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Abstract

In this paper, we provide new theoretical results on the generalization properties of learning algorithms
for multiclass classification problems. The originality of our work is that we propose to use the confusion
matrix of a classifier as a measure of its quality; our contribution is in the line of work which attempts
to set up and study the statistical properties of new evaluation measures such as, e.g. ROC curves. In
the confusion-based learning framework we propose, we claim that a targetted objective is to minimize
the size of the confusion matrix C, measured through its operator norm ‖C‖. We derive generalization
bounds on the (size of the) confusion matrix in an extended framework of uniform stability, adapted to
the case of matrix valued loss. Pivotal to our study is a very recent matrix concentration inequality that
generalizes McDiarmid’s inequality. As an illustration of the relevance of our theoretical results, we show
how two SVM learning procedures can be proved to be confusion-friendly. To the best of our knowledge,
the present paper is the first that focuses on the confusion matrix from a theoretical point of view.

Keywords: Machine Learning, Stability Generalization Bounds, Confusion Matrix, Non-Commutative
Concentration Inequality, Multi-Class

1 Introduction

Multiclass classification is an important problem of machine learning. The issue of having at hand sta-
tistically relevant procedures to learn reliable predictors is of particular interest nowadays, given the
widespread need of such predictors in information retrieval, web mining, bioinformatics or neuroscience.

Yet, the literature on multiclass learning is not as voluminous than that of binary classification, whereas
this problem raises questions from the algorithmic, theoretical and practical points of view. One of the
prominent questions is that of the measure to use in order to assess the quality of a multiclass predictor.
Here, we develop our results with the idea that the confusion matrix is a performance measure that
deserves to be studied as it provides a finer information on the properties of a classifier than the mere
misclassification rate. More precisely, building on very recent matrix-based concentration inequalities
provided by Tropp (2011) —sometimes referred to as noncommutative concentration inequalities— we
establish a stability based framework for confusion-aware learning algorithm. In particular, we prove a
generalization bound for confusion stable learning algorithms and show that there exist such algorithms
in the literature. In a sense, our framework and our results extend those of Bousquet and Elisseeff (2002),
which are designed for scalar loss functions. To the best of our knowledge, this is the first work that
establishes generalization bounds for confusion matrices.

The paper is organized as follows. Section 2 describes the setting we are interested in and motivates
the use of the confusion matrix as a performance measure. Section 3 introduces the new notion of stability
that will prove essential to our study; the main theorem of this paper, together with its proof, are provided.
Section 4 is devoted to the analysis of two SVM procdures in the light of our new framework. A discussion
on the merits and possible extensions of our approach concludes the paper (Section 5).
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2 Confusion Matrix Awareness

2.1 Notation

As said earlier, we focus on the problem of multiclass classification The input space is denoted by X and
the target space is

Y = {1, . . . , Q}.
The training sequence

Z = {Zi = (Xi, Yi)}mi=1

is made of m identically and independently random pairs Zi = (Xi, Yi) distributed according to some
unknown (but fixed) distribution D over X × Y. The sequence of input data will be referred to as
X = {Xi}mi=1 and the sequence of corresponding labels Y = {Yi}mi=1, we may write Z = {X,Y }. The
realization of Zi = (Xi, Yi) is zi = (xi, yi) and z, x and y refer to the realizations of the corresponding
sequences of random variables. For a sequence y = {y1, · · · , ym} of m labels, mq(y), or simply mq when
clear from context, denotes the number of labels from y that are equal to q; s(y) it the binary sequence
{s1(y), . . . , sQ(y)} of size Q such that sq(y) = 1 if q ∈ y and sq(y) = 0 otherwise.

We will use DX|y for the conditional distribution onX given that Y = y; therefore, for a given sequence
y = {y1, . . . , ym} ∈ Ym, DX|y = ⊗m

i=1DX|yi
is the distribution of the random sample X = {X1, . . . , Xm}

over X Tm such that Xi is distributed according to DX|yi
; for q ∈ Y, andX distributed according to DX|y,

Xq = {Xi1 , . . . , Ximq
} denotes the random sequence of variables such that Xik is distributed according

to DX|q. E[·] and EX|y[·] denote the expectations with respect to D and DX|y, respectively.
For a training sequence Z, Zi denotes the sequence {Z1, . . . Zi−1, Z

′
i, Zi+1, . . . , Zm} where Z ′

i is dis-
tributed as Zi; Z

\i is the sequence {Z1, . . . Zi−1, Zi+1, . . . , Zm} — these definitions carry directly over
when conditioned on a sequence of labels y (with, henceforth, y′i = yi).

