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Abstract—This note considers Hamiltonian identifi-
cation for a controllable quantum system with non-
degenerate transitions and a known initial state. We
assume to have at our disposal a single scalar control
input and the population measure of only one state at
an (arbitrarily large) final time T. We prove that the
quantum dipole moment matrix is locally observable in
the following sense: for any two close but distinct dipole
moment matrices, we construct discriminating controls
giving two different measurements. This result suggests
that what may appear at first to be very restrictive
measurements are actually rich for identification, when
combined with well designed discriminating controls, to
uniquely identify the complete dipole moment of such
systems.

I. INTRODUCTION

Quantum control has been receiving increasing
attention [1] and one of its promising applications is
to Hamiltonian identification [2] by using the ability
to actively control a quantum system as a means to
gain information about the underlying Hamiltonian
governing its dynamics. The underlying premise
is that controls may be found which make the
measurements not only robust to noise but also
highly sensitive to the unknown parameters in the
Hamiltonian. Hence, although the performance of
laboratory measurements may be constrained, the
ability to control a quantum system has the prospect
of turning this data into a rich source of information
on the system’s Hamiltonian.

In this note, we consider the problem of iden-
tifying the dipole moment (which is assumed to
be real) of an N−level quantum system, initialized
to a known state (ground state), from a single
population measurement at one arbitrarily large time

T . We suppose an ability to freely control the
system with a time dependent electric field ε(t).
The measurements are obtained by (i) initializing
at time t = 0 the system’s state at a known
state |i〉, (ii) controlling in open loop and without
measurement the system with an electric field εk(t)
for t ∈ [0, T ] where T > 0, and (iii) measuring
at final time T the population of one state |f〉.
This may be repeated for many controls (εk)k. We
prove the existence of controls which make the
identification from one population measurement a
well posed problem (theorem 1). These controls
have a simple physical interpretation in analogy
with Ramsey interferometry (see Fig. 1).

The perspective above combined with control
theory is motivated by three practical arguments.
First, measuring a state population at one time T is a
technique which can have a very high signal to noise
ratio (∼ 100). Second, technological progress with
spatial light modulators (SLM) permits generating
a broad variety of controls in the laboratory. Third,
ultra short pulsed fields can be well measured in
the laboratory [3]. Hence, we are able to design a
variety of precisely known control inputs.

Le Bris and al [4] prove the observability of the
dipole moment when the population of all states
are measured over an arbitrarily large interval of
time. Algorithms to reconstruct the dipole from
the measured data were proposed using nonlinear
observers [5], [6]. A different setting is considered
in [7], [8] where it is supposed that one can prepare
and measure the system in a set of orthogonal
states at various times, and the available data is
the probability to measure the system in a certain
state when it was prepared in another; Bayesian es-
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timation is used to reconstruct the energy levels, the
damping constants and the dipole moment from the
measured data. We consider here the less demanding
case where the only available measurement is the
population of one state at one arbitrarily large time,
and the initial state is known and coincides with the
ground state.

The note is organized as follows. In section II we
state the main result in Theorem 1, and section III
gives the proof of the Theorem and an important
lemma on which the main result is based. Finally
concluding remarks are presented in Section IV.

II. OBSERVABILITY OF THE QUANTUM DIPOLE
MOMENT

A. Problem setting
We consider a quantum system in a pure state

described by the wave function |ψ〉 ∈ S. Here S is
the set of N dimensional complex vectors of unit
norm. The system interacts with an electric field (the
real control input) ε ∈ ET for some T > 0 with
ET , {f : [0, T ]→ R |f piecewise continuous}.
For a given control ε we measure the population of
the state |f〉 at time T denoted as Pif (ε). We denote
by H0 the free Hamiltonian (Hermitian matrix) and
by µ the dipole moment operator, also a Hermitian
matrix. The initial state |i〉 and the measured state
|f〉 are eigenvectors of H0. We consider a semi-
classical model for the light-matter interaction, and
the dynamics of |ψ〉 are given by the Schrodinger
equation:

