tend to resemble human activities, while
lower ones are much closer to real implementations of abstractions supporting
these activities.

Relevant levels are identified and adaptation at the highest levels should be
governed by changes in development of activity requirements. Adaptation at
the lowest levels should be driven by execution context constraint changes. The
levels retained are depicted in Figure 2 and detailed in the following paragraphs.

Here, we have chosen an ontology-based model because it constitutes a stan-
dard knowledge representation system, allowing reasoning and inference. More-
over, ontologies facilitate knowledge reuse and sharing through formal and real
world semantics. Therefore, ontologies are high-level representations of business
concepts and relations. These representations are close to developers’ minds and
therefore well suited to depict application level models. We have chosen to de-
scribe these models in OWL [8], the Semantic Web standard for metadata and
ontologies.

4.1 Application Level

The retained model in this level is a domain specific ontology that represents con-
cepts and relations of the context of the application provided. It also represents



Collaborative systems

domain
model 1

domain
model P

Collaborative systems

domain
model N

Collaboration Metamodel

Generic Collaboration Ontology

Network architecture Communication modes

Application 
Level

Collaboration
Level

Messaging
Level
Infrastructure
Level

Hardware, Software Components

Fig. 2. Abstraction Levels

the applications that need collaboration inside the group of users and/or devices
(generically called entities). It includes software elements implementing the ac-
tivity’s business, as well as user interfaces, security modules, etc. Among these
elements, (at least) those relevant to collaboration are represented in the archi-
tectural model corresponding to this level of abstraction. Only collaboration-
related elements of the activity level model will be taken into account in the
refinement process. Nevertheless, other business elements (non collaboration-
related) are also included and can be used in order to represent the whole activ-
ity. The system designer will define the possible roles that can be playes by the
defined entities.

In our previous work, we show an ontology that models the business concepts
and its relations to the CMS activity. The main concept is the Participant

featuring several properties. The different types of participant (Supervisor,
Coordinator, Investigator) are modeled as sub-concepts, each one with his
own additional properties. A Participant belongs to a Group that is operating
under the authority of a Manager. The latter can be a Supervisor who manages
a CoordinatorGroup or a Coordinator who handles an InvestigatorGroup.
The other important idea is the Entity concept. Thus a Participant is also
an Entity with two sub-concepts: Artificial and Human. Various human
participants are represented as concepts e.g. Fireman, Pilot, or Walker or
artificial entities e.g. robots or vehicles, for instance. The different types of
robots (AmphibiousRobot, Drone, GroundRobot) are modeled as sub-concepts
of Robot, each one with its own additional properties. This is related to the
Generic Collaboration Ontology (GCO) developed by Sancho et al. [9], because
GCO:CommunicationFlow is defined as a sub-concept of Flow and Entity as a
sub-concept of GCO:Node. In other words the participants’ roles is in agreement
with the definition given in the collaboration ontology, and thus they inherit



all their properties. For example, they have a related GCO:Node deployed on a
GCO:Device, etc.

4.2 Collaboration Level

Here, session level abstraction is provided and the model details the structure
of one or more sessions. It describes the way members in a group are organized
within sessions, where they can send and receive data flows. The main issue
is that of determining a high-level collaboration schema that meets the needs
of application’s collaboration. Hence, it supports collaborative sessions and can
determine those elements needed to implement these sessions. Further explana-
tions about this ontology and the associated choices can be found in [9]. In [9], an
ontology model, containing generic collaboration knowledge as well as domain-
specific knowledge, is proposed in order to enable architecture adaptation and to
support spontaneous and implicit sessions inside groups of humans and devices.

4.3 Messaging Level

This level provides a communication model that masks low-level details (like
TCP sockets, UDP datagrams, IP addresses, multicast, etc.) in order to simplify
the representation of communication channels. It furnishes an abstract view of
distributed systems, so that they become transparent for upper levels. For exam-
ple, this model may be based on abstractions like Event-based Communications,
Peer-to-Peer, Remote Procedure Calls or Remote Method Invocation. In this
work, we have retained the Event-Based Communication (EBC)[10]. It represents
a well established paradigm for interconnecting loosely coupled components and
it provides one-to-many or many-to-many communication pattern. This model
is a detailed graph containing a set of event producers (EP), event consumers
(EC) and channel managers (CM) connected with push and pull links. Multiple
producers and consumers may be associated through the same CM. Since this
model represents a graph, it can also be expressed in the GraphML language.

4.4 Infrastructure Level

It contains all needed software components and hardware that enable to run the
collaborative system and ensures communication.