We will consider a family H of predictors such that H ⊆ {h : h(x) ∈ R
Q, ∀x ∈ X}. For h ∈ H, hq ∈ R

X

denotes its qth coordinate. Also, ℓ = (ℓq)1≤q≤Q is a set of loss functions such that: ℓq : H×X ×Y → R+.

2.2 Confusion Matrix

We here provide a discussion as to why minding the confusion matrix or confusion loss (terms that we will
use interchangeably) is crucial in multiclass classification. We also introduce the reason why we may see
the confusion matrix as an operator and, therefore, motivate the recourse to the operator norm to measure
the ‘size’ of the confusion matrix. As the definition of the confusion loss in the online learning framework
is less usual and a bit more intricate than its definition in the batch scenario, we develop the discussion
here within the batch setting —obviously, the argument carries over to the online learning framework.

In many situations, e.g. class-imbalanced datasets, it is important not to measure the quality of
a predictor H on its classification error PXY (h(X) 6= Y ) only; this may lead to erroneous conclusions
regarding the quality of h. Indeed, if, for instance, some class q is predominantly present in the data
at hand, say P(Y = q) = 1 − ε, for some small ε > 0, then the predictor hmaj that always outputs
hmaj(x) = q regardless of x has a classification error lower thant ε. Yet, it might be important not
to classify an instance of some class p in class q: in the context of classifying mushrooms according
to the categories {hallucinogen, poisonous, innocuous}, the consequence of predicting innocuous (the
majority class) instead of hallucinogen or poisonous might be disastrous.

As a consequence, we claim that a more relevant object to consider is the confusion matrix which,
given a binary sequence s = {s1 · · · sQ} ∈ {0, 1}Q, is defined as

Cs(h) :=
∑

q:sq=1

EX|qL(h,X, q),

where, given an hypothesis h ∈ H, x ∈ X , y ∈ Y, L(h, x, y) = (lij)1≤i,j≤Q ∈ R
Q×Q is the loss matrix such

that:

lij :=

{
ℓj(h, x, y) if i = yand i 6= j
0 otherwise.

Note that this matrix has at most one nonzero row, namely its ith row.
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For a sequence y ∈ Ym of m labels and a random sequence X distributed according to DX|y, the

conditional empirical confusion matrix Ĉy(h,X) is given by

Ĉy(h,X) :=

m∑

i=1

1

myi

L(h,Xi, yi) =
∑

q∈y

Lq(h,X,y),

where

Lq(h,X,y) :=
1

mq

∑

i:yi=q

L(h,Xi, q).

For a random sequence Z = {X,Y } distributed according to Dm, the (unconditional) empirical confusion
matrix is given by

EX|Y ĈY (h,X) = Cs(Y )(h),

which is a random variable, as it depends on the random sequence Y . For exposition purposes it will
often be more convenient to consider a fixed sequence y of labels and state results on Ĉy(h,X), noting
that

EX|yĈy(h,X) = Cs(y)(h).
The slight differences between our definitions of (conditional) confusion matrices and the usual defini-

tion of a confusion matrix is that the diagonal elements are all zero and that they can accomodate any
family of loss functions (and not just the 0− 1 loss).

A natural objective that may be pursued in multiclass classification is to learn a classifier h with ‘small’
confusion matrix, where ‘small’ might be defined with respect to (some) matrix norm of Cs(h). The norm
that we retain is the operator norm that we denote ‖ · ‖ from now on: for a matrix M , ‖M‖ is defined as

‖M‖ = max
v 6=0

‖Mv‖2
‖v‖2

,

where ‖·‖2 is the Euclidean norm; ‖M‖ is merely the largest singular value ofM —note that ‖M⊤‖ = ‖M‖.
A nice reason for focusing on the operator norm is that Cs(h) is often precisely used as an operator

that acts on the vector of prior distributions

π = [P(Y = 1) · · ·P(Y = Q)].

Indeed, a quantity of interest is for instance the risk Rℓ(h) of h, with

Rℓ(h) := ‖π⊤C1(h)‖1 =

Q∑

p,q=1

EX|pℓq(h,X, p)πp

= EY

{
Q∑

q=1

EX|Y ℓq(h,X, Y )

}

= EXY

{
Q∑

q=1

ℓq(h,X, Y )

}
.

It is interesting to observe that, ∀h, ∀π:

0 ≤ Rℓ(h) = ‖πC1(h)‖1 = π⊤C1(h)1
≤
√
Q
∥∥π⊤C1(h)

∥∥
2
=
√

Q
∥∥C⊤

1 (h)π
∥∥
2

≤
√
Q
∥∥C⊤

1
(h)
∥∥ ‖π‖2

≤
√
Q
∥∥C⊤

1 (h)
∥∥ =

√
Q ‖C1(h)‖ ,

where we have used Cauchy-Schwarz inequalty in the second line, the definition of the operator norm on
the third line and the fact that ‖π‖2 ≤ 1 for any π in {λ ∈ R

Q : λq ≥ 0,
∑

q λq = 1}.
In addition to support the use of the operator norm, this also says that bounding the norm of the

confusion loss is a good way to control the risk of h as well (independently of the prior distribution, see
discussion below).
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3 Deriving Stability Bounds on the Confusion Matrix

One of the most prominent issues in learning theory is to estimate the real performance of a learning
system. The usual approach consists in studying how empirical measures converge to their expectation.
In the traditional settings, it often boils down to providing bounds describing how the empirical risk
relates to the expected one. In this work, we show that one can use similar techniques to provide bounds
on the operator norm of the confusion matrix.

3.1 Stability

Following the early work of Vapnik (1982), the risk has traditionally been estimated through its empirical
measure and a measure of the complexity of the hypothesis class such as Vapnik-Chervonenkis (VC-dim),
fat-shattering dimension or Rademacher complexity. During the last decade, a new and successful approach
based on algorithmic stability to provide some new bounds has emerged. One of the highlights of this
approach is the focus on some properties of the learning algorithm at hand, instead of the characterization
of the hypothesis class. Roughly, this makes it possible to take advantage from the knowledge on how a
given algorithm actually explores the hypothesis space, often leading to tighter bounds.

The main results in Bousquet and Elisseeff (2002) were obtained using the following definition of
uniform stability.

Definition 1 (Uniform stability Bousquet and Elisseeff (2002)). An algorithm A has uniform stability β
with respect to the loss function l if the following holds:

∀S ∈ Zm, ∀i ∈ {1, . . . ,m}, ‖l(AS , .)− l(AS\i , .)‖∞ ≤ β.

Following the same approach, we now focus on the generalization of such results for confusion matrices.
We introduce a new definition of confusion stability.

Definition 2 (Confusion stability). An algorithm A is confusion stable with respect to the loss matrix L
if ∀q ∈ Y, there exist a βq decreasing as 1

mq
such that A has βq uniform stability with respect to the loss

ℓq

3.2 Non-Commutative McDiarmid

In Bousquet and Elisseeff (2002), the authors make use of some well-known concentration inequalities to
derive bounds. More specifically, they use a variation of Azuma’s inequality, due to McDiarmid McDiarmid
(1989). It describes how a scalar function of independent random variables (the elements of our training
set) normally concentrates around its mean, with variance depending on how changing one of the random
variables impacts the value of the function.

Some more recent work Tropp (2011) extends McDiarmid’s inequality to the matrix setting. For the
sake of self-containedness, we recall this non-commutative bound.

Theorem 1 (Matrix bounded difference (Tropp (2011), corollary 7.5)). Let S and Si be defined as above,
and let H be a function that maps m variables to a self-adjoint matrix of dimension Q. Consider a
sequence {Ai} of fixed self-adjoint matrices that satisfy

(
H(S)−H(Si)

)2
4 A2

k, (1)

where zi and zi range over all possible values of the space Zi it belongs to, for each index i. Then, for all
t ≥ 0,

P{λmax

(
H(z)− EH(z)

)
≥ t} ≤ Qe−t2/8σ2

,

where z = (Z1, . . . , Zm) and σ2 := ‖∑i A
2
i ‖.

One may notice thatH has to be applied on a function mapping to self-adjoint matrices. Unfortunately,
our confusion matrices are real-valued but are not symmetric. However, we can make use of a dilation
technique to overcome this.

Namely, instead of working directly on a non-self-adjoint matrix A, we will build a self-adjoint dilated
matrix D(A) :

D(A) =

(
0 A
A∗ 0

)
,
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where A∗ denotes the adjoint of A.
The choice of such a dilation is directly motivated by the following property, recalled in Tropp (2011).