ı~
∂

∂t
|ψ(t)〉 = (H0 − ε(t)µ) |ψ(t)〉 (1)

|ψ(0)〉 = |i〉 , Pif (ε) = | 〈f |ψ(T )〉 |2 .
For all T > 0, we suppose that we can create any
field ε ∈ ET and that we can measure Pif (ε). For
M different fields {ε1, .., εM} we can collect the
measurements {Pif (ε1), .., Pif (εM)}. Through (1)
Pif is a function of µ and a functional of ε, and when
necessary this explicit dependence will be written
as Pif (ε, µ). The aim of this note is to explore
the feasibility of estimating the dipole moment µ
from the measured data {Pif (ε1), .., Pif (εM)} using
well chosen controls {ε1, .., εM}. Below, Pif (ε, µ)
refers to the measurement achieved on the real
system using a control ε, and for any µ̂, Pif (ε, µ̂)
is the estimated measurement which is obtained
by simulating system (1) with the control ε and
coupling µ̂.

B. Main result

For all k ≤ N we denote |k〉 as the eigenvector
of H0 with associated eigenvalue Ek. Through-
out the note, all matrices are written in the basis
(|1〉 , .., |N〉). The initial and measured states cor-
respond to some indexes i, f ∈ {1, . . . , N}. For all
k, l ≤ N we specify σxlk , |l〉 〈k|+|k〉 〈l|. We define

M , Span{σlkx \k, l ≤ N with Tr
(
µσlkx

)
6= 0},

with Tr being the trace operation. When all non di-
agonal elements of µ are non-null, M = dim(M) =
N(N−1)

2
. The main result is the following:

Theorem 1. Consider a real symmetric matrix µ
with zero diagonal entries and a real diagonal
matrix H0 with non-degenerate transitions. Suppose
that the system state in (1) is controllable. Then for
any positive constant α there exists a time T > 0
and M fields (ε1, .., εM) ∈ ETM such that the cost
function

J :M3 µ̂→
M∑
k=1

(Pif (εk, µ̂)− Pif (εk, µ))2

is in C2(M,R) and locally α-convex1 around µ.

Ck(A,B) denotes the set of k times continuously
differentiable functions defined over A with values
in B. In the appendix we provide the definitions
of controllability and a matrix with non-degenerate
transitions. Here and throughout this note, the norm
of matrix µ, noted ‖µ‖ refers to the max norm.
A direct consequence of Theorem 1 is the local
observability of the dipole moment:

Corollary 1. Under the assumptions of Theorem 1,
the dipole moment is locally observable in M.

a) Proof: Take α > 0. Theorem 1 implies that
there exists a time T > 0 and M fields (ε1, .., εM)
∈ ETM such that the cost function J is C2(M,R)
and locally α-convex around µ. Hence there ∃r > 0
such that for all µ̂ ∈M with ‖µ̂−µ‖ ≤ r and µ̂ 6=
µ, J(µ̂) > 0, and hence there exists ε ∈ {ε1, .., εM}
such that Pif (ε, µ̂)− Pif (ε, µ) 6= 0.�

Remark 1. The local α−convexity is a property
stronger than the mere possibility to identify the
dipole matrix. It states that the distinction between
a dipole candidate µ̂ and the true dipole µ can

1The smallest eigenvalue of the Hessian ∇2J(µ) is larger than α.
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be observed (through the measurements aggregated
in J) to first order in the distance ‖µ − µ̂‖. This
first order dependence of the measurement Pif with
respect to the dipole µ is addressed in more detail in
lemma 1. For well chosen controls, the J function
has a very simple shape around µ and a simple
gradient algorithm could be used to identify it.