5 Context Representation

In our work, adaptation is achieved through various context changes. Context-
awareness does not depict the location/environment but represents resource con-
straints (e.g., connectivity, energy level, available memory, etc.) or changes in
the activity and environment where participants can arrive/leave, change roles,
etc.



The clear distinction of distributed adaptation at specific levels is the primary
advantage of our architecture compared to previous existing ones. Policies are
executed according to the context requirements, i.e, if there is a change in the
mission, activity level policies are activated whereas in case of low energy level at
the device, policies at low level are initiated without affecting the higher levels.

5.1 Reconfiguration Rules

This section presents our approach for modeling and implementation of the CMS
activity. Also provided are examples of reconfiguration policies for activity evo-
lution and resource context change using SWRL rules.

To make this system adaptable, reconfiguration rules are needed to adapt
the ontology instance to the current situation. As events play a major role in
our application, the transformation of entities needs to be triggered. Here, events
could occur at activity level, i.e, addition of new participants, changing an action,
transfer of a participant from one group to another, new connection between
investigators from different groups, etc. The events could also take the form of
resource context changes, e.g, parameters like the energy of a device, bandwidth
range, CPU processing capacity, RAM availability etc. We use SWRL[11] rules
to define our adaptation policy. The application designer defines these rules
according to context changes he wants to handle. As we explained earlier, each
level executes their own rule when there is an appropriate need. Thanks to the
decision model at every level, not all requests are passed to the supervisor. If
there is no solution for an event at a particular level, then it triggers the higher
level. In SWRL, the head points to the adaptation transformations whereas the
body indicates the context of ontology elements. This reconfiguration rules are
really useful for adapting the scenario dynamically.

In Figure 1, the supervisor controls the mission and manages the coordinator
group, in our case, AAV and fireman coordinators. The flows are exchanged
between these operators and each coordinator further manages his own group.
Changes in the environment trigger adaptation events. When they occur, the
supervisor executes the appropriate SWRL rules to the current instance of the
CMS ontology. In our case, adaptation events are classified into 2 types:

High Level Event Reconfiguration Table 1 shows an example in the activ-
ity level evolution. Here, the supervisor is managing two coordinators (one for
AAVs and other for firemen) and each coordinator has their own investigator
group. To make it simpler for the reader, we presented here four investigators,
two AAVs and two firemen. As we explained previously, actors communicated
through coordination flows. If there is a need to establish a cooperation flow be-
tween the investigators among the different groups, the following rule is applied.
The conditions for establishing the flow is explained in the scenario illustration.

Low Level Event Reconfiguration Table 2 lists an example of changes in the
communication level constraints. if the energy level of a participant’s device be-
come low (e.g, below 20 %), a transformation is performed to move the channel



Supervisor(?S) ∧ CoordinatorGroup(?CG) ∧ managesGroup(S,CG)∧
Coordinator(?CO1) ∧ Coordinator(?CO2) ∧ hasMember(CG,CO1)∧

hasMember(CG,CO2) ∧ InvestigatorGroup(?IG1)∧ InvestigatorGroup(?IG2)∧
managesGroup(CO1, IG1) ∧ managesGroup(CO2, IG2)∧

Investigator(?I1)∧ Investigator(?I2)∧ hasMember(IG1, I1)∧
hasMember(IG2, I2) ∧ CoordinationF low(?CF1) ∧ hasReceiver(CF1,CO1)∧
hasSender(CF1, S) ∧ CoordinationF low(?CF4) ∧ hasReceiver(CF4, CO2)∧
hasSender(CF4, S) ∧ CoordinationF low(?CF3) ∧ hasReceiver(CF3, I1)∧

hasSender(CF3, CO1) ∧ CoordinationF low(?CF5) ∧ hasReceiver(CF5, I3)∧
hasSender(CF5, CO2) →

SWRLb : createOWLThing (CooperationF low(?CPF1))∧
hasSender(CPF1, I2) ∧ hasReceiver(CPF1, I1)