Lemma 1. If λ is the largest eigenvalue of D(A), then λ is the largest singular value of A.

As a direct consequence, any result on the largest eigenvalue of a dilated matrix D(A) directly applies
to the operator norm ‖A‖ of A.

3.3 Stability Bound

Theorem 2 (Confusion bound). Let A be a learning algorithm. Assume that all the loss functions under
consideration take values in the range [0;M ]. Let y ∈ Ym be a fixed sequence of labels.

If A has confusion stability β with respect to all loss matrices Lq, for q ∈ Y, then, ∀m ≥ 1, ∀δ ∈ (0, 1),
the following holds, with probability 1− δ over the random draw of X ∼ DX|y,

∥∥∥Ĉy(A,X)− Cs(y)(A)
∥∥∥ ≤ 2

∑

q

βq +Q

√
8 ln

(
Q2

δ

)(
4
√
mminβmin +M

√
Q

mmin

)
.

As a consequence, with probability 1− δ over the random draw of Z ∼ Dm,

∥∥∥ĈY (A,X)− Cs(Y )(A)
∥∥∥ ≤ 2

∑

q

βq +Q

√
8 ln

(
Q2

δ

)(
4
√
mminβmin +M

√
Q

mmin

)
.

Sketch of proof. The complete proof can be found in the following subsection. We proceed in three steps
to proof the first bound. To start with, we know that by the triangle inequality

‖Ĉ(A,X)− Cs(y)(A)‖ =

∥∥∥∥∥
∑

q∈y

(Lq(AZ ,Z)− EXLq(AZ ,Z))

∥∥∥∥∥

≤
∑

q∈y

‖Lq(AZ ,Z)− EXLq(AZ ,Z)‖ . (2)

Using standard uniform stability techniques, we bound each summand with probability 1− δ/Q.

Then, using the union bound we have a bound on ‖Ĉ(A,X) − Cs(y)(A)‖ that holds with probability
at least 1− δ.

Finally, recoursing to a simple argument, we express the obtained bound solely with respect to mmin.
In order to get the bound with the uncondional confusion matrix Cs(Y )(A) it suffices to observe that

for any event E(X,Y ) that depends on X and Y , such that for all sequences y, PX|y{E(X,y)} ≤ δ, the
following holds:

PXY (E(X ,Y )) = EXY

{
I{E(X,Y )}

}

= EY

{
EX|Y I{E(X,Y )}

}

=
∑

y

EX|Y I{E(X,Y )}PY (Y = y)

=
∑

y

PX|y{E(X,y)}PY (Y = y)

≤
∑

y

δPY (Y = y) = δ,

which gives the desired result.

Remark 1. It is straightforward to directly obtain a bound on ‖Cs(y)(A)‖ and ‖Cs(Y )(A)‖ by using the
triangle inequality |‖A‖ − ‖B‖| ≤ ‖A−B‖ on the bounds given in the theorem.
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3.4 Proof of Theorem 2

Proof. To ease the readability, we introduce some additional notation: Z,Zi,Z\i will refer respectively to
{X,y}, {Xi,yi}, {X\i,y\i}, and

Lq = EX|qL(AZ, X, q), L̂q = Lq(AZ,X,y),

Li
q = EX|qL(AZi , X, q), L̂i

q = Lq(AZi ,Xi,yi),

L\i
q = EX|qL(AZ\i , X, q), L̂\i

q = Lq(AZ\i ,X\i,y\i).

After using the triangle inequality in (2), we need to provide a bound on each summand. To get the result,
we will, for each q, fix the Xk such that yk 6= q and work with functions of mq variables. Then, we will
apply Theorem 1 for each

Hq(Xq,yq) := D(Lq)−D(L̂q).

To do so, we will bound the differences

‖Hq(Xq,yq)−Hq(X
i
q,y

i
q)‖.

Note that

‖Hq(Xq,yq)−Hq(X
i
q,y

i
q)‖ = ‖D(Lq)−D(L̂q)−D(Li

q) +D(L̂i
q)‖

= ‖Lq − L̂q − Li
q + L̂i

q‖ ≤ ‖Lq − Li
q‖+ ‖L̂q − L̂i

q‖

Step 1: bounding ‖Lq − Li
q‖. We can trivially write:

‖Lq − Li
q‖ ≤ ‖Lq − L\i

q ‖+ ‖Li
q − L\i

q ‖

Using the βq-stability of A:

‖Lq − L\i
q ‖ =

∥∥EX|q [L(AZ , X, q)− L(AZ\i , X, q)]
∥∥

≤ EX|q ‖L(AZ , X, q)− L(AZ\i , X, q)‖
≤ βq,

and the same holds for ‖Li
q − L\i

q ‖, i.e. ‖Li
q − L\i

q ‖ ≤ βq. Thus, we have:

‖Lq − Li
q‖ ≤ 2βq. (3)

Step 2: bounding ‖L̂q − L̂i
q‖. This is a little trickier than the first step.