The eigenvalues of H0 are commonly measured
through spectroscopy and can be found in reference
tables [9] with precisions of order 10−7. The re-
sult of theorem 1 is also relevant for the problem
of discriminating between two molecules with the
same free Hamiltonian and different effective dipole
operators. In that framework, µ̂ and µ would be the
dipole operators of these two molecules (as opposed
to one estimated and one true dipole, as considered
in this note), and the aim is to find controls which
produce different data sets for these two different
but similar quantum systems. This was experimen-
tally accomplished in [10] where a genetic algorithm
is used to find these discriminating controls. A
complementary theoretical controllability analysis
can be found in [11].

III. PROOFS

A. Existence of discriminating controls

We denote µ′ = 1
‖µ‖µ the normalized dimension-

less dipole moment operator, µ′lk , Tr
(
µ′σlkx

)
and

∂Pif
∂µ′lk

(ε) the partial derivative of Pif (ε) with respect
to µ′lk. Theorem 1 is based on the following lemma:

Lemma 1. Suppose that µ is real, symmetric and
has only zeros on its diagonal and H0 is real,
diagonal, with non-degenerate transitions. Suppose
system (1) is controllable. Then for all (l, k) with
µlk 6= 0, there exists ξ0 > 0 such that, for all
ξ ∈]0, ξ0[, exist T > 0 and ε ∈ ET satisfying
•

∂Pif
∂µ′lk

(ε) = 1
2ξ

+O(1)

• ∀{m,n} 6= {l, k} with µmn 6= 0,
∂Pif
∂µ′mn

(ε) =

O(1),
where O(1) corresponds to zero order terms with

respect to ξ around 0+.

B. Proof of Theorem 1

To each pair of integers (lp, kp), lp < kp such
that Tr

(
µ′σ

lpkp
x

)
6= 0 we associate a unique index

p ∈ {1, ...,M}, and we define σpx , σ
lpkp
x along

with µ′p , Tr (µ′σpx).
According to lemma 1, ∃ξ0 > 0 such that ∀ξ ∈

]0, ξ0[, ∃ T1, .., TM and (ε1, .., εM) ∈ ET1 × ..× ETM
such that: (i) ∀p ∈ [1 : M ]

∂Pif
∂µ′p

(εp) = 1
2ξ

+ O(1)

and (ii) ∀p′ 6= p
∂Pif
∂µ′

p′
(εp) = O(1). We take T =

max(T1, .., TM) and for all k ∈ {1, ..,M} we extend
the definition of εk from [0, Tk] to [0, T ] by taking
εk(t) = 0 for all t ∈]Tk, T ]. We will use J :M→ R
defined by:

J(µ̂) =
M∑
k=1

(Pif (εk, µ̂)− Pif (εk, µ))2.

For a fixed T > 0 and ε ∈ ET , since µ →
Pif (ε, µ) is C1(M,R), J(µ̂) is in C2(M,R). We
find ∂2J

∂µ′p∂µ
′
p′

(µ) =
∑M

k=1
∂Pif
∂µ′p

(εk, µ)
∂Pif
∂µ′

p′
(εk, µ) so

that for all p ∈ {1, ...,M} : ∂2J
∂µ′p

2 (µ) = 1
4ξ2

+ O(1
ξ
)

and when p 6= p′ ∂2J
∂µ′p∂µ

′
p′

(µ) = O(1
ξ
). We have:

∇2J(µ) = 1
4ξ2

(I +O(ξ)), where ∇2J(µ) is the
Hessian of J at µ and I is the identity matrix. The
smallest eigenvalue of ∇2J(µ) scales as 1

4ξ2
(1 +

O(ξ)), hence by taking ξ small enough it can be
made larger than α thereby reaching the conclusion
above. �

C. Proof of lemma 1
We define the dimensionless time scale τ ,

1
~‖H0‖t and also > , 1

~‖H0‖T . For two times
τ, τ ′ ∈ [0,>] we define the propagator U(τ ′, τ)
such that |ψ(τ ′)〉 = U(τ ′, τ) |ψ(τ)〉. Rewriting (1)
for U(τ, 0) we obtain:

ı
∂

∂τ
U(τ, 0) =

1

‖H0‖
(H0 − ε(τ)µ)U(τ, 0) (2)

Pif (ε) = | 〈f |U(>, 0) |i〉 |2 , U(0, 0) = I .

