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Hamiltonian identification through enhanced observability utilizing quantum control

This note considers Hamiltonian identification for a controllable quantum system with nondegenerate transitions and a known initial state. We assume to have at our disposal a single scalar control input and the population measure of only one state at an (arbitrarily large) final time T. We prove that the quantum dipole moment matrix is locally observable in the following sense: for any two close but distinct dipole moment matrices, we construct discriminating controls giving two different measurements. This result suggests that what may appear at first to be very restrictive measurements are actually rich for identification, when combined with well designed discriminating controls, to uniquely identify the complete dipole moment of such systems.

I. INTRODUCTION

Quantum control has been receiving increasing attention [START_REF] Brif | Control of quantum phenomena: past, present and future[END_REF] and one of its promising applications is to Hamiltonian identification [START_REF] Warren | Coherent control of quantum dynamics: the dream is alive[END_REF] by using the ability to actively control a quantum system as a means to gain information about the underlying Hamiltonian governing its dynamics. The underlying premise is that controls may be found which make the measurements not only robust to noise but also highly sensitive to the unknown parameters in the Hamiltonian. Hence, although the performance of laboratory measurements may be constrained, the ability to control a quantum system has the prospect of turning this data into a rich source of information on the system's Hamiltonian.

In this note, we consider the problem of identifying the dipole moment (which is assumed to be real) of an N -level quantum system, initialized to a known state (ground state), from a single population measurement at one arbitrarily large time T . We suppose an ability to freely control the system with a time dependent electric field (t). The measurements are obtained by (i) initializing at time t = 0 the system's state at a known state |i , (ii) controlling in open loop and without measurement the system with an electric field k (t) for t ∈ [0, T ] where T > 0, and (iii) measuring at final time T the population of one state |f . This may be repeated for many controls ( k ) k . We prove the existence of controls which make the identification from one population measurement a well posed problem (theorem 1). These controls have a simple physical interpretation in analogy with Ramsey interferometry (see Fig. 1).

The perspective above combined with control theory is motivated by three practical arguments. First, measuring a state population at one time T is a technique which can have a very high signal to noise ratio (∼ 100). Second, technological progress with spatial light modulators (SLM) permits generating a broad variety of controls in the laboratory. Third, ultra short pulsed fields can be well measured in the laboratory [START_REF] Iaconis | Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[END_REF]. Hence, we are able to design a variety of precisely known control inputs.

Le Bris and al [START_REF] Lebris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF] prove the observability of the dipole moment when the population of all states are measured over an arbitrarily large interval of time. Algorithms to reconstruct the dipole from the measured data were proposed using nonlinear observers [START_REF] Leghtas | Parameter estimation of a 3-level quantum system with a single population measurement[END_REF], [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF]. A different setting is considered in [START_REF] Schirmer | Quantum system identification: Hamiltonian estimation using spectral and Bayesian analysis[END_REF], [START_REF] Schirmer | Quantum system identification by Bayesian analysis of noisy data: Beyond Hamiltonian tomography[END_REF] where it is supposed that one can prepare and measure the system in a set of orthogonal states at various times, and the available data is the probability to measure the system in a certain state when it was prepared in another; Bayesian es-timation is used to reconstruct the energy levels, the damping constants and the dipole moment from the measured data. We consider here the less demanding case where the only available measurement is the population of one state at one arbitrarily large time, and the initial state is known and coincides with the ground state.

The note is organized as follows. In section II we state the main result in Theorem 1, and section III gives the proof of the Theorem and an important lemma on which the main result is based. Finally concluding remarks are presented in Section IV.