‖L̂q − L̂i
q‖ =

∥∥Lq(AZ,Z)− Lq(AZi ,Zi)
∥∥

=
1

mq

∥∥∥
∑

k:k 6=i,yk=q

(
L(AZ, Xk, q)− L(AZi , Xk, q)

)
+ L(AZ, Xi, q)− L(AZi , X ′

i, q)
∥∥∥

≤ 1

mq

∥∥∥
∑

k:k 6=i,yk=q

(
L(AZi , Xk, q)− L(AZi , Xk, q)

)∥∥∥+ 1

mq

∥∥∥L(AZ, Xi, q)− L(AZi , X ′
i, q)

∥∥∥

Using the βq-stability argument as before, we have:

∥∥∥
∑

k:k 6=i,yk=q

(
L(AZ, Xk, q)− L(AZi , Xk, q)

)∥∥∥ ≤
∑

k:k 6=i,yk=q

‖L(AZ, Xk, q)− L(AZi , Xk, q)‖

≤
∑

k:k 6=i,yk=q

2βq ≤ 2mqβq.

On the other hand, we observe that

∥∥∥L(AZ, Xi, q)− L(AZi , X ′
i, q)

∥∥∥ ≤
√
QM.
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Indeed, the matrix ∆ := L(AZ, Xi, q)−L(AZi , X ′
i, q) is a matrix that is zero except for (possibly) its qth

row, that we may call δq. Thus:

‖∆‖ = sup
v:‖v‖2≤1

‖∆v‖2 = sup
v:‖v‖2≤1

‖δq · v‖ = ‖δq‖2,

where v is a vector of dimension Q. Since each of the Q elements of δq is in the range [−M ;M ], we get
that ‖δq‖2 ≤ √

QM.
This allows us to conclude that

‖L̂q − L̂i
q‖ ≤ 2βq +

√
QM

mq
(4)

Step 3: Applying Matrix McDiarmid Combining (3) and (4) that we just proved, we have that,
for all i such that yi = q

(Hq(Zq)−Hq(Z
i
q))

2
4

(
4βq +

√
QM

mq

)2

I.

Therefore, Theorem 1 may be applied on Hq(Xq, yq) = D(Lq − L̂q) with

σ2
q = mqβq =

(
4
√
mqβq +

√
QM

√
mq

)2

to give, for t > 0:

PX|y
{
‖Lq − L̂q − E[Lq − L̂q]‖ ≥ t

}
≤ 2Q exp




− t2

8
(
4
√
mqβq +

√
QM√
mq

)2





,

which, using the triangle inequality
|‖A‖ − ‖B‖| ≤ ‖A−B‖,

gives

PX|y
{
‖Lq − L̂q‖ ≥ t+ ‖EX|y[Lq − L̂q]‖

}
≤ 2Q exp




− t2

8
(
4
√
mqβq +

√
QM√
mq

)2





.

We may want to bound ‖EX|y[Lq − L̂q]‖. To do so, we note that for any i such that yi = q, and for X ′
i

distributed according to DX|q:

EX|yL̂q = EX|yLq(AZ,X,y)

=
1

mq

∑

j:yj=q

EX|yL(AZ, Xj, q)

=
1

mq

∑

j:yj=q

EX,X′
i
|yL(AZi , X ′

i, q)

= EX,X′
i
|yL(AZi , X ′

i, q).

Hence, using the βq stability

‖E[Lq − L̂q]‖ =
∥∥EX,X′

i
|y [L(AZ, X

′
i, q)− L(AZi , X ′

i, q)]
∥∥ ,

≤ EX,X′
i
|y ‖L(AZ, X

′
i, q)− L(AZi , X ′

i, q)‖
≤ EX,X′

i
|y ‖L(AZ, X

′
i, q)− L(AZ\i , X ′

i, q)‖+ EX,X′
i
|y ‖L(AZi , X ′

i, q)− L(AZ\i , X ′
i, q)‖

≤ 2βq.