The proof of lemma 1 has two parts I and II
separately treated below.

i) Part I: Take two times τ1, τ2, 0 < τ1 <
τ2 < >. We can write (for any complex z we denote
by z̄ its complex conjugate): Pif (ε) = zz̄ where
z = 〈f |U(>, τ2)U(τ2, τ1)U(τ1, 0) |i〉.

Denote for any m,n = 1, ...,M : ω′mn ,
Em−En
‖H0‖

and consider the control defined on [τ1, τ2]:

ε(τ) = ε cos(ω′lk(τ − τ1)) , (3)

where ε is a small strictly positive real parameter.
Take ξ = ‖µ‖ε

‖H0‖ . The only remaining degree of
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0

ωlk

Fig. 1. A good control ε has three components (inspired from
Ramsey interferometry) to enable the identification of µlk. The field
ε1 is defined over [0, τ1] (analog of first Ramsey pulse) to steer the
known initial state |i〉 to |ψ1〉 = |l〉: |l〉 = U(τ1, 0) |i〉. The field
ε2 is defined over [τ2,>] (analog of second Ramsey pulse) is such
that |f〉 = U(>, τ2) |ψ2〉 where |ψ2〉 = U(τ2, τ1)

(
|l〉+ı|k〉√

2

)
and the

propagator U(τ2, τ1) corresponds, for a long interval τ2 − τ1, to a
large number of Rabi oscillations with the control ε cos(ω′lk(τ−τ1))
resonant with the |l〉 ↔ |k〉 transition.

freedom in the control over [τ1, τ2] is ξ, which can
be taken arbitrarily small. We define H ′0 = 1

‖H0‖H0

and ω′mn = 〈m|H ′0 |m〉 − 〈n|H ′0 |n〉. Note that
ω′mn = −ω′nm. We have [12]

∂

∂µ′lk
U(τ2, τ1) = ı

‖µ‖
‖H0‖

U(τ2, τ1)

×
∫ τ2

τ1

ε(τ)U †(τ, τ1)σ
lk
x U(τ, τ1)dτ . (4)

We now rewrite (2) and (4) for the control given in
(3) on the time interval [τ1, τ2]:

ı
∂

∂τ
U(τ, τ1) = (H ′0 − ξ cos(ω′lk(τ − τ1))µ′)U(τ, τ1) (5)

∂

∂µ′lk
U(τ2, τ1) = ıξU(τ2, τ1)

×
∫ τ2

τ1

cos(ω′lk(τ − τ1))U†(τ, τ1)σlkx U(τ, τ1)dτ . (6)

The goal is to show that ∂
∂µ′lk

U(τ2, τ1) can be
made arbitrarily ”large” while ∂

∂µ′mn
U(τ2, τ1) stays

bounded. Note that all the terms in the integrand
of (6) are bounded, and a rough estimate of the
norm of ∂

∂µ′lk
U(τ2, τ1) gives a quantity proportional

to (τ2−τ1)ξ. Hence, we take τ2−τ1 = 1
ξ2

, implying
the need to have expressions for U(τ, τ1) over a time
scale on the order of 1

ξ2
. To this end we state lemma

2 which gives such an approximation.

Lemma 2. Consider Eq. (5). There exists a Her-
mitian matrix K and ξ0 > 0 such that, for any
ξ ∈]0, ξ0[, we have:

sup
τ∈[τ1,τ1+

1
ξ2

]

‖U(τ, τ1)−e−ıH
′
0(τ−τ1)eı(ξ

µ′
lk
2 σlkx +ξ2K)(τ−τ1)‖

= O(ξ).