II. OBSERVABILITY OF THE QUANTUM DIPOLE MOMENT

A. Problem setting

We consider a quantum system in a pure state described by the wave function |ψ ∈ S. Here S is the set of N dimensional complex vectors of unit norm. The system interacts with an electric field (the real control input) ∈ E T for some T > 0 with E T {f : [0, T ] → R |f piecewise continuous}. For a given control we measure the population of the state |f at time T denoted as P if ( ). We denote by H 0 the free Hamiltonian (Hermitian matrix) and by µ the dipole moment operator, also a Hermitian matrix. The initial state |i and the measured state |f are eigenvectors of H 0 . We consider a semiclassical model for the light-matter interaction, and the dynamics of |ψ are given by the Schrodinger equation:

ı ∂ ∂t |ψ(t) = (H 0 -(t)µ) |ψ(t) (1) 
|ψ(0) = |i , P if ( ) = | f |ψ(T ) | 2 .
For all T > 0, we suppose that we can create any field ∈ E T and that we can measure P if ( ). For M different fields { 1 , .., M } we can collect the measurements {P if ( 1 ), .., P if ( M )}. Through (1) P if is a function of µ and a functional of , and when necessary this explicit dependence will be written as P if ( , µ). The aim of this note is to explore the feasibility of estimating the dipole moment µ from the measured data {P if ( 1 ), .., P if ( M )} using well chosen controls { 1 , .., M }. Below, P if ( , µ) refers to the measurement achieved on the real system using a control , and for any μ, P if ( , μ) is the estimated measurement which is obtained by simulating system (1) with the control and coupling μ.

B. Main result

For all k ≤ N we denote |k as the eigenvector of H 0 with associated eigenvalue E k . Throughout the note, all matrices are written in the basis (|1 , .., |N ). The initial and measured states correspond to some indexes i, f ∈ {1, . . . , N }. For all k, l ≤ N we specify σ x lk |l k|+|k l|. We define

M Span{σ lk x \k, l ≤ N with Tr µσ lk x = 0},
with Tr being the trace operation. When all non diagonal elements of µ are non-null,

M = dim(M) = N (N -1) 2 
. The main result is the following:

Theorem 1. Consider a real symmetric matrix µ with zero diagonal entries and a real diagonal matrix H 0 with non-degenerate transitions. Suppose that the system state in (1) is controllable. Then for any positive constant α there exists a time T > 0 and M fields ( 1 , .., M ) ∈ E T M such that the cost function

J : M μ → M k=1 (P if ( k , μ) -P if ( k , µ)) 2 is in C 2 (M, R) and locally α-convex 1 around µ.
C k (A, B) denotes the set of k times continuously differentiable functions defined over A with values in B. In the appendix we provide the definitions of controllability and a matrix with non-degenerate transitions. Here and throughout this note, the norm of matrix µ, noted µ refers to the max norm. A direct consequence of Theorem 1 is the local observability of the dipole moment: Corollary 1. Under the assumptions of Theorem 1, the dipole moment is locally observable in M. a) Proof: Take α > 0. Theorem 1 implies that there exists a time T > 0 and M fields ( 1 , .., M ) ∈ E T M such that the cost function J is C2 (M, R) and locally α-convex around µ. Hence there ∃r > 0 such that for all μ ∈ M with μ -µ ≤ r and μ = µ, J(μ) > 0, and hence there exists

∈ { 1 , .., M } such that P if ( , μ) -P if ( , µ) = 0.
Remark 1. The local α-convexity is a property stronger than the mere possibility to identify the dipole matrix. It states that the distinction between a dipole candidate μ and the true dipole µ can be observed (through the measurements aggregated in J) to first order in the distance µ -μ . This first order dependence of the measurement P if with respect to the dipole µ is addressed in more detail in lemma 1. For well chosen controls, the J function has a very simple shape around µ and a simple gradient algorithm could be used to identify it.