Table 1. Rule1–High Level Event Reconfiguration

Supervisor(?S) ∧ CoordinatorGroup(?CG) ∧ managesGroup(S,CG)∧
Coordinator(?CO1) ∧ hasMember(CG,CO1) ∧ InvestigatorGroup(IG1)∧

managesGroup(CO1, IG1) ∧ Investigator(?I1)∧ Investigator(?I2)∧
hasMember(IG1, I1) ∧ hasMember(IG1, I2) ∧ CoordinationF low(?CF1)∧

hasReceiver(CF1,CO1) ∧ hasSender(CF1, I1) ∧ CooperationF low(?CPF1)∧
hasReceiver(CPF1, I1) ∧ hasSender(CPF1, I2) ∧ Device(?device)∧

hasID(?device, ?idDevice) ∧ hasHardwareProfile(?device,?hardware)∧
hasParameter(?hardware,?param) ∧ sameAs(?param,powerlevel)∧

hasV alue(?param, ?value) ∧ swrlb : lessThan(?value, 20)
→ adapt : dischargeParticipantDevice(?idDevice)

Table 2. Rule2–Low Level Event Reconfiguration

manager from this device. In this case, the decision is made by the communi-
cation level of the coordinator that manages the participant having an energy
problem by triggering the SWRL rule. More details can be found in the next
section about the dischargeParticipantDevice.

6 Scenario Illustration

This section presents a top-down approach with respect to the architecture mod-
els used for the activity and communication levels. It also illustrates the refine-
ment processes that exist between levels in the adaptation process. The architec-
tural configuration of the activity level is captured and represented in the CMS
ontology instance as shown in the upper part of Figure 3. Here, concepts and
relations from the activity-specific and from the generic collaboration ontologies
are instantiated. To refine this activity model, rules are processed over these on-
tological instances. Firstly, activity-specific rules are processed and then, generic
collaboration rules are applied. Then, rules are processed for each instance of
GCO:CommunicationFlow found, thus creating the corresponding channel man-



CMS_Supervisor

CoordinatorCMSGroup

CoordinationFlow_1 CoordinationFlow_4
hasSender hasSender

ManagesGroup

FiremenCoordinator
hasMemberhasMember

hasReceiver
hasReceiver

CoordinationFlow_2

hasSender

AAV_1

hasReceiver

InvestigatorGroup_1

ManagesGroup

hasMember

AAV_2

hasMember

CoordinationFlow_3

hasSender

hasReceiver

hasSender

Fireman_1

hasReceiver

InvestigatorGroup_2

ManagesGroup

hasMember

Fireman_2

hasMember

CoordinationFlow_6

hasSender

hasReceiver

CoordinationFlow_5

AVVCoordinator

ep

ec

cm

ep
ec

ep

ec

cm

ep

ec

ep

ec

cm

ep

ec ep

ec

ep
ec

ep
ec

ep ec ep

ec

cm

ep

ec

Fig. 3. EBC deployment: ontology and graph after initial refinement

agers, event consumers and event producers. The resulting set of ontological in-
stances form a collaboration level graph. It is translated into GraphML language
by means of XSLT transformation. In order to refine this collaboration level, a
detailed graph grammar is used. This produces a valid configuration that con-
tains terminal nodes only (i.e. nodes belonging to the EBC level). It is obtained
by application of the sequence graph grammar production. This refinement cre-
ates a detailed deployment descriptor graph used by a deployment service in
order to utilize the indicated components on each device, thus implementing the
required activity level session.

Here two situations are considered. The first one deals with an activity-based
event and second with resource change event.

Firstly, consider a situation where an investigator (AAV) intends to drop
water in an area where another investigator (denoted as Fireman2) is already
busy. The simplified version of this situation at activity and communication
levels is shown in Figure 3.



CMS_Supervisor

CoordinatorCMSGroup

CoordinationFlow_1 CoordinationFlow_4
hasSender hasSender

ManagesGroup

FiremenCoordinator
hasMemberhasMember

hasReceiver
hasReceiver

CoordinationFlow_2

hasSender

AAV_1

hasReceiver

InvestigatorGroup_1

ManagesGroup

hasMember

AAV_2

hasMember

CoordinationFlow_3

hasSender

hasReceiver

hasSender

Fireman_1

hasReceiver

InvestigatorGroup_2

ManagesGroup

hasMember

Fireman_2

hasMember

CoordinationFlow_6

hasSender

hasReceiver

CoordinationFlow_5

AVVCoordinator

CooperationFlow_1

hasSender hasReceiver

ep

ec

cm

ep
ec

ep

ec

cm

ep

ec

ep

ec

cm

ep

ec ep

ec

ep
ec

ep

ec

ep

ec ep

ec

cm

ep

ec

ep

ec cm
ep

ec

Fig. 4. EBC Deployment: ontology and graph after Reconfiguration Event

In this case, the AAV has to be notified as soon as possible, not to drop water.
Another investigator (denoted as Fireman1), aware of the situation, establishes
a coordination flow to its coordinator and subsequently the coordinator reports
to the supervisor. The latter already knows the position of the approaching AAV
and notifies the AAV not to drop any water in that area via the AAV coordinator.

