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Abstract

The performance evaluation of biometric systems is a crucial step when design-

ing and evaluating such systems. The evaluation process uses the Equal Error
Rate (EER) metric proposed by the International Organization for Standard-
ization (ISO/IEC). The EER metric is a powerful metric which allows easily
comparing and evaluating biometric systems. However, the computation time
of the EER is, most of the time, very intensive. In this paper, we propose a
fast method which computes an approximated value of the EER. We illustrate
the benefit of the proposed method on two applications: the computing of non
parametric confidence intervals and the use of genetic algorithms to compute
the parameters of fusion functions. Experimental results show the superiority of
the proposed EER approximation method in term of computing time, and the
interest of its use to reduce the learning of parameters with genetic algorithms.
The proposed method opens new perspectives for the development of secure
multibiometrics systems with speeding up their computation time.

Keywords:
Biometrics, Authentication, Error Estimation, Access Control

1. Introduction

Biometrics [1] is a technology allowing to recognize people through various
personal factors. It is an active research field which design new biometric traits
from time to time (like finger knuckle recognition [2]). We can classify the
various biometric modalities among three main families:
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e DBiological: the recognition is based on the analysis of biological data linked
to an individual (e.g, DNA, EEG analysis, ...).

e Behavioural: the recognition is based on the analysis of the behaviour of an
individual while he is performing a specific task (e.g, signature dynamics,
gait, ...).

e Morphological: the recognition is based on the recognition of different
physical patterns, which are, in general, permanent and unique (e.g, fin-
gerprint, face recognition, ...).

It is mandatory to evaluate these biometric systems in order to quantify
their performance and compare them.

These biometric systems must be evaluated in order to compare them, or to
quantify their performance. To evaluate a biometric system, a database must
be acquired (or a common public dataset must be used). This database must
contain as many users as possible to provide a large number of captures of their
biometric data. These data are separated into two different sets:

e the learning set which serves to compute the biometric reference of each
user

e the validating set which serves to compute their performance.

When comparing test samples to biometric references, we obtain two different
kinds of scores:

e the intrascores represent comparison scores between the biometric refer-
ence (computed thanks to the learning set) of an individual and biometric
query samples (contained in the validating set)

e the interscores represent comparison scores between the biometric refer-
ence of an individual and the biometric query samples of the other indi-
viduals.

From these two sets of scores, we can compute various error rates, from which
the EER is one functioning point which represents a very interesting error rate
often used to compare biometric systems. In order to have reliable results, it is
necessary to evaluate the performance of biometric system with huge datasets.
These huge datasets produce numbers of scores. As the time to evaluate the
performance of a biometric system depends on the quantity of available scores,
we can see that evaluation may become very long on these large datasets. In
this paper, we present a very fast way to compute this error rate, as well as
its confidence interval in a non parametric way, on different datasets of the
literature.

Nevertheless, there will always be users for which one modality (or method
applied to this modality) will give bad results. These low performances can be
implied by different facts: the quality of the capture, the acquisition conditions,
or the individual itself. Biometric multi-modality (or multibiometrics) allows to



compensate this problem while obtaining better biometric performances (i.e.,
better security by accepting less impostors, and better usability by rejecting less
genuine users) by expecting that the errors of the different modalities are not
correlated. So, the aim of multibiometrics is to protect logical or physical access
to a resource by using different biometric captures. We can find different types
of multibiometrics systems. Most of them are listed in [3], they use:

1. Different sensors of the same modality (i.e., capacitive or resistive sensors
for fingerprint acquisition);

2. Different representations of the same capture (i.e., use of points of interest

or texture);

Different biometric modalities (i.e., face and fingerprint);

4. Several instances of the same modality (i.e., left and right eye for iris
recognition);

5. Multiple captures (i.e., 25 images per second in a video used for face
recognition);

6. An hybrid system composed of the association of the previous ones.

©w

In the proposed study, we are interested in the first four kinds of multi-
modality. We also present in this paper, a new multibiometrics approach using
various fusion functions parametrized by genetic algorithms using a fast EER
(Equal Error Rate) computing method to speed up the fitness evaluation.

This paper is related to high performance computing, because algorithms
are designed to work in an infrastructure managing the biometric authentica-
tion of millions of individuals (i.e., border access control, logical acces control
to webservices). To improve the recognition rate of biometric systems, it is
necessary to regularly update the biometric reference to take into account intra
class variability. With the proposed approach, the time taken to update the
biometric reference would be lowered. The faster is the proposed method, the
more we can launch the updating process (or the more users we can add to
the process). We also propose an adaptation of the proposed EER computing
method which gives confidence intervals in a non parametric way (i.e., by com-
puting the EER several times through a bootstraping method). The confidence
intervals are computed on a single CPU, on several CPUs on the same machine
and on several machines.

The main hints of the papers are:

e the proposition of a new method to approximate the EER and its confi-
dence interval in a fast way

e the proposition of two original functions for multibiometrics fusion.

The plan is organized as following. Section 2 presents the background of
the proposed work. Section 3 presents the proposed method for computing the
approximated value of the EER and its confidence interval. Section 4 validates
them. Section 5 presents the proposed multibiometrics fusion functions and their
performance in term of biometric recognition and computation time against the
baseline. Section 6 gives perspectives and conclusions of this paper.