The eigenvalues of H 0 are commonly measured through spectroscopy and can be found in reference tables [START_REF]) data sheets[END_REF] with precisions of order 10 -7 . The result of theorem 1 is also relevant for the problem of discriminating between two molecules with the same free Hamiltonian and different effective dipole operators. In that framework, μ and µ would be the dipole operators of these two molecules (as opposed to one estimated and one true dipole, as considered in this note), and the aim is to find controls which produce different data sets for these two different but similar quantum systems. This was experimentally accomplished in [START_REF] Petersen | How shaped light discriminates nearly identical biochromophores[END_REF] where a genetic algorithm is used to find these discriminating controls. A complementary theoretical controllability analysis can be found in [START_REF] Turinici | Optimal discrimination of multiple quantum systems: controllability analysis[END_REF].

III. PROOFS

A. Existence of discriminating controls

We denote µ = 1 µ µ the normalized dimensionless dipole moment operator, µ lk Tr µ σ lk x and ∂P if ∂µ lk ( ) the partial derivative of P if ( ) with respect to µ lk . Theorem 1 is based on the following lemma: Lemma 1. Suppose that µ is real, symmetric and has only zeros on its diagonal and H 0 is real, diagonal, with non-degenerate transitions. Suppose system (1) is controllable. Then for all (l, k) with µ lk = 0, there exists ξ 0 > 0 such that, for all ξ ∈]0, ξ 0 [, exist T > 0 and ∈ E T satisfying

• ∂P if ∂µ lk ( ) = 1 2ξ + O(1) • ∀{m, n} = {l, k} with µ mn = 0, ∂P if ∂µ mn ( ) = O(1),
where O(1) corresponds to zero order terms with respect to ξ around 0 + .

B. Proof of Theorem 1

To each pair of integers (l p , k p ), l p < k p such that Tr µ σ 

> 0 such that ∀ξ ∈ ]0, ξ 0 [, ∃ T 1 , .., T M and ( 1 , .., M ) ∈ E T 1 × .. × E T M such that: (i) ∀p ∈ [1 : M ] ∂P if ∂µ p ( p ) = 1 2ξ + O(1) and (ii) ∀p = p ∂P if ∂µ p ( p ) = O(1)
. We take T = max(T 1 , .., T M ) and for all k ∈ {1, .., M } we extend the definition of k from [0, T k ] to [0, T ] by taking k (t) = 0 for all t ∈]T k , T ]. We will use J : M → R defined by:

J(μ) = M k=1 (P if ( k , μ) -P if ( k , µ)) 2 .
For a fixed T > 0 and

∈ E T , since µ → P if ( , µ) is C 1 (M, R), J(μ) is in C 2 (M, R). We find ∂ 2 J ∂µ p ∂µ p (µ) = M k=1 ∂P if ∂µ p ( k , µ) ∂P if ∂µ p ( k , µ) so that for all p ∈ {1, ..., M } : ∂ 2 J ∂µ p 2 (µ) = 1 4ξ 2 + O( 1 ξ ) and when p = p ∂ 2 J ∂µ p ∂µ p (µ) = O( 1 ξ ). We have: ∇ 2 J(µ) = 1 4ξ 2 (I + O(ξ))
, where ∇ 2 J(µ) is the Hessian of J at µ and I is the identity matrix. The smallest eigenvalue of ∇ 2 J(µ) scales as 1 4ξ 2 (1 + O(ξ)), hence by taking ξ small enough it can be made larger than α thereby reaching the conclusion above.

C. Proof of lemma 1

We define the dimensionless time scale τ 1 H 0 t and also 1 H 0 T . For two times τ, τ ∈ [0, ] we define the propagator U (τ , τ ) such that |ψ(τ ) = U (τ , τ ) |ψ(τ ) . Rewriting [START_REF] Brif | Control of quantum phenomena: past, present and future[END_REF] for U (τ, 0) we obtain:

ı ∂ ∂τ U (τ, 0) = 1 H 0 (H 0 -(τ )µ)U (τ, 0) (2) 
P if ( ) = | f | U ( , 0) |i | 2 , U (0, 0) = I .
The proof of lemma 1 has two parts I and II separately treated below.

i) Part I: Take two times τ 1 , τ 2 , 0 < τ 1 < τ 2 < . We can write (for any complex z we denote by z its complex conjugate):