As there is no connection between the AAV and the Fireman2, the latter
has to obtain the supervisor’s decision. The other simpler solution could be
to establish a connection between the AAV and Fireman1 through use of a new
cooperation flow obtained by running the SWRL rule (Table 1). Thus, Fireman1
can warn the AAV not to drop any water. After processing the rule, the activity
level and the communication level have been changed as shown in Figure 4. With
the new cooperation flow between Fireman1 and the AAV, a channel manager
is needed in Fireman1’s device and the corresponding event producer and event
consumer must be deployed in the AAV (represented by dotted line on Figure
4).



ep

ec

cm

cm

ep

ec ep

ec

ep
ec

ep ec

epec

cm

ep

ec

I1

I2

ep

ec

cm

cm

ep

ec ep

ec

ep
ec

ep
ec

epec

cm

ep

ec

I1

I2

Coordinator
Coordinator

Supervisor

Supervisor

Rule 2

Fig. 5. EBC Redeployment after Power Diminution Event

An example for context-awareness is illustrated in the following example.
Consider an investigator (denoted as I2) sending messages to his coordinator via
another investigator (denoted as I1). As each one is entrusted with his own task,
may arise a situation where I1 could not handle this communication as he needs
to move to another location or his power runs out. So he triggers the coordinator
to make a decision because communication between I2 and coordinator is very
important. In case of I1 moving to somewhere else, a solution could be another
investigator establishing a new connection with I2.

In case of I1’s power deficiency, a solution is to use the decision that is
explained in Table 2. In the first part of the rule, the current situation is identified
and due to the power deficiency, the procedure dischargeParticipantDevice is
triggered. In our case, the channel manager moves from I1 either to coordinator
or to I2. By doing so, I2 can send this prioritized flow for a sufficient time through
I1 to coordinator. Clearly, we act only at the communication level, i.e, on EBC.
Nothing has been modified in the activity level and the new EBC descriptor
graph is shown in Figure 5.

7 Implementation

We implemented our work using FACUS (Framework for Adaptive Collabora-
tive Ubiquitous Systems), an architecture that supports semantic adaptation
enabling the awareness of the presence/absence, roles and tasks of collaborators.
This framework is based on a generic multi-level modeling approach that en-
sures multi-level adaptation. A generic collaboration model, based on Semantic
Web technologies is proposed in order to support real-time collaboration be-
tween groups of participants working together in different tasks. The framework
defines common interfaces for collaborative systems to enable the management
of cooperative actions.

In this framework, a node represents a communicating entity which takes
part in a collaborative activity. Nodes may represent human users (i.e. human-
controlled software components) but also autonomous software components,



agents, etc. Whether a node is an autonomous software component or it is a
human-controlled component, it has to be executed on a physical machine. Such
machines are represented by the concept Device (Node is linked to Device by
the property hasHostingDevice). The execution context of the node will depend
on the resources of the device that hosts it. At the present time, a minimal
set of device properties is considered, containing IP addresses (hasIpAddress),
operating system (hasOS), available memory (hasAvailableMemory), CPU load
(hasAvailableMem) and battery level (hasBatteryLevel).

The concept Flow represents a communication link between two entities.
Therefore, Flow is linked to Node by two properties: hasSource and hasDestina-
tion. In this ontology, flows are considered as being unidirectional, and thus if
a bidirectional communication between two nodes is required, it will be repre-
sented by two instances of Flow with two opposite directions.

In order to handle data flows, nodes use external software components that
are deployed on the same device as them. These external components are rep-
resented by the Tool concept. Tools are composed of several components, e.g.,
a sender component and a receiver component. Therefore the Tool concept is
related to a concept called Component through the property hasComponent.
Since components handle flows, a property called managesFlow links Compo-
nent and Flow. Components have a data type (the same as the data type of
the flow that they manage) and are deployed on a single device (isDeployedOn
property which links Component and Device). SenderComponent and Receiver-
Component are linked to Flow by two sub-relations of managesFlow: sendsFlow
and receivesFlow, respectively.

Finally, the Session concept represents a set of flows belonging to the same
collaborative activity. The hasFlow property relates a session to a flow. The
inverse property, belongsToSession, is functional, i.e., a flow belongs to a single
session. Since flows are related to nodes, nodes are indirectly related to one or
more sessions depending on the flows that connect them to other entities.