We continue with the proof of Lemma 1 and will
come back to Lemma 2 in Section III-D.

Using the expression of U(τ, τ1) given in lemma
2, the integrand in (6) is:

cos(ω′lk(τ − τ1))U†(τ, τ1)σlkx U(τ, τ1) =

e−ı(ξ
µ′
lk
2 σlkx +ξ2K)(τ−τ1)(cos(ω′lk(τ − τ1))eıH

′
0(τ−τ1)

σlkx e
−ıH′

0(τ−τ1))eı(ξ
µ′
lk
2 σlkx +ξ2K)(τ−τ1) +O(ξ) .

In order to compute (6), we need the following
result:

cos(ω′lk(τ − τ1))eıH
′
0(τ−τ1)σlkx e

−ıH′
0(τ−τ1) =

1
2σ

lk
x + 1

2 cos(2ω′lk(τ − τ1))σlkx
+ 1

2 sin(2ω′lk(τ − τ1))σlky , (7)

where we denote σlky = +ı |l〉 〈k| − ı |k〉 〈l|. In (7),
the terms oscillating at frequency 2ω′lk independent
of ξ will only contribute to O(ξ) in (6). We now
focus on the contribution of the term with σlkx in
(6) which calls for (see appendix): ∀τ

e−ı(ξ
µ′lk
2
σlkx +ξ2K)(τ−τ1)σlkx e

ı(ξ
µ′lk
2
σlkx +ξ2K)(τ−τ1) =

σlkx +O(ξ) . (8)

Introducing (8) into (6), we find:

∂

∂µ′lk
U(τ2, τ1) = ıξU(τ2, τ1)(

τ2 − τ1
2

σlkx +O(1) + (τ2 − τ1)O(ξ)
)
.

From now on, we take τ2 = τ1 + 1
ξ2

and obtain:

∂

∂µ′lk
U(τ2, τ1) = ıU(τ2, τ1)(

1
2ξ
σlkx +O(1)). (9)

We define |ψ1〉 , |l〉 and |ψ2〉 , 1√
2
U(τ2, τ1)(|l〉 +

ı |k〉). Since the system is controllable there exists a
time τ1 and a field ε1 ∈ Eτ1 such that U(τ1, 0) |i〉 =
|ψ1〉, and there exists a time > and a field ε2 defined
over [τ2,>] such that U †(>, τ2) |f〉 = |ψ2〉. Since
the state space is compact (here it is a sphere), we
know that if the system is controllable, it is control-
lable in bounded time, and with bounded controls
(see Theorem 6.5 in [13]). Hence, > − τ2 can be



5

chosen bounded for all ξ. Therefore ∂
∂µlk

U(0, τ1)

and ∂
∂µlk

U(τ2,>) are bounded. Thus, we have:

∂

∂µ′lk
Pif (ε) = 2<(〈f |U(>, τ2)

∂

∂µ′lk
U(τ2, τ1)U(τ1, 0) |i〉

〈i|U†(τ1, 0)U†(τ2, τ1)U†(>, τ2) |f〉) +O(1).

We now utilize U(τ1, 0) |i〉 = |ψ1〉 and
U †(>, τ2) |f〉 = |ψ2〉 where |ψ1〉 and |ψ2〉 are
defined above, and replace ∂

∂µ′lk
U(τ2, τ1) by its

expression in (9) to find: ∂
∂µ′lk

Pif (ε) = 1
2ξ

+ O(1).
This expression holds for the control defined as:

ε(τ) =


ε1(τ), if τ ∈ [0, τ1]
‖H0‖
‖µ‖ ξ cos(ω′lk(τ − τ1)), if τ ∈]τ1, τ2[

ε2(τ), if τ ∈ [τ2,>]
(10)

ii) Part II: We now need to prove that
∂

∂µ′mn
Pif (ε) = O(1) for {m,n} 6= {l, k}, where ε

is the control found above in (10). As in Eq. (6),
we have:

∂

∂µ′mn
U(τ2, τ1) = ıξU(τ2, τ1)×∫ τ2

τ1

cos(ω′lk(τ − τ1))U†(τ, τ1)σmnx U(τ, τ1)dτ , (11)

and again the result of lemma 2 is employed. Eq.
(11) calls for

2 cos(ω′lk(τ − τ1))eıH
′
0(τ−τ1)σmnx e−ıH

′
0(τ−τ1) =

cos((ω′lk−ω′mn)(τ−τ1))σmnx −sin((ω′lk−ω′mn)(τ−τ1))σmny +

cos((ω′lk+ω
′
mn)(τ−τ1))σmnx +sin((ω′lk+ω

′
mn)(τ−τ1))σmny .

(12)

Considering that H0 has non-degenerate transitions
(see definition in the appendix) implies that ω′lk −
ω′mn 6= 0 and ω′lk + ω′mn 6= 0. As the expression
in (12) oscillates at frequencies independent of ξ, it
therefore contributes to O(ξ) in (11). Hence, for τ2−
τ1 = 1

ξ2
we can directly conclude that ∂

∂µ′mn
Pif (ε) =

O(1). �

D. Proof of lemma 2

This proof relies on three consecutive changes of
frame that aim to cancel the oscillating terms of
order 0 and 1 with respect to ξ. We then derive
a specific form of the averaging Theorem (see
theorem 4.3.6 in [14] for a general form of the
averaging theorem). For the sake of clarity and with
no loss of generality, we take τ1 = 0 and note

U(τ) , U(τ, τ1). Eq. (5) may be written in the
interaction frame UI(τ) , eıH

′
0τU(τ),

∂

∂τ
UI(τ) = ıξ

(
µ′lk
2
σlkx +

∂

∂τ
HI(τ)

)
UI(τ)

where:

∂

∂τ
HI(τ) = 1

2

∑
(m,n)6=(k,l)

µ′mne
ı(−ω′

kl+ω
′
mn)τ |m〉 〈n|

+ 1
2

∑
(m,n)6=(l,k)

µ′mne
ı(−ω′

lk+ω
′
mn)τ |m〉 〈n| ,

and the average of HI is zero. The average of a time
dependent operator C(τ) is defined as follows (see
defintion 4.2.4 in [14]): C = limθ→+∞

1
θ

∫ θ
0
C(τ)dτ .

We now take U ′I(τ) = (I − ıξHI(τ))UI(τ). Since
∂
∂τ
HI is almost periodic2, then HI is also almost

periodic and hence bounded for all τ . Hence, there
exists ξ0 > 0, ∀ξ < ξ0, I − ıξHI(τ) has an inverse
and (I − ıξHI(τ))−1 = I + ıξHI(τ) + O(ξ2). We
find:

∂

∂τ
U ′I(τ) = ı

(
ξ
µ′
lk

2 σlkx −

ıξ2
(
µ′
lk

2 [HI(τ), σlkx ] +HI(τ)
∂

∂τ
HI(τ)

)
+O(ξ3)

)
U ′I(τ).

Notice that, with K = −ıHI
∂
∂τ
HI independent of

ξ and K̃(τ) almost periodic with zero average, we
also have: µ′lk

2
[HI(τ), σlkx ]+HI(τ) ∂

∂τ
HI(τ) = ı(K+

∂
∂τ
K̃(τ)). It is important to note that 1

2
∂
∂τ
H2
I = 0 =

HI
∂
∂τ
HI +( ∂

∂τ
HI)HI = ı(K−K†). Hence K = K†

is Hermitian.
We now take U ′′I (τ) = (I − ıξ2K̃(τ))U ′I(τ).