This leads to

PX|y
{
‖Lq − L̂q‖ ≥ t+ 2βq

}
≤ 2Q exp




− t2

8
(
4
√
mqβq +

√
QM√
mq

)2





.
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Step 4. Union Bound Now, using the union bound, we have

P

{
∃q : ‖Lq − L̂q‖ ≥ t+ 2βq

}
≤
∑

q∈Y
P

{
∃q : ‖Lq − L̂q‖ ≥ t+ 2βq

}

≤ 2Q
∑

q

exp




− t2

8
(
4
√
mqβq +

√
QM√
mq

)2





≤ 2Q2max
q

exp




− t2

8
(
4
√
mqβq +

√
QM√
mq

)2





According to our definition of confusion stability (cf. Definition 2), βq decreases as 1
mq

. Therefore

P

{
∃q : ‖Lq − L̂q‖ ≥ t+ 2βq

}
≤ 2Q2 max

q
exp




− t2

8
(
4
√
mminβmin +

√
QM√
mmin

)2





where mmin = minq mq and βmin is the associated βq. Setting the right hand side to δ, we can get,
with probability 1− δ,

∑

q

‖Cq − Cq
emp‖ ≤ 2

∑

q

βq +Q

√
8 ln

(
2Q2

δ

)(
4
√
mminβmin +M

√
Q

mmin

)

Hence the result.

4 Analysis of existing algorithms

Now that the main result on stability bound has been established, we will investigate how some already
existing multi-class algorithms display some stability properties and thus fall in the scope of our analysis.
More precisely, we will analyse two well-known models for multiclass support vector machines and we will
show that they to promote small confusion error. But first, we will study the more general stability of
multi-class algorithms using regularization in Reproducing Kernel Hilbert Spaces (RKHS).

4.1 Hilbert Space Regularized Algorithms

Many well-known and widely-used algorithms feature a minimization of a regularized objective functionTikhonov and Arsenin
(1977). In the context of kernel machinesCristianini and Shawe-Taylor (2000), this regularizer Ω(h) may
take the following form:

Ω(h) =
∑

q

‖hq‖2k.

where k : X × X → R denotes the kernel associated to the RKHS H.
In order to study the stability properties of algorithms, minimizing a data-fitting term, penalized by

such regularizers, in our multi-class setting, we need to introduce a minor definition that is an addition to
definition 19 of Bousquet and Elisseeff (2002).

Definition 3. A loss function ℓ defined on HQ ×Y is σ-multi-admissible if ℓ is σ-admissible with respect
to any of his Q first arguments.

This allows us to come up with the following theorem.

Theorem 3. Let H be a reproducing kernel Hilbert space (with kernel k) such that ∀X ∈ X , k(X,X) ≤
κ2 < +∞. Let L be a loss matrix, such that ∀q ∈ Y, ℓq is σq-multi-admissible. And let A be an algorithm
such that

AS = argmin
h∈HQ

∑

q

∑

n:yn=q

1

mq
ℓq(h, xn, q) + λ

∑

q

‖hq‖2k. := argmin
h∈HQ

J(h).
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Then A is confusion stable with respect to the loss matrix L. Moreover, ∀q ∈ Y, we have

βq ≤
σ2
qQκ2

2λmq

Sketch of proof. Roughly, the idea is to exploit definition 3 in order to apply the theorem 22 of Bousquet and Elisseeff
(2002) for each loss ℓq. Moreover our regularizer is a sum (over q) of RKHS norms, hence the additional
Q in the the bound on βq.

From now on, we will always suppose that we are working with kernels such that k(X,X) ≤ κ2 < +∞.

4.2 Lee, Lin and Wahba model

One of the most well-known and well-studied model for multi-class classification, in the context of SVM,
was proposed by Lee et al. (2004). In this work, the authors suggest the use of the following loss function.

ℓ(h, z) =
∑

q 6=y

(
hq(x) +

1

Q− 1

)

+

Their algorithm, denoted ALLW, then consists in minimizing the following (penalized) functional,

J(h) =
1

m

m∑

k=1

∑

q 6=yk

(
hq(xk) +

1

Q− 1

)

+

+ λ

Q∑

q=1

‖hq‖2,

with the constraint
∑

q hq = 0.
We can trivially rewrite J(h) as

J(h) =
∑

q

∑

n:yn=q

1

mq
ℓq(h, xn, q) + λ

Q∑

q=1

‖hq‖2,

with

ℓq(h, xn, q) =
∑

p6=q

(
hp(xk) +

1

Q− 1

)

+

.