P if ( ) = z z where z = f | U ( , τ 2 )U (τ 2 , τ 1 )U (τ 1 , 0) |i .
Denote for any m, n = 1, ..., M : ω mn Em-En H 0 and consider the control defined on [τ 1 , τ 2 ]:

(τ ) = ε cos(ω lk (τ -τ 1 )) , (3) 
where ε is a small strictly positive real parameter. Take ξ = µ ε H 0 . The only remaining degree of freedom in the control over [τ 1 , τ 2 ] is ξ, which can be taken arbitrarily small. We define H 0 = 1 H 0 H 0 and ω mn = m| H 0 |m -n| H 0 |n . Note that ω mn = -ω nm . We have [START_REF] Beltrani | Photonic reagent control of dynamically homologous quantum systems[END_REF] 

∂ ∂µ lk U (τ 2 , τ 1 ) = ı µ H 0 U (τ 2 , τ 1 ) × τ 2 τ 1 (τ )U † (τ, τ 1 )σ lk x U (τ, τ 1 )dτ . ( 4 
)
We now rewrite (2) and ( 4) for the control given in (3) on the time interval [τ 1 , τ 2 ]:

ı ∂ ∂τ U (τ, τ 1 ) = (H 0 -ξ cos(ω lk (τ -τ 1 ))µ )U (τ, τ 1 ) (5) ∂ ∂µ lk U (τ 2 , τ 1 ) = ıξU (τ 2 , τ 1 ) × τ2 τ1 cos(ω lk (τ -τ 1 ))U † (τ, τ 1 )σ lk x U (τ, τ 1 )dτ . ( 6 
)
The goal is to show that ∂ ∂µ lk U (τ 2 , τ 1 ) can be made arbitrarily "large" while ∂ ∂µ mn U (τ 2 , τ 1 ) stays bounded. Note that all the terms in the integrand of ( 6) are bounded, and a rough estimate of the norm of ∂ ∂µ lk U (τ 2 , τ 1 ) gives a quantity proportional to (τ 2 -τ 1 )ξ. Hence, we take τ 2 -τ 1 = 1 ξ 2 , implying the need to have expressions for U (τ, τ 1 ) over a time scale on the order of 1 ξ 2 . To this end we state lemma 2 which gives such an approximation. Lemma 2. Consider Eq. ( 5). There exists a Hermitian matrix K and ξ 0 > 0 such that, for any ξ ∈]0, ξ 0 [, we have:

sup τ ∈[τ1,τ1+ 1 ξ 2 ]
U (τ, τ 1 ) -e -ıH 0 (τ -τ1) e ı(ξ µ lk

2 σ lk x +ξ 2 K)(τ -τ1) = O(ξ).
We continue with the proof of Lemma 1 and will come back to Lemma 2 in Section III-D.

Using the expression of U (τ, τ 1 ) given in lemma 2, the integrand in ( 6) is:

cos(ω lk (τ -τ 1 ))U † (τ, τ 1 )σ lk x U (τ, τ 1 ) = e -ı(ξ µ lk 2 σ lk x +ξ 2 K)(τ -τ1) (cos(ω lk (τ -τ 1
))e ıH 0 (τ -τ1)

σ lk x e -ıH 0 (τ -τ1) )e ı(ξ µ lk

2 σ lk x +ξ 2 K)(τ -τ1) + O(ξ) .
In order to compute ( 6), we need the following result:

cos(ω lk (τ -τ 1 ))e ıH 0 (τ -τ1) σ lk x e -ıH 0 (τ -τ1) = 1 2 σ lk x + 1 2 cos(2ω lk (τ -τ 1 ))σ lk x + 1 2 sin(2ω lk (τ -τ 1 ))σ lk y , (7) 
where we denote σ lk y = +ı |l k| -ı |k l|. In ( 7), the terms oscillating at frequency 2ω lk independent of ξ will only contribute to O(ξ) in [START_REF] Bonnabel | Observer-based Hamiltonian identification for quantum systems[END_REF]. We now focus on the contribution of the term with σ lk x in (6) which calls for (see appendix): ∀τ e -ı(ξ µ lk