Since K̃(τ) is bounded for all τ , then for a suf-
ficiently small ξ, I − ıξ2K̃(τ) has an inverse and
(I−ıξ2K̃(τ))−1 = I+ıξ2K̃(τ)+O(ξ4). U ′′I satisfies
the following equation:

∂

∂τ
U ′′I (τ) = ı

(
ξ
µ′
lk

2 σlkx + ξ2K +O(ξ3)
)
U ′′I (τ) , (13)

and we define Uav to be the solution to the
averaged dynamics (Uav(0) = I):

∂

∂τ
Uav(τ) = ı

(
ξ
µ′lk
2
σlkx + ξ2K

)
Uav(τ) . (14)

We can directly solve (14): Uav(τ) =

e
ı

(
ξ
µ′lk
2
σlkx +ξ2K

)
τ
. Subtracting (13) from (14),

we find, using Gronwall’s lemma, that for all
τ < 1

ξ2
one has U ′′I (τ) = Uav(τ) + O(ξ). Also

note that to go from UI to U ′′I we have used two

2Can be written as
∑M
k=1 e

iωkτAk
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consecutive changes of variables which are close
to the identity, hence: ∀τ U ′′I (τ) = UI(τ) + O(ξ).
Finally, since e−ıH′

0τ is an isometry, we have:

U(τ) = e−ıH
′
0τeı(ξ

µ′
lk
2 σlkx +ξ2K)τ +O(ξ) for all τ ≤ 1

ξ2 .�

IV. CONCLUSION

Identification of the real dipole moment matrix
is shown to be well posed for a controllable finite
dimensional quantum system with non-degenerate
transitions and using as measurements only one
population at a final time T . The results also provide
a theoretical foundation to optimal discrimination
experiments.
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APPENDIX

Definition 1. We say that system (1) is controllable
[15] if for all |ψ1〉 , |ψ2〉 ∈ S there exists a time t
and a control ε ∈ Et such that for |ψ(0)〉 = |ψ1〉,
(1) leads to |ψ(t)〉 = |ψ2〉.

Definition 2. Let H0 and µ be N × N Hermitian
matrices. We denote E1, .., EN the eigenvalues of
H0 and |1〉 , .., |N〉 its corresponding eigenvectors.
We say that H0 has non-degenerate transitions [16]
if ∀(l, k) 6= (m,n), l 6= k and m 6= n, such that
〈l|µ |k〉 6= 0 and 〈m|µ |n〉 6= 0, we have El−Ek 6=
Em − En.

Definition 3. Take system (1). Let us denote M
as the space to which µ belongs. We say that µ is
locally observable in M if there exists r > 0 such
that for all µ̂ ∈M with 0 < ‖µ̂−µ‖ ≤ r there exists
T > 0 and ε ∈ ET such that Pif (ε, µ̂) 6= Pif (ε, µ).

Computation: Here, we compute Σlk
x (τ) =

e−i(ξ
µ′lk
2
σlkx +ξ2K)(τ−τ1)σlkx e

i(ξ
µ′lk
2
σlkx +ξ2K)(τ−τ1). We

have µ′lk 6= 0 and σlkx + ξ 2K
µ′lk

is Hermitian. Hence,
there exists a unitary matrix Pξ and a real diagonal
matrix ∆ξ such that σlkx + ξ 2K

µ′lk
= Pξ∆ξP

†
ξ . The

function ξ ∈ [0, ξ0] → σlkx + ξ 2K
µ′lk

is analytic,
therefore the eigenvectors of σlkx + ξ 2K

µ′lk
can

be continued analytically as a function of ξ
(see Theorem 6.1 in chapter II, §6 section 1
and 2 in [17]). Hence, Pξ = P0 + O(ξ) where
P0 is such that P †0σ

lk
x P0 = σlkz is real and

diagonal. σlkz = |l〉 〈l| − |k〉 〈k|. We find, ∀τ :
Σlk
x (τ) = σlkx + O(ξ), where O(ξ) is a first order

term in ξ and a bounded function of τ .