It is straightforward that for any q, ℓq is 1-multi-admissible. We thus can apply theorem 3 and get

βq ≤ Qκ2

2λmq
.

Lemma 2. Let h∗ denote the solution found by ALLW. ∀x ∈ X , ∀y ∈ Y, ∀q, we have ℓq(h
∗, x, y) ≤ Qκ√

λ
+1.

Proof. As h∗ is a minimizer of J , we have

J(h∗) ≤ J(0) =
∑

q

∑

n:yn=q

1

mq
ℓq(0, xn, q)

=
∑

q

∑

n:yn=q

1

(Q− 1)mq
= 1.

As the data fitting term is non-negative, we also have

J(h∗) ≥ λ
∑

q

‖h∗
q‖2k.

Given that h∗ ∈ H, Cauchy-Schwarz inequality gives

∀x ∈ X , ‖h∗
q‖k ≥

|h∗
q(x)|
κ

.

Collecting things, we have

∀x ∈ X , |h∗
q(x)| ≤

κ√
λ
.

Going back to the definition of lq, we get the result.
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Using theorem 2, it follows that, with probability 1− δ,

∥∥∥ĈY (ALLW,X)− Cs(Y )(ALLW)
∥∥∥ ≤

∑

q

Qκ2

λmq
+

√
8 ln

(
Q2

δ

)(
2Q2κ2

λ +
(

Qκ√
λ
+ 1
)
Q
√
Q
)

√
mmin

.

With regards to the βq we obtained, one can conclude that ALLW is confusion stable.

4.3 Weston and Watkins model

One of the oldest models, when it comes to multi-class SVM is due to Weston and Watkins (1998). They
consider the following loss functions.

ℓ(h, x, y) =
∑

q 6=y

(1− hy(x) + hq(x))+

The algorithm AWW minimizes the following functional

J(h) =
1

m

m∑

k=1

∑

q 6=yk

(1− hy(x) + hq(x))+ + λ

Q∑

q<p=1

‖hq − hp‖2,

This time, for 1 ≤ p, q ≤ Q, we will introduce the functions hpq = hp − hq. We can then rewrite J(h)
as

J(h) =
∑

q

∑

n:yn=q

1

mq
ℓq(h, xn, q) + λ

Q∑

p=1

p−1∑

q=1

‖hpq‖2,

with

ℓq(h, xn, q) =
∑

p6=q

(1− hpq(xn))+ .

It still is straightforward that for any q, ℓq is 1-multi-admissible. However, this time, our regularizer

consists in the sum of Q(Q−1)
2 < Q2

2 norms. Applying theorem 3 therefore gives us βq ≤ Q2κ2

4λmq

Lemma 3. Let h∗ denote the solution found by AWW. ∀x ∈ X , ∀y ∈ Y, ∀q, we have ℓq(h
∗, x, y) ≤

Q

(
1 + κ

√
Q
λ

)
.

This lemma can be proven following exactly the same techniques and reasoning as Lemma 2.
Using theorem 2, it follows that, with probability 1− δ,

∥∥∥ĈY (AWW,X)− Cs(Y )(AWW)
∥∥∥ ≤

∑

q

Q2κ2

2λmq
+

√
8 ln

(
Q2

δ

)(
Q3κ2

λ +Q2
(√

Q+ κ Q√
λ

))

√
mmin

.

With regards to the βq we obtained, one can conclude that AWW is confusion stable.

5 Discussion and Conclusion

In this paper, we have proposed a new framework, namely the algorithmic confusion stability, together
with new bounds to characterize the generalization properties of multiclass learning algorithms. The crux
of our study is to envision the confusion matrix as a performance measure, which differs from commonly
encountered approaches that investigate generalization properties of scalar-valued performances (such as,
e.g., the accuracy).

A few questions that are raised by the present work are the following. Is it possible to derive confusion
stable algorithms that precisely aim at controlling the norm of their confusion matrix? Are there other
algorithms than those analyzed here that may be studied in our new framework? In particular, is it the
case for k-nearest-neighbors, the generalization analysis of which is amenable thanks to classical stability
arguments? On a broader perspective: how can noncommutative concentration inequalities be of some
use in machine learning?
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