In FACUS, we have chosen one group (fireman)to show the adaptation. Ini-
tially, the fireman1 and fireman2 are connected to firemancoordinator at WiFi
infrastructure mode. This initial stage of this situation at application, collabo-
ration and massaging levels are shown in Figure 6, Figure 7 and Figure 8.

Consider fireman1 lost the connection with its coordinator while searching
for a victim. Once the connection is lost, the coordinator aware this situation and
thanks to our policies, the coordinator and the other investigator will shift to ad-
hoc mode. Also, the local decision of the lost investigator changes to adhoc mode
automatically such that communication is established. Figure 9 and Figure 10
show the adaptive collaboration and middleware graph in the implementation.

8 Conclusion and Open Issues

In this paper, a multi-level modeling approach designed to support group com-
munications has been detailed. For such a complex system, the whole scenario
has been divided into different levels. Ontology has been used at the top two



Fig. 6. Application instance at Initial phase

Fig. 7. Initial Collaboration instance

levels while we retained event-based communication at the third level to estab-
lish the flows between devices. The relations and transformations from top level
to lower levels are presented. If a change arises in the environment, reconfig-
uration can be achieved by using SWRL rules. This is key for an appropriate
management in case of changing resources in the environment. By using this ap-
proach, we could allow the architectural reconfigurations at run-time to handle
the activity’s evolving conditions. Unlike previous approaches, distributed deci-
sion model allows our architecture to make adaptive mechanism at lower levels
and not influencing the higher ones.

Many open issues need to be discussed in our scenario. In case of environment
change, triggers play an essential role to notify the decision components for



Fig. 8. Initial middleware graph

Fig. 9. collaboration Instance after adaptation

Fig. 10. Middleware graph after adaptation

initiating the adaptive policies. Even though the triggers are asynchronous and
synchronous messages, a generic model for failure cases need to be analyzed.
Also, assigning priorities to flows as well as monitoring resource deficiencies are



our main challenges. Non-cooperative situations like low QoS and performance
degradation are the topics worth for future work.

Acknowledgments

This research is supported by the French project Rosace (RObots et Systémes
Auto-adaptatifs Communiquants Embarquès).

References

1. Ketfi, A., Belkhatir, N., Cunin, P.Y.: Adaptation dynamique, concepts et experi-
mentations. In: Proceedings of ICSSEA. (2002) In French.

2. Nasser, N., Hassanein, H.: Adaptive bandwidth framework for provisioning
connection-level qos for next-generation wireless cellular networks. Canadian Jour-
nal of Electrical and Computer Engineering 29(1) (2004) 101–108

3. Sun, J.Z., Tenhunen, J., Sauvola, J.: Cme: a middleware architecture for network-
aware adaptive applications. In: Proc. 14th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications. Volume 3., Beijing, China
(2003) 839–843

4. Exposito, E., Senac, P., Diaz, M.: FPTP: the XQoS aware and fully programmable
transport protocol. In: Proc. The 11th IEEE International Conference on Networks
(ICON’2003), Sydney, Australia (2003)

5. Welch, L.R., Masters, M.W., Madden, L.A., Marlow, D.T., Irey, IV, P.M., Werme,
P.V., Shirazi, B.: A distributed system reference architecture for adaptive qos and
resource management. In: Proceedings of the 11 IPPS/SPDP’99 Workshops Held in
Conjunction with the 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing, London, UK, Springer-Verlag
(1999) 1316–1326

6. Lavinal, E., Desprats, T., Raynaud, Y.: A multi-agent self-adaptative management
framework. International Journal of Network Management 19(3) (2009) 217–235

7. Strassner, J., Meer, S., O’Sullivan, D., Dobson, S.: The use of context-aware policies
and ontologies to facilitate business-aware network management. J. Netw. Syst.
Manage. 17(3) (2009) 255–284

8. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web ontology Langage Guide.
W3C Recommendation (2004) Url : http://www.w3.org/TR/owl-guide/.

9. Sancho, G., Tazi, S., Villemur, T.: A Semantic-driven Auto-adaptive Architecture
for Collaborative Ubiquitous Systems. In: 5th International Conference on Soft
Computing as Transdisciplinary Science and Technology (CSTST’2008), Cergy
Pontoise (France) (2008) 650–655

10. Meier, R., Cahill, V.: Taxonomy of distributed event-based programming systems.
In: ICDCSW ’02: Proceedings of the 22nd International Conference on Distributed
Computing Systems, Washington, DC, USA, IEEE Computer Society (2002) 585–
588

11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission 21 May 2004 (2004)


