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NUMERICAL HOMOGENIZATION OF A NONLINEARLY COUPLED

ELLIPTIC-PARABOLIC SYSTEM, REDUCED BASIS METHOD, AND

APPLICATION TO NUCLEAR WASTE STORAGE

ANTOINE GLORIA, THIERRY GOUDON, AND STELLA KRELL

Abstract. We consider the homogenization of a coupled system of PDEs describing
flows in highly heterogeneous porous media. Due to the coupling, the effective coeffi-
cients always depend on the slow variable, even in the simple case when the porosity
is taken purely periodic. Therefore the most important part of the computational
time for the numerical simulation of such flows is dedicated to the determination of
these coefficients. We propose a new numerical algorithm based on Reduced Basis
techniques, which significantly improves the computational performances.
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1. Introduction

This work is concerned with the numerical treatment of a nonlinearly coupled elliