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The first and preliminary results of the photometry of Large Yield Radiometer (LYRA) and Sun Watcher using Active Pixel system
detector and Image Processing (SWAP) onboard PROBA?2 are presented in this paper. To study the day-to-day variations of LYRA
irradiance, we have compared the LYRA irradiance values (observed Sun as a star) measured in Aluminum filter channel (171 A-
500 A) with spatially resolved full-disk integrated intensity values measured with SWAP (174 A) and Ca I1 K 1 A index values
(ground-based observations from NSO/Sac Peak) for the period from 01 April 2010 to 15 Mar 2011. We found that there is a good
correlation between these parameters. This indicates that the spatial resolution of SWAP complements the high temporal resolution
of LYRA. Hence SWAP can be considered as an additional radiometric channel. Also the K emission index is the integrated intensity
(or flux) over a 1 A band centered on the K line and is proportional to the total emission from the chromosphere; this comparison
clearly explains that the LYRA irradiance variations are due to the various magnetic features, which are contributing significantly.
In addition to this we have made an attempt to segregate coronal features from full-disk SWAP images. This will help to understand

and determine the actual contribution of the individual coronal feature to LYRA irradiance variations.

1. Introduction

The Sun is the primary source of energy responsible for gov-
erning both the weather and climate of Earth. For that reason
alone one would expect that changes in the amount and type
of energy Earth received from the Sun could alter weather
and climate on the Earth. Hence the knowledge of the
solar spectral irradiance is of large interest to solar physics,
aeronomy, and to other fields of heliospheric or planetary
research. The solar ultraviolet (UV) irradiance below 3000 A
is the main source of the energy converted in the Earth’s
atmosphere, controlling its thermal structure, dynamics,
and chemistry through photodissociation and photoioniza-
tion [1]. Because of these, changes in UV irradiance influence
the concentration of the ozone in the Earth’s atmosphere [2,
3] and may play a significant role in the process of the global
warming. The balance of the ozone formed by radiation

below 2400 A in the stratosphere and mesosphere is of special
interest for life and mankind. However, the photons above
2000 A get dissociated in the stratosphere and disturb the
balance of the ozone (e.g., [4, 5]). This is because the ozone
gas is produced naturally in the stratosphere where it strongly
absorbs incoming UV radiation. But as stratospheric ozone
decreases, UV radiation is allowed to pass through, and
exposure at the Earths surface increases. Exposure to shorter
wavelengths increases by a larger percentage than exposure
to longer wavelengths. The UV irradiance variability has sig-
nificant effects on human technologies too, currently ad-
dressed in the frame of Space Weather studies.

For more than two decades, solar UV irradiance obser-
vations have been monitored from several satellites. These
space UV irradiance observations have shown that the
UV flux changes over the solar cycle, being higher during



maximum activity conditions, and short-term changes (from
days to months) are superposed on the long-term variation
(6, 7]. The long-term UV irradiance variations are attributed
to the changing emission of bright magnetic elements [8—
10], and the short-term variations are directly associated
with the growth and decay of active regions [11]. The cur-
rent UV irradiance models are based on integrated full-disk
surrogates; therefore they cannot provide adequate infor-
mation on the physical causes of the observed UV irradi-
ance changes. In the last decade, there are good time se-
quence observations available from several space experi-
ments, Solar Heliospheric Observatory/Extreme Ultraviolet
Imaging Telescope/Michelson Doppler Imager (SOHO/EIT/
MDI), to measure the various parameters from spatially
resolved images of the Sun. And recently we have high-
resolution observations from Solar Dynamic Observatory/
Atmospheric Imaging Array/Helioseismic-Magnetic Imager
(SDO/AIA/HMI), Project for Onboard Autonomy 2/Large
Yield Radiometer/Sun Watcher using Active Pixel system
detector and Image Processing (PROBA2/LYRA/SWAP). All
of them differ in spectral coverage, time coverage, time
cadence, and nature of the instrument (spectrograph, pho-
tometer, or imager). In addition, we have ground-based ob-
servations of Ca II K spectroheliograms from NSO/Sac Peak
and also from many other observatories in the world. All
these observations will provide the best data set so far. The
strategy is thus to bridge the most reliable observations,
with the best possible models (e.g., [12-14]). The spatially
resolved full-disk images obtained from space have to be
compared with solar images from ground-based observa-
tions. The full-disk precise photometric images and full-disk
magnetograms will help to explore the temporal and spatial
variability of the solar UV irradiance and to determine the
couplings with the magnetic structures.

PROBA? is the second satellite in the European Space
Agency’s series of PROBA low-cost satellites that are being
used to validate new spacecraft technologies while also car-
rying scientific instruments. It was launched on November
2, 2009, with a Rockot launcher in a sun-synchronous low
Earth orbit at an altitude of 725 km. It provides a technology
demonstration platform for testing a number of instruments
and techniques relevant to solar physics, space weather, aer-
onomy, avionics, spacecraft attitude control, power system,
and propulsion. The orbit of PROBA2 is eclipse-free for nine
months per year, thus the orbit is well suited for the solar
observing instruments onboard, namely, LYRA and SWAP.

LYRA is the solar UV radiometer that will embark in 2006
onboard PROBA2, a technologically oriented ESA micromis-
sion [15, 16]. It will be monitoring the solar irradiance in
four carefully selected UV passbands. The channels have
been chosen for their relevance to solar physics, aeronomy,
and space weather Figure 1: (1) the 1150-1250 A Lyman-a,
(2) the 2000-2200 A Herzberg continuum range, (3) the Alu-
minium filter channel (171-500 A) including He II at 304 A,
and (4) the Zirconium filter channel (10-200A). LYRA
benefited from wide bandgap detectors based on diamond.
It was the first space assessment of a pioneering UV de-
tectors program. It makes the sensors radiation hard and
“solar-blind”, which makes dispensable filters that block the

Advances in Astronomy

I {ILYRA3SXR HLYRA 1 7
| LYRA 4 SXR HLYRAZ|
F———— LYRA 3 !
e
F——LYRA 4
HSWAP \
li | ‘\’ J
X-ray U Oltraviolet | vigte | infrared
1 10 100 1000

Wavelength (nm)

Figure 1: The bandpasses of SWAP and four LYRA channels
over two solar spectra, one from solar maximum and one
from solar minimum, observed by Thermosphere Ionosphere
Mesosphere Energetics and Dynamics Mission/Solar EUV Experi-
ment (TIMED/SEE) and Solar Radiation and Climate Experiment
(SORCE) (Courtesy: Dr. Sarp Yalim).
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F1GURE 2: The bandpass of SWAP with its nominal spectral interval
with peak at 17.4 nm (Courtesy: Dr. Sarp Yalim).

unwanted visible, but attenuate seriously the desired UV
radiation. LYRA has a very high cadence up to 100 Hz.
SWAP [17, 18] telescope is a compact EUV imager on
board the PROBA2 mission that will observe the Sun in
extreme ultraviolet (EUV) and provides continuous images
of the Sun (solar corona) in a narrow bandpass with peak at
174 A (Figure 2), corresponding to a formation temperature
of 1 million degree Kelvin. The SWAP instrument was built
upon the heritage of the Extreme ultraviolet Imaging Tele-
scope (EIT) which monitors the solar corona since 1996 on
board the SOHO mission. SWAP has a field of view of 54
arcmin. This field of view can easily be extended though
spacecraft offpointings that can be commanded from the
PROBA2 Science Center in a matter of hours. The effective
field of view for static coronal structures is therefore 65
arcmin and probably even larger for eruptions. This is
much larger than the FOV of SOHO/EIT (45 arcmin) or
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SDO/AIA (41 arcmin). Whereas the ATA imager on SDO
will provide unprecedented images in spatial and temporal
resolution of the solar disk, SWAP is the only EUV imager
in space to fill the gap between the solar limb and the far-
out corona as imaged by the SOHO/LASCO (Large Angle
and Spectrometric Coronagraph) coronagraphs. SWAP also
offers the advantage of high image cadence (maximal 3 per
minute, 1 per minute in nominal operations) to monitor
transitory phenomena. With this higher cadence, SWAP will
monitor events in the low solar corona that might be relevant
for space weather. These events include EIT waves (global
waves propagating across the solar disc from the CME erup-
tion site), EUV dimming regions (transient coronal holes
from where the CME has lifted off), and filament instabilities
(a specific type of flickering during the rise of a filament).

The H and K lines of ionized calcium have been recog-
nized as useful indicators for identifying regions of chro-
mospheric activity on the solar surface. These lines are very
sensitive to the variations in temperature and the magnetic
field strength. Therefore they are excellent indicators of the
chromospheric structural changes related to solar magnetic
activity. The images observed in Ca II H or K line and in
He 1II line are identical to each other. The parameter that
best quantifies the chromospheric emission in the K line is
the so-called K emission index introduced by [19]. The K
emission index is the integrated intensity (or flux) over a 1 A
band centered on the K line and is proportional to the total
emission from the chromosphere [9, 20-25]. The Sun viewed
as a star through a 1A passband filter centered on the K
line would appear as a variable, showing both the rotational
modulation and the 11-year cycle [26].

2. Observations and Data Analysis

In this paper, LYRA irradiance observations measured in
channel 3 (Aluminium filter channel: 171 A-500 A, including
He 1T at 304 A), SWAP (174 A) full-disk integrated intensity
(SWAVINT, level-3) values, and Ca II K (393.4nm) time
series values (corresponding to 1A emission index) for the
period of observations from April 1, 2010 to March 15, 2011
are used. To determine the day-to-day variations of LYRA
channel-3 (cadence averaged to 1 minute), SWAP (cadence
averaged to 2 minute) time series, and Ca II K 1 A emission
index, we have read the fits files of LYRA and SWAP data and
carried out the analysis using Solar Software (SSW) library
in IDL. SWAVINT is a keyword in the calibrated SWAP fits
files and corresponds to the average intensity of a whole
SWAP image (i.e., a fully calibrated image except applying
transformation, which is placing the Sun in the center of the
image and aligning the solar north to the top of the image)
normalized with its exposure time

P
SWAVINT = %%ZDN,, (1)
i=1

where t is the exposure time of the image, P is the number of
pixels which is 1024 x 1024 for the whole image, and DN is
the digital number in pixel i. The unit of SWAVINT is DN/s.
The dynamic range of SWAP is much smaller than the one
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FiGURE 3: Time series (day-to-day variations) of LYRA irradiance
values of channel 3 (171 A-500A), full-disk integrated intensity
values of SWAP (174 A), and 1 A emission index values of Ca II K
(393.4 nm) for the period from 01 April 2010 to 15 Mar 2011. Note
that there is a good correlation in all the three time series.

of LYRA. SWAP is not designed to see flares at full extent.
As a consequence of the limited range, flare pixels are soon
saturated and so the flares can hardly be seen in SWAVINT
since only a few pixels are affected and saturated immediately.

3. Results and Discussion

We have compared the LYRA irradiance values (observed
Sun as a star) measured in channel 3 (Aluminium filter
channel: 171 A-500 A, which includes He II at 304 A also)
with spatially resolved full-disk integrated intensity values
measured in SWAP (174 A) for the period from 01 April 2010
to 15 Mar 2011. Also we have compared LYRA irradiance
values and SWAP full-disk integrated intensity values with
1 A emission index values of Ca II K (ground based obser-
vations from NSO/Sac Peak) for the same period. We have
observed from the time series plot (Figure 3) and scatter plot
(Figure 4) that the long-term variability of the LYRA channel
3, the Aluminum filter channel has shown a good correlation
with spatially resolved full-disk integrated intensity values of
SWAP and the correlation is found to be 60 percent (r =
0.6). However the correlation between LYRA and Ca II K
(r = 0.47), as well as between SWAP and Ca Il K (r =
0.5), is comparatively lesser than the correlation between
LYRA and SWAP. This is because there is a data gap in Ca
II K 1A emission index values. These results suggest that
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FIGURE 4: (a) Scatter plot between LYRA irradiance values of
channel 3 and full-disk integrated intensity values of SWAP (r =
0.6). (b) Scatter plot between LYRA irradiance values of channel 3
and 1A emission Index values of Ca II K (r = 0.47). (c) Scatter
plot between full-disk integrated intensity values of SWAP and 1 A
emission Index values of Ca Il K (r = 0.5).

the LYRA irradiance variations are due to the variations of
solar magnetic features observed in SWAP and Ca II K. The
spatial resolution of SWAP complements the high temporal
resolution of LYRA. Hence SWAP can be considered as an
additional radiometric channel. Further these comparisons
clearly explain the irradiance variations are due to the various
magnetic features, which are contributing significantly.

In order to understand the actual contribution of the
individual coronal features to LYRA irradiance variations, we
are segregating the coronal features from full-disk spatially
resolved images obtained from PROBA2/SWAP (174 A). The
morphological structures (pattern recognition), geometrical
location, intensity levels and gradients, contrasts, and the
sizes will be used as main criteria to recognize and segregate
the various coronal features. We have done a very prelimi-
nary analysis on the SWAP images to segregate different cor-
onal features. A sample of segregated image containing active
regions is shown in Figure 5 in comparison with original
image. Further detailed image analysis on large number of
full-disk images is in progress. These results are helpful to
make feature-to-feature correlations and to understand and
establish their role and contribution to UV irradiance varia-
bility. Also these investigations will help better to understand
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FIGURE 5: (a) Represents original SWAP image and (b) segregated
(only active regions) SWAP image.

the nature and sources of variations in UV irradiance related
to various bright magnetic features as a function of solar
cycle. The outcome of this research effort will also be a
significant improvement of the current UV irradiance mod-
els and will have a great importance in both atmospheric and
space physics. This model will be an ideal platform to present
and incorporate the spatially resolved research results into
it. The results of the segmentation of the coronal features in
relation to UV irradiance will be published elsewhere.
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