2. Background

2.1. Fwvaluation of Biometric Systems

Despite the obvious advantages of this technology in enhancing and facilitat-
ing the authentication process, its proliferation is still not as much as attended
[4]. As argued in the previous section, biometric systems present several draw-
backs in terms of precision, acceptability, quality and security. Hence, evaluating
biometric systems is considered as a challenge in this research field. Nowadays,
several works have been done in the literature to evaluate such systems. Evalu-
ating biometric systems is generally realized within three aspects as illustrated
in figure 1: usability, data quality and security.

Evaluation
of Biometric
systems

I
Data quality Usability
Quantitative Qualitative
1
Efficiency Effectiveness Acceptance

and User
Satisfaction

Figure 1: Evaluation aspects of Biometric Systems.

2.1.1. Usability

According to the International Organization for Standardization ISO 13407:1999
[5], usability is defined as “The extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency, and satisfaction in
a specified context of use”.

e Ffficiency which means that users must be able to accomplish the tasks
easily and in a timely manner. It is generally measured as task time;

e Fffectiveness which means that users are able to complete the desired tasks
without too much effort. It is generally measured by common metrics
include completion rate and number of errors such failure-to-enroll rate

(FTE) [6];

e User satisfaction which measures users’ acceptance and satisfaction re-
garding the system. It is generally measured by studying several proper-
ties such as easiness to use, trust in the system, etc. The acceptability



of biometric systems is affected by several factors. According to [7], some
members of the human-computer interaction (HCI) community believe
that interfaces of security systems do not reflect good thinking in terms
of creating a system that is easy to use, while maintaining an acceptable
level of security. Existing works [8, 9] show also that there is a potential
concern about the misuse of personal data (i.e., templates) which is seen
as violating users’ privacy and civil liberties. Moreover, one of our previ-
ous work [10] shows the necessity of taking into account users’ acceptance
and satisfaction when designing and evaluating biometric systems. More
generally speaking, even if the performance of a biometric system outper-
formed another one, this will not necessarily mean that it will be more
operational or acceptable;

2.1.2. Data quality

It measures the quality of the biometric raw data [11, 12]. Low quality
samples increase the enrollment failure rate, and decrease system performance.
Therefore, quality assessment is considered as a crucial factor required in both
the enrollment and verification phases. Using quality information, the bad qual-
ity samples can be removed during enrollment or rejected during verification.
Such information could also be used in soft biometrics or multimodal approaches
[13]. Such type of assessment is generally used to quantify biometric sensors,
and could be also used to enhance system performance;

2.1.83. Security

It measures the robustness of a biometric system (algorithms, architectures
and devices) against attacks. Many works in the literature [14, 15, 16] show
the vulnerabilities of biometric systems which can considerably decrease their
security. Hence, the evaluation of biometric systems in terms of security is con-
sidered as an important factor to ensure its functionality. The International
Organization for Standardization ISO/TEC FCD 19792 [17] addresses the as-
pects of security evaluation of such systems. The report presents an overview
of biometric systems vulnerabilities and provide some recommendations to be
taking into account during the evaluation process. Nowadays, only few partial
security analysis studies with relation to biometric authentication systems exist.
According to ISO/IEC FCD 19792 [17], the security evaluation of biometric sys-
tems is generally divided into two complementary assessments: 1) assessment of
the biometric system (devices and algorithms) and 2) assessment of the environ-
mental (for example, is the system is used indoor or outdoor?) and operational
conditions (for example, tasks done by system administrators to ensure that the
claimed identities during enrolment of the users are valid). A type-1 security
assessment method is presented in a personal previous work [18]. The proposed
method has shown its efficiency in evaluating and comparing biometric systems.



2.2. Performance Evaluation of Biometric Systems

The performance evaluation of biometric systems is now carefully considered
in biometric research area. We need a reliable evaluation methodology in order
to put into obviousness the benefit of a new biometric system. Nowadays, many
efforts have been done to achieve this objective. We present in section 2.2.1
an overview of the performance metrics, followed by the research benchmarks
in biometrics as an illustration of the evaluation methodologies used in the
literature for the comparison of biometric systems.

2.2.1. Performance metrics

By contrast to traditional methods, biometric systems do not provide a cent
per cent reliable answer, and it is quite impossible to obtain such a response.
The comparison result between the acquired biometric sample and its corre-
sponding stored template is illustrated by a distance score. If the score is lower
than the predefined decision threshold, then the system accepts the claimant,
otherwise he is rejected. This threshold is defined according to the security level
required by the application. Figure 3 illustrates the theoretical distribution of
the genuine and impostor scores. This figure shows that errors depend from
the used threshold. Hence, it is important to quantify the performance of bio-
metric systems. The International Organization for Standardization ISO/IEC
19795-1 [6] proposes several statistical metrics to characterize the performance
of a biometric system such as:

e Fuailure-to-enroll rate (FTE): proportion of the user population for whom
the biometric system fails to capture or extract usable information from
biometric sample;

e Failure-to-acquire rate (FTA): proportion of verification or identification
attempts for which a biometric system is unable to capture a sample or
locate an image or signal of sufficient quality;

o Fualse Acceptation Rate (FAR) and False Rejection Rate (FRR): FAR is the
proportion of impostors that are accepted by the biometric system, while
the FRR is the proportion of authentic users that are incorrectly denied.
The computation of these error rates is based on the comparison of the
scores against a threshold (the direction of the comparison is reversed if
the scores represent similarities instead of distances). FRR and FAR are
respectively computed (in the case of a distance score) as in (1) and (2),
where intra; (respectively inter;) means the intra score at position 7 in
the set of intra score (respectively inter score at position i) and Card(set)
is the cardinal of the set in argument, thr is the decision threshold, and
1 is the indicator function.