2 σ lk x +ξ 2 K)(τ -τ 1 ) σ lk x e ı(ξ µ lk 2 σ lk x +ξ 2 K)(τ -τ 1 ) = σ lk x + O(ξ) . (8) 
Introducing ( 8) into (6), we find:

∂ ∂µ lk U (τ 2 , τ 1 ) = ıξU (τ 2 , τ 1 ) τ 2 -τ 1 2 σ lk x + O(1) + (τ 2 -τ 1 )O(ξ) .
From now on, we take τ 2 = τ 1 + 1 ξ 2 and obtain:

∂ ∂µ lk U (τ 2 , τ 1 ) = ıU (τ 2 , τ 1 )( 1 2ξ σ lk x + O(1)). (9) 
We define |ψ 1 |l and |ψ 2 1 √ 2 U (τ 2 , τ 1 )(|l + ı |k ). Since the system is controllable there exists a time τ 1 and a field 1 ∈ E τ 1 such that U (τ 1 , 0) |i = |ψ 1 , and there exists a time and a field 2 defined over [τ 2 , ] such that U † ( , τ 2 ) |f = |ψ 2 . Since the state space is compact (here it is a sphere), we know that if the system is controllable, it is controllable in bounded time, and with bounded controls (see Theorem 6.5 in [START_REF] Jurdjevic | Control systems on Lie groups[END_REF]). Hence, -τ 2 can be chosen bounded for all ξ. Therefore ∂ ∂µ lk U (0, τ 1 ) and ∂ ∂µ lk U (τ 2 , ) are bounded. Thus, we have:

∂ ∂µ lk P if ( ) = 2 ( f | U ( , τ 2 ) ∂ ∂µ lk U (τ 2 , τ 1 )U (τ 1 , 0) |i i| U † (τ 1 , 0)U † (τ 2 , τ 1 )U † ( , τ 2 ) |f ) + O(1).
We now utilize U (τ 1 , 0) |i = |ψ 1 and U † ( , τ 2 ) |f = |ψ 2 where |ψ 1 and |ψ 2 are defined above, and replace ∂ ∂µ lk U (τ 2 , τ 1 ) by its expression in [START_REF]) data sheets[END_REF] to find: ∂ ∂µ lk

P if ( ) = 1 2ξ + O(1)
. This expression holds for the control defined as:

(τ ) =    1 (τ ), if τ ∈ [0, τ 1 ] H 0 µ ξ cos(ω lk (τ -τ 1 )), if τ ∈]τ 1 , τ 2 [ 2 (τ ), if τ ∈ [τ 2 , ] (10) 
ii) Part II: We now need to prove that

∂ ∂µ mn P if ( ) = O(1)
for {m, n} = {l, k}, where is the control found above in [START_REF] Petersen | How shaped light discriminates nearly identical biochromophores[END_REF]. As in Eq. ( 6), we have:

∂ ∂µ mn U (τ 2 , τ 1 ) = ıξU (τ 2 , τ 1 )× τ2 τ1 cos(ω lk (τ -τ 1 ))U † (τ, τ 1 )σ mn x U (τ, τ 1 )dτ , (11) 
and again the result of lemma 2 is employed. Eq. ( 11) calls for 2 cos(ω lk (τ -τ 1 ))e ıH 0 (τ -τ1) σ mn x e -ıH 0 (τ -τ1) = cos((ω lk -ω mn )(τ -τ 1 ))σ mn x -sin((ω lk -ω mn )(τ -τ 1 ))σ mn y + cos((ω lk +ω mn )(τ -τ 1 ))σ mn x +sin((ω lk +ω mn )(τ -τ 1 ))σ mn y .