Zscoreeintra ]]'{SCOTG > thT‘}
Card(intra)

FRR = (1)



FAR = Zscoreeinter ]1{5007"6 S thT‘}

Card(intra) 2)

e Receiver operating characteristic (ROC) curve: the ROC curve is obtained
by computing the couple of (FAR, FRR) for each tested threshold. Tt
plots the FRR versus the FAR. The aim of this curve is to present the
tradeoff between FAR and FRR and to have a quick overview of the system
performance and security for all the parameters configurations.

o FEqual error rate (EER): it is the value where both errors rates, FAR
and FRR, are equals (i.e., FAR = FRR). It constitutes a good indicator,
and the most used, to evaluate and compare biometric systems. In other
words, lower the EER value is, higher the accuracy of the system. Using
the ROC curve, the EER is computed by selecting the couple of (FAR,
FRR) having the smallest absolute difference (3) at the given threshold 7:

7 = argmin(abs(FAR; — FRR.)),V:ccard{ROC}

and returning their average (3):

EER:FART;—FRRT (3)
By this way, we have obtained the best approaching EER value with the
smallest precision error. The classical EER computing algorithm is pre-
sented in the Figure 2 '. From Figure 2, we can see that the complexity
is in O(n % m) with n the number of thresholds held in the computation,
and, m the number of scores in the dataset. As it is impossible to reduce
m, we have to find a better method which reduces n. We did not find, in
the literature, methods allowing to reduce computation time in order to
obtain this EER.

2.2.2. Biometrics Datasets

A public dataset allows researchers to test their algorithm and compare them
with those from the state of the art. It takes a lot of time and energy to build a
large and significant dataset. It is very convenient to download one for research
purposes. We present in this section an overview of the used datasets in this
paper. Table 1 presents a summary of these datasets.

Lanother, slower, way of computing would be to test each unique score of the intrascores
and interscores sets, but this would held a too important number of iterations. We named it
“whole” later in the paper.



ROC «+ ||
EER <+ 1.0
DIFF + 1.0
START < min(scores)
END < max(scores)
for 7 START to END in N steps do
FAR + compute FAR for T
FRR < compute FFRR for 7
append (FAR, FRR) to ROC
if abs(FAR — FRR) < DIFF then
DIFF <+ abs(FAR — FRR)
EER + (FAR+ FRR)/2
end if
end for
return EER, ROC

Figure 2: Classical EER computing algorithm.

Low threshold High threshold
not embarrassed for genuine users, embarrassed for genuine users,
but possibility of impostors but resists impostors

Repartition

......................

--------------------------------

FRR FAR
Rejected Accepted

Figure 3: Distribution of genuine users and impostor scores.

e Biometric Scores Set - Release 1 (BSSR1)
The BSSR1 [19] database is an ensemble of scores sets from different bio-
metric systems. In this study, we are interested in the subset containing
the scores of two facial recognition systems and the two scores of a fin-
gerprint recognition system applied to two different fingers for 512 users.
This database has been used many times in the literature [20, 21].

e BANCA
The second database is a subset of scores produced from the BANCA
database [22]. The selected scores correspond to the following one labelled:

1. IDIAP _voice_gmm_auto_scale_25_100_pca.scores



2. SURREY _face_nc_man_scale_100.scores
3. SURREY _face_svm_man_scale_0.13.scores
4. UC3M_voice_gmm_auto_scale_10_100.scores

The database as two subsets G1 and G2. G1 set is used as the learning
set, while G2 set is used as the validation set.

e PRIVATE

The last database is a chimeric one we have created for this purpose by
combining two public biometric template databases: the AR [23] for the
facial recognition and the GREYC keystroke [24] for keystroke dynam-
ics [25, 26]. The AR database is composed of frontal facial images of 126
individuals under different facial expressions, illumination conditions or
occlusions. These images have been taken during two different sessions
with 13 captures per session. The GREYC keystroke contains the cap-
tures on several sessions on two months of 133 individuals. Users were
asked to type the password ”greyc laboratory” 6 times on a laptop and
6 times on an USB keyboard by interlacing the typings (one time on a
keyboard, one time on another). We have selected the first 100 individual
of the AR database and we have associated each of these individuals to an-
other one in a subset of the GREYC keystroke database having 5 sessions
of captures. We then used the 10 first captures to create the biometric
reference of each user and the 16 others to compute the intra and inter
scores. These scores have been computed by using two different methods
for the face recognition and two other ones for the keystroke dynamics.

Table 1: Summary of the different databases used to validate the proposed
method

| Nb of | BSSR1 | PRIVATE | BANCA |
users 512 100 208
intra tuples 512 1600 467
inter tuples 261632 158400 624
items/tuples 4 5 4

2.8. Multibiometrics

We focus in this part on the state of the art on multimodal systems involving
biometric modalities usable for all computers (keystroke, face, voice...). The
scores fusion is the main process in multimodal systems. It can be operated
on the scores provided by algorithms or in the templates themselves [27]. In
the first case, it is necessary to normalize the different scores as they may not
evolve in the same range. Different methods can be used for doing this, and
the most efficient methods are zscore, tanh and minmaz [28]. Different kinds
of fusion methods have been applied on biometric systems. The fusion can be



done with multiple algorithms of the same modality. For example, in [29], three
different keystroke dynamics implementations are fused with an improvement
of the EER, but less than 40 users are involved in the database. In [30], two
keystroke dynamics systems are fused together by using weighted sums for 50
users, but no information on the weight computing is provided. The fusion can
also be done within different modalities in order to improve the authentication
process. In [31], authors use both face and fingerprint recognition, the impact
of error rate reduction is used to reduce the error when adapting the user’s
biometric reference. There is only one paper (to our knowledge) on keystroke
dynamics fusion with another kind of biometric modality (voice recognition): it
is presented in [32], but only 10 users are involved in the experiment. In [33],
multi-modality is done on fingerprints, speech, and face images on 50 individuals.
Fusion has been done with SVM [34] with good improvements, especially, when
using user specific classifiers.

Very few multimodal systems have been proposed for being used in classical
computers and the published ones have been validated on small databases. In
order to contribute to solve this problem, we propose a new approach in the
following section.

3. Fast EER and Confidence Intervals Estimation

We propose a kind of dichotomic EER computing function, in order to
quickly approximate its value. Thanks to this computing speed up, we can
use it in time consuming applications. Finally, we present a confidence interval
computing method based on our approximated EER calculation associated to
parallel and distributed computing.

3.1. FER Estimation

Computation time to get the EER can be quite important. When the EER
value needs to be computed a lot of time, it is necessary to use a faster way
than the standard one. In the biometric community, the shape of the ROC
curve always follows the same pattern: it is a monotonically decreasing function
(when we present FRR against FAR, or increasing when we present 1-FRR
against FAR) and the EER value is the curve’s point having xroc = yroc
(or FAR = FRR). Thanks to this fact, the curve symbolising the difference
of yroc against xroc is also a monotonically decreasing function from 1 to
—1, where the point at yprrr = 0 represents the EER (and its value is zprpp
because roc = yroc or FAR = FRR). With these information, we know
that to get the EERs, we need to find the zpypp for which yprrp is the closest
as possible to zero. An analogy with the classical EER computing, would be to
incrementally compute yprrpr for each threshold by increasing order and stop
when yprrpr changes of sign. By this way, we can expect to do half thresholds
comparisons than with the classical way if scores are correctly distributed. A
clever way is to use something equivalent to a divide and conquer algorithm like
the binary search and obtain a mean complexity closer to O(log(n)). That is
why we have implemented a polytomous version of EER computing:

10



1. We chose ¢ thresholds linearly distributed on the scores sets

2. For each threshold ¢ among the i thresholds, we compute the FAR and
FRR values (FAR;, FRR;)

3. We take the two following thresholds ¢1 and ¢2 having sign(FRR;; —
FARy) different of sign(FRRis — FAR;)

4. We repeat step 2 with selecting ¢ thresholds between t1 and 2 included
while FRR;; — FARy;) does not reach the attended precision.

By this way, the number of threshold comparisons is far smaller than in the
classical way. Its complexity analysis is not an easy task because it depends
both on the attended precision and the choice of i. It can be estimated as
O(log(N)).

Figure 4 presents the algorithm while Figure 5 illustrates it by showing
the different iterations until getting the EER value with a real world dataset.
We have chosen ¢ = 5 points to compute during each iteration. The EER is
obtained in five iterations. Circle symbols present the points computed at the
actual iteration, triangle symbols present the points computed at the previous
iterations, and the dotted curve presents the ROC curve if all the points are
computed. Very few points are computed to obtained the EER value. Figure 5f
presents the real ROC curve and the ROC curve obtained with the proposed
method. We can see that even if we obtain an approximated version of the real
ROC curve, it is really similar around the EER value (cross with the dotted
lined).

11



ROC «+ ]
CACHE «+ {}
START <+ min(scores)
END «+ maxz(scores)
while True do
for THRESHOLD from START to END in N steps do
SDIFF + |]
THRESHOLDS « |]
if not empty CACHE[THRESHOLD] then
FAR,FRR + CACHE[THRESHOLD)]
else
FAR < compute FAR for THRESHOLD
FRR < compute FRR for THRESHOLD
append (FAR, FRR) to ROC
CACHE[THRESHOLD] < (FAR,FRR)
end if
if abs(FAR — FRR) < PRECISION then
EER + (FAR+ FRR)/2
return EER, ROC
end if
append FAR — FRR to SDIFF
append THRESHOLD to THRESHOLDS
end for
PSTART + —1
PEND «+ —1
for PIVOT =0 to STEPS —1 do
if sign(SDIFF[PIVOT)) # sign(SDIFF[PIVOT + 1]) then
PSTART + PIVOT
PEND « PIVOT 4+ 1
break
end if
end for{PSTART and PEND are set}
START < THRESHOLDS[PSTART]
END «+ THRESHOLDS[PEND)]
end while

Figure 4: Fast EER Computing Algorithm

12
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3.2. Confidence Intervals Estimation

We also provide a method to compute the confidence interval of the EER
value. It is based on a bootstrapping method and can be used in a parallelized
way.