Considering that H 0 has non-degenerate transitions (see definition in the appendix) implies that ω lkω mn = 0 and ω lk + ω mn = 0. As the expression in [START_REF] Beltrani | Photonic reagent control of dynamically homologous quantum systems[END_REF] oscillates at frequencies independent of ξ, it therefore contributes to O(ξ) in [START_REF] Turinici | Optimal discrimination of multiple quantum systems: controllability analysis[END_REF]. Hence, for τ 2τ 1 = 1 ξ 2 we can directly conclude that ∂ ∂µ mn

P if ( ) = O(1).

D. Proof of lemma 2

This proof relies on three consecutive changes of frame that aim to cancel the oscillating terms of order 0 and 1 with respect to ξ. We then derive a specific form of the averaging Theorem (see theorem 4.3.6 in [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF] for a general form of the averaging theorem). For the sake of clarity and with no loss of generality, we take τ 1 = 0 and note

U (τ )
U (τ, τ 1 ). Eq. ( 5) may be written in the interaction frame U I (τ ) e ıH 0 τ U (τ ),

∂ ∂τ U I (τ ) = ıξ µ lk 2 σ lk x + ∂ ∂τ H I (τ ) U I (τ )
where:

∂ ∂τ H I (τ ) = 1 2 (m,n) =(k,l)
µ mn e ı(-ω kl +ω mn )τ |m n|

+ 1 2 (m,n) =(l,k)
µ mn e ı(-ω lk +ω mn )τ |m n| , and the average of H I is zero. The average of a time dependent operator C(τ ) is defined as follows (see defintion 4.2.4 in [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]): C = lim θ→+∞ 1 θ θ 0 C(τ )dτ . We now take U I (τ ) = (I -ıξH I (τ ))U I (τ ). Since ∂ ∂τ H I is almost periodic 2 , then H I is also almost periodic and hence bounded for all τ . Hence, there exists ξ 0 > 0, ∀ξ < ξ 0 , I -ıξH I (τ ) has an inverse and (I -ıξH I (τ )) -1 = I + ıξH I (τ ) + O(ξ 2 ). We find:

∂ ∂τ U I (τ ) = ı ξ µ lk 2 σ lk x - ıξ 2 µ lk 2 [H I (τ ), σ lk x ] + H I (τ ) ∂ ∂τ H I (τ ) + O(ξ 3 ) U I (τ ).
Notice that, with K = -ıH I ∂ ∂τ H I independent of ξ and K(τ ) almost periodic with zero average, we also have:

µ lk 2 [H I (τ ), σ lk x ]+H I (τ ) ∂ ∂τ H I (τ ) = ı(K + ∂ ∂τ K(τ )). It is important to note that 1 2 ∂ ∂τ H 2 I = 0 = H I ∂ ∂τ H I + ( ∂ ∂τ H I )H I = ı(K -K † ). Hence K = K † is Hermitian.
We now take U I (τ ) = (I -ıξ 2 K(τ ))U I (τ ). Since K(τ ) is bounded for all τ , then for a sufficiently small ξ, Iıξ 2 K(τ ) has an inverse and (I -ıξ 2 K(τ )) -1 = I +ıξ 2 K(τ )+O(ξ 4 ). U I satisfies the following equation:

∂ ∂τ U I (τ ) = ı ξ µ lk 2 σ lk x + ξ 2 K + O(ξ 3 ) U I (τ ) , (13) 
and we define U av to be the solution to the averaged dynamics (U av (0) = I):

∂ ∂τ U av (τ ) = ı ξ µ lk 2 σ lk x + ξ 2 K U av (τ ) . ( 14 
)
We can directly solve [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]:

U av (τ ) = e ı ξ µ lk 2 σ lk x +ξ 2 K τ
. Subtracting ( 13) from ( 14), we find, using Gronwall's lemma, that for all τ < 1 ξ 2 one has U I (τ ) = U av (τ ) + O(ξ). Also note that to go from U I to U I we have used two 2 Can be written as M k=1 e iω k τ A k consecutive changes of variables which are close to the identity, hence: ∀τ U I (τ ) = U I (τ ) + O(ξ).

Finally, since e -ıH 0 τ is an isometry, we have:

U (τ ) = e -ıH 0 τ e ı(ξ µ lk 2 σ lk x +ξ 2 K)τ + O(ξ) for all τ ≤ 1 ξ 2 .
IV. CONCLUSION Identification of the real dipole moment matrix is shown to be well posed for a controllable finite dimensional quantum system with non-degenerate transitions and using as measurements only one population at a final time T . The results also provide a theoretical foundation to optimal discrimination experiments. APPENDIX Definition 1. We say that system (1) is controllable [START_REF]Introduction to Quantum Control and Dynamics[END_REF] if for all |ψ 1 , |ψ 2 ∈ S there exists a time t and a control ∈ E t such that for |ψ(0) = |ψ 1 , (1) leads to |ψ(t) = |ψ 2 . Definition 2. Let H 0 and µ be N × N Hermitian matrices. We denote E 1 , .., E N the eigenvalues of H 0 and |1 , .., |N its corresponding eigenvectors. We say that H 0 has non-degenerate transitions [START_REF] Turinici | Wavefunction controllability for finite-dimensional bilinear quantum systems[END_REF] if ∀(l, k) = (m, n), l = k and m = n, such that l| µ |k = 0 and m| µ |n = 0, we have E l -E k = E m -E n .

Definition 3. Take system (1). Let us denote M as the space to which µ belongs. We say that µ is locally observable in M if there exists r > 0 such that for all μ ∈ M with 0 < μ-µ ≤ r there exists T > 0 and ∈ E T such that P if ( , μ) = P if ( , µ).

Computation: Here, we compute Σ lk x (τ ) = e -i(ξ µ lk 2 σ lk x +ξ 2 K)(τ -τ 1 ) σ lk x e i(ξ µ lk 2 σ lk x +ξ 2 K)(τ -τ 1 ) . We have µ lk = 0 and σ lk x + ξ 2K µ lk is Hermitian. Hence, there exists a unitary matrix P ξ and a real diagonal matrix ∆ ξ such that σ lk x + ξ 2K 

  associate a unique index p ∈ {1, ..., M }, and we define σ p x σ lpkp x along with µ p Tr (µ σ p x ). According to lemma 1, ∃ξ 0

Fig. 1 .

 1 Fig. 1. A good control has three components (inspired from Ramsey interferometry) to enable the identification of µ lk . The field 1 is defined over [0, τ1] (analog of first Ramsey pulse) to steer the known initial state |i to |ψ1 = |l : |l = U (τ1, 0) |i . The field 2 is defined over [τ2, ] (analog of second Ramsey pulse) is such that |f = U ( , τ2) |ψ2 where |ψ2 = U (τ2, τ1) |l +ı|k √ 2 and the propagator U (τ2, τ1) corresponds, for a long interval τ2 -τ1, to a large number of Rabi oscillations with the control ε cos(ω lk (τ -τ1)) resonant with the |l ↔ |k transition.

=

  P ξ ∆ ξ P † ξ . The function ξ ∈ [0, ξ 0 ] → σ lk x + ξ 2K µ lkis analytic, therefore the eigenvectors of σ lk x + ξ 2K µ lk can be continued analytically as a function of ξ (see Theorem 6.1 in chapter II, §6 section 1 and 2 in[START_REF] Kato | Perturbation theory for linear operators[END_REF]). Hence, P ξ = P 0 + O(ξ) where P 0 is such that P † 0 σ lk x P 0 = σ lk z is real and diagonal. σ lk z = |l l| -|k k|. We find, ∀τ :Σ lk x (τ ) = σ lk x + O(ξ), where O(ξ) is a first order term in ξ and a bounded function of τ .

The smallest eigenvalue of the Hessian ∇

J(µ) is larger than α.
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