3.2.1. Bootstrapping

It is interesting to give a confidence interval of an EER value, because we
are not totally sure of its value. One way is to obtain this confidence interval
parametrically, but it requires to have strong hypothesis on the function of
the EER value (the scores come from independant and identically distributed
variables, even for the scores of the same user). As such assumption is too strict
(and probably false), it is possible to use non parametric confidence intervals.
One of these non parametric methods is called “bootstrap” [35]. Such method
is often used when the distribution is unknown or the number of samples is too
low to correctly estimates the interval. The main aim is to re-sample the scores
several times, and, compute the EER value for each of these re-sampling. The
boostraping method works as following:

1. Use the intra and inter scores to compute the EER x.
2. Resample K times the intra and inter scores and store them in intra’
and inter® (0 < i <= K).
e Generate the resampled intra’ scores by sampling Card(intra) scores
with replacement from intra.

e Generate the inter® scores by sampling Card(inter) scores with re-
placement from inter.

3. Compute the K EERs (x*) for each couple of intra® and intert (0 < i <=
K).

4. Store the K residuals e’ = ¥ — x*.

5. The 100(1 — a)% confidence interval of the EER is formed by taking the
interval from X —eypper t0 X —€Lower, With €rower and eypper Which respec-
tively represent the o/2th and the 1—«a/2th percentiles of the distribution
of e.

Figure 6 presents the residuals of one run of the bootstraped method on a real
world dataset with the lower and upper limits used to compute the confidence
interval. We can see that the consuming part of this algorithm is the fact to
compute K times the EER. As all the EER computing is totally independent
from each other, the K computations can be done in a parallel way.

3.2.2. Parallelization
We propose three different ways to compute the confidence interval:

e Single. The single version consists in doing all the computations in a
sequential manner (cf. figure 7a). The EER with the original scores is
computed. The whole set of resampled scores is created. The EER of each
new distribution is computed. The confidence interval is computed from
the results.

14
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e Parallel. The parallel version consists in using the several cores or pro-
cessors on the computer used for the computation (¢f. figure 7b). In this
case, several EERs may be computed at the same time (in the better case,
with a computer having n processing units, we can compute n different re-
sults at the same time). The procedure is the following: the EER with the
original scores is computed. The whole set of resampled scores is created.
The main program distributes the K EERs computations on the different
processing units. Each processing unit computes an EER and returns the
results, until the main program stops to send it new data. The results are
merged together. The confidence interval is computed from the results.

e Distributed. The distributed version consists in using several computers
to improve the computation (cf. figure 7c). The computation is done
in a parallelized way on each computer. In this case, much more EERs
can be computed at the same time. The main program generates a set
S ={S1,...57} of T values symbolising T subworks, were the subwork T;
must compute S; EERs (thus ) S = K). The procedure is the following:
the EER with the original scores is computed. The main program sends
the intra and inter scores on each worker (i.e., a computer). The main
program distributes the 7" numbers to each worker. Each time a work
receive such number (S;), it computes the S; resamples sets. Then, it
computes (using the Parallellized way) the S; EERs by distributing them
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on its processing units. It merges the S; EERs together and send them
to the main program. The main program merges all the results together.
The confidence interval is computed from the results.

We can see that the three schemes are totally different. The parallelized
version may be used on all recent computers which have several processing
units, while the distributed version needs to use several computers connected
through a network.
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4. Protocol

4.1. Databases Sets

In order to do these evaluations, we have used three different biometric
databases presented in section 2.2.2.

4.2. Evaluation of the EER Computing

The two different algorithms for EER computing have been run on five dif-
ferent sets of scores (three of keystroke dynamics and two of face recognition,
generated with the PRIVATE database) with various parameters. We call clas-
sic the classical way of computing the EER and polyto the proposed version of
the algorithm. The classic way is tested by using 50, 100, 500 and 1000 steps
to compute the EER. The polytomous way is tested by using between 3 and
7 steps and a precision of 0.01, 0.005 and 0.003. The aim of these tests is to
compare how the proposed method performs better than the classical one, and
what are its best parameters.

4.3. Utility for Non-parametric Confidence Interval

Confidence intervals are also an interesting information on the performance
of a system. The properties of the score distribution may forbid the use of
parametric methods to compute it. This is where the boostrap method helps
us by computing several times the EER with resampling methods. We have
tested the computation time of confidence interval computing for two systems
of each database, which give us six different systems. We have computed the
EER value under three different ways: the polytomous one, the classical one
(with 1000 steps), and another we called whole. The whole method is similar
to the classical one, except that it uses all the possible scores present in the
intra inter scores arrays as thresholds, instead of artificially generating them
in a predefined interval (thus, there may be far more thresholds than in the
classic method, or far less, depending on the number of available scores in the
database). The results are then validated with confidence intervals. The test
scripts were written with the Python language. The EER computing methods
and the resampling methods have been compiled in machine code thanks to the
Cython [36] framework (which speed up computation time). The parallelization
is done with the joblib [37] library. The distributed version is done by using
the task management provided by Ipython [38]. The standard and parallelized
versions have been launched on a recent Linux machine with an Intel® Core™
i5 with 4 cores at 3.20GHz and 4Gb of RAM. Four processes are launched
at the same time. For the distributed machine, the orchestrator is the same
machine. It distributes the jobs on three multicores machines (itself, another
similar machine and an another machine with an Intel® Xeon® with 8 cores
at 2.27GHz and 4Gb of RAM. The controller sends two more jobs last machine
machine).
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4.4. Ezxperimental Results

4.4.1. Evaluation of the EER Computing

Table 2 presents the results obtained within the first tested biometric system.
We present the name of the method, the error of precision while computing the
EER, the computation time in milliseconds and the number of comparisons
involved (each comparison corresponds to the comparison of a threshold against
the whole set of intra and inter scores). The real computation time taken by a
comparison is given in (4), where n is the number of thresholds to compare, A
is the timing to do a comparison and B and C depends on the algorithm.

T =nx* (Ax (Card{intra} + Card{inter}) + B) + C (4)

We can see that the computation time is highly related to the number of compar-
isons and the size of the score set. Using the Kruskal-Wallis test at a confidence
degree equals to 95%, the proposed method significantly outperformed the clas-
sical method in terms of errors (with a p value = 0.0305) and computation time
(with a p value = 0.002562). The obtained results are slightly similar for the five
tested biometrics modalities. We can observe that, in the classic method, using
50 steps gives not enough precise results, while using 1000 gives a very good
precision, but is really time consuming; depending on the dataset, 500 steps
seems to be a good compromise between precision error and computation time.
In all the polytomous configurations, the computation time is far better than
the fastest classic method (50 steps) while having a greatest precision. This
precision is always better than the classic method with 100 steps and approach
or is better than the precision in 1000 steps. This gain of time is due to the
lowest number of involved comparisons. In an n steps classical computing, we
need to check n thresholds, while in the polytomous way this number depends
both on the dataset and the required precision: with our dataset, it can vary
from 8 to 35 which is always lower than 50. As the computation time depends
only on this value, we can say that the fastest algorithms are the one having
the smallest number of tests to complete.

Based on the number of comparisons (and the timing computation), Table 3
presents the best results for each modality (when several methods return the
same number of iterations, the most precise is chosen).

We can argue that the proposed method is better, both in terms of speed
and precision error, than the classical way of computing. Based on the results
of our dataset, the configuration using 3 steps and a precision of 0.010 seems to
be the best compromise between speed and precision. We can now argue that
the proposed EER computation will speed up genetic algorithms using the EER
as fitness function.

4.4.2. Utility for Non-parametric Confidence Interval

All the methods under all the implementations give similar confidence in-
tervals. We do not discuss on this point, because we are only interested in
computation time. Table 4 gives for each method, under each implementation
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Table 2: Comparison of the Different EER Computing Methods And Config-
urations On The First Test Set. LABEL presents the used method. ERROR
is the difference between FAR and FRR values. TIME is the time needed to
compute the EER value. COMP. is the number of threshold comparison done.

LABEL ERROR (%) | TIME (ms.) | COMP.
classic_50 8.37 459 50
classic_100 4.13 940 100
classic_500 0.20 4700 500
classic_1000 0.20 9310 1000
polyto_3_0.010 0.30 110 11
polyto_3.0.005 0.07 139 14
polyto_3_0.003 0.07 140 14
polyto_4_0.010 0.40 140 15
polyto_4.0.005 0.20 149 16
polyto_4_0.003 0.10 169 18
polyto_5_0.010 0.30 150 16
polyto_5.0.005 0.07 190 20
polyto_5_0.003 0.07 179 20
polyto_6_0.010 0.40 140 15
polyto_6.0.005 0.10 179 19
polyto_6_0.003 0.10 179 19
polyto_7_0.010 0.07 190 21
polyto_7-0.005 0.07 190 21
polyto_7-0.003 0.07 200 21
Table 3: Fastest EER Computing Parameters For Each Modality

DB | LABEL ERROR (%) | TIME | COMP.
1 polyto_3_0.010 0.30 110 11

2 polyto_3.0.010 0.05 50 5

3 polyto_6_0.003 0.09 60 7

4 polyto_3_0.010 0.14 89 10

5 polyto_4_0.010 0.29 70 7

the mean value of the computation time for all the six different biometric sys-
tems. We can observe that, in average, the polytomous version seems far more
faster than the other methods (classic and whole). The distributed implemen-
tation seems also more faster than the other implementations (Parallel, Single).
Using the Kruskal-Wallis test at a confidence degree equals to 95%, the com-
putation time of the proposed method is significantly faster than both classical
(p value = 0.00651) and whole (p value = 0.004407) schemes. There was no
significant difference of computation time between classical and whole schemes
(p value = 0.8002).
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Table 4: Summary of the computation time in seconds. Time are averaged on
all the set of scores

Polytomous | Classic | Whole Mean

Distributed 14.93 94.25 | 1009.28 || 372.82
Parallel 14.95 276.60 | 3154.32 || 1148.63
Single 18.83 523.79 | 6733.68 || 2425.43
[ Mean | 1624 [ 298.22 | 3632.43 | \

4.4.3. Discussion

We have demonstrated the superiority of our EER estimation method against
the classical method concerning the computation time. However, the method
stops when the required precision is obtained. As the method is iterative, it
is not parallelizable when we want only a simple EER. However using a grid
computing method greatly improves the computation of confidence intervals.

5. Application to Multibiometrics Fusion Function Configuration

We propose a biometric fusion system based on the generation of a fusion
function parametrized by a genetic algorithm and a fast method to compute the
EER (which is used as fitness function) in order to speed the computing time
of the genetic algorithm.

5.1. Method

We have tested three different kinds of score fusion methods which param-
eters are automatically set by genetic algorithms [39]. These functions are pre-
sented in (5), (6) and (7) where n is the number of available scores (i.e., the
number of biometric systems involved in the fusion process), w; the multiplica-
tion weight of score i, s; the score 7 and x; the weight of exponent of score i. (5)
is the commonly used weighted sum (note that in this version, the sum of the
weights is not equal to 1), while the two others, to our knowledge, have never
been used in multibiometrics. We have empirically designed them in order to
give more weights to higher scores.

gal = Zwi * S (5)
=0
ga2 = H st (6)
i=0

ga3 = Z w; * 8} (7)
=0

The aim of the genetic algorithm is to optimize the parameters of each
function in order to obtain the best fusion function. Each parameter (the w;
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Table 5: Configuration of the Genetic Algorithms

l Parameter [ Value

Population 5000

Generations 500

Chromosome signification weights and powers of the fusion functions

Chromosome values interval | [—10;10]

Fitness polytomous EER on the generated func-
tion

Selection normalized gemetric selection (probability
of 0.9)

Mutation boundary, multi non uniform, non uniform,
uniform

Cross-over Heuristic Crossover

Elitism True

and x;) is stored in a chromosome of real numbers. The fitness function is the
same for the three genetic algorithms. It is processed in two steps:

e fusion: The generated function (5), (6) or (7) are evaluated on the whole
set of scores;

e error computing: The EER is computed on the result of the fusion. We
use the polytomous version of computing in order to highly speed up the
total computation time.

5.2. Experimental Protocol

5.2.1. Design of Fusion Functions

Table 5 presents the parameters of the genetic algorithms. The genetic
algorithms have been trained on a learning set composed of half of the intrascores
and half of the interscores of a database and they have been verified with a
validation set composed of the others scores. The three databases have been
used separately.

The generated functions are compared to three methods of the state of the
art: sum, mul and min, they have been explored in [28, 40]. Table 6 presents,
for each database, the EER value of each of its biometric method (noted sn for
method n), as well as the performance of the fusion functions of the state of the
art. We can see that biometric methods from PRIVATE have more biometric
verification errors than the ones of the other databases. Using the Kruskal-
Wallis test, the sum (p value = 0.0038) and mul (p value = 0.0038) operators
outperformed the min operator. There was no significant difference (p value
= 0.935) between both operators sum and mul operators.

22



Table 6: Performance (EER) of the Biometric Systems (s1, s2, $3, s4), and the
State Of The Art Fusion Functions (sum,min,mul) on the Three Databases

Method ‘ Learning ‘ Validation
BANCA
sl 0.0310 0.0438
Biometric systems s2 0.0680 0.1154
s3 0.0824 0.0897
s4 0.0974 0.0732
sum 0.0128 0.0128
State of the art fusion min 0.0385 0.0438
mul 0.0128 0.0128
BSSR1
sl 0.0425 0.0430
Biometric systems §2 0.0553 0.0620
s3 0.0861 0.0841
s4 0.0511 0.0454
sum 0.0116 0.0070
State of the art fusion min 0.0436 0.0504
mul 0.0117 0.0070
PRIVATE
sl 0.1161 0.1153
Biometric systems 52 0.1522 0.1569
s3 0.0603 0.0621
s4 0.2815 0.3143
sum 0.0256 0.0278
State of the art fusion min 0.1397 0.1471
mul 0.0252 0.0281

5.2.2. Magnitude Of the Gain in Computation Time

We also want to prove that using the proposed EER computation method
improves the computation time of the genetic algorithm run. To do that, the
previously described process has been repeated two times:

e Using the proposed EER computing method with the following configu-
ration: 5 steps and stop at a precision of 0.01.

e Using the classical EER computing method with 100 steps.

The total computation time is saved in order to compare the speed of the two
systems. These tests have been done on a Pentium IV machine with 512 Mo of
RAM with the Matlab programming language.

5.3. Experimental Results

5.8.1. Design of Fusion Functions
The EER of each generated function of each database is presented in Ta-
ble 8 for the learning and validation sets, while Figure 10 presents there ROC
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Table 7: Configurations Of The Three Weighted Functions For Each Database

BANCA

GA | configuration

gal | 8.7229 x so + 2.3092 * 512.0626 * s2 + 2.9687 * s3

ga2 83‘4721 % S%.8091 * 33.1255 * 33.8874

ga3d | —2.3079 % 550017 4+ —8.5217 % 577 1207 + —8.6644 % 55> 20 + —7.0890 * s5 1037

BSSR1

GA | configuration

gal | 2.3270 x 50 4+ 0.8790 * s1 + 0.3661 * so + 9.4978 * s3

2.0650 %

ga2 s2 8(1].5660 * 55.6168 * 52.1864
ga3 | 5.7285 % 550227 + 4.2471 % s55197 1 9.7541 % s57°°° 4+ 5.9431 * 53 97°7

PRIVATE

GA | configuration

gal | 6.7755 x so + 2.3841 * 51 + 5.9128 * 59 + 2.6919 * s3

= = = =
ga2 88‘2210 % 8411‘1038 * 33.6803 * 33.9204

ga3 | 4.8647 % s5°%77 4+ 8.3564 % 537175 4 4.7450 % 532707 4 2.0707 * 53700

Table 8: EER For Training and Validation Sets And Computation Time Gain
By Using Our EER Computation Method

Function | Train EER | Test EER || Gain (%)
BANCA

(5): gal 0.0032 0.0091 61.29

(6): ga2 0.0032 0.0091 41.84

(7): ga3 0.0037 0.0053 43
BSSR1

(5): gal 0.000596 0.0038 78.32

(6): ga2 0.000532 0.0038 64.77

(7): ga3 0.000626 0.0038 28.49
PRIVATE

(5): gal 0.019899 0.0241 77.66

(6): ga2 0.019653 0.0244 46.5

(7): ga3 0.020152 0.0217 55.03

curve on the validation set. We can see that the proposed generated functions
are all globally better than the ones from the state of the art (by comparison
with Table 6) and the obtained EER is always better than the ones of the sum
and mul. The two new fusion functions ((6) and (7)) give similar or better
results than the weighted sum (5). We do not observe over-fitting problems:
the results are promising both on the learning and validation sets. =~ We also
could expect to obtain even better performance by using more individuals or
more generations in the genetic algorithm process, but, in this case, timing com-
putation would become too much important. Their will always be a tradeoff
between security (biometric performance) and computation speed (genetic al-
gorithm performance). By the way, the best individuals were provided in the
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Figure 8: ROC Curve Of The Generated Multibiometrics Fusion Functions on
the Validation Set of the BANCA dataset

first 10 generations, and several runs give approximately the same results, so
we may already be in a global minima.

As a conclusion of this part, we increased the performance of multibiometrics
systems given the state of the art by reducing errors of 58% for BANCA, 45%
for BSSR1 and 22% for PRIVATE.

5.83.2. Magnitude Of the Gain in Computation Time

Table 8 presents a summary of the performance of the generated methods
both in term of EER and timing computing improvement. The column gain
presents the improvement of timing computation between the proposed EER
polytomous computation time and the classical one in 100 steps.

We can observe that, in all the cases, the proposed computation methods
outperform the classical one (which is not its slowest version). We can see that
this improvement depends both on the cardinal of the set of scores and the
function to evaluate: there are better improvements for (5). The best gain is
about 78% while the smallest is about 28%.

5.3.3. Discussion

Once again, we can observe the interest of our EER estimation method which
allows to obtain results far quickly. We can note that the generated function
all generate a monotonically decreasing ROC curve which allows to use our
method. If the ROC curve does not present this shape, we would be unable to
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Figure 9: ROC Curve Of The Generated Multibiometrics Fusion Functions on
the Validation Set of the BSSR1 dataset

obtain the estimated EER (such drawbacks as been experimented using genetic
programming [41] instead of genetic algorithms).

6. Conclusion and Perspectives

The contribution of this paper is twofold: a fast approximated EER com-
puting method (associated to its confidence interval), and two score fusion func-
tions having to be parametrized thanks to genetic algorithms. Using these two
contributions together allows to speed up the computation time of the genetic
algorithm because its fitness function consists on computing the EER (thus,
allows to use a bigger population).

The fast EER computing method has been validated on five different bio-
metric systems and compared to the classical way. Experimental results showed
the benefit of the proposed method, in terms of precision of the EER value and
timing computation.

The score fusion functions have been validated on three significant multibio-
metrics databases (two reals and one chimerical) having a different number of
scores. The fusion functions parametrized by genetic algorithm always outper-
form simple state of the art simple functions (sum, min, mul), and, the two new
fusion functions have given better are equal results than the simple weighted
sum. Using the proposed fast EER computing method also considerably speed
up the timing computation of the genetic algorithms. These better results imply
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Figure 10: ROC Curve Of The Generated Multibiometrics Fusion Functions on
the Validation Set of the Private dataset

that the multibiometrics system has a better security (fewer impostors can be
accepted) and is more pleasant to be used (fewer genuine users can be rejected).

One limitation of the proposed method is related to the shape of the ROC
curve and the atended precision wanted. In some cases, the method is unable
to get the EER at the wanted precision, and, is not able to return the result
(we did not encounter this case in these experiments).

Our next research will focus on the use of different evolutionary algorithms in
order to generate other kind of complex functions allowing to get better results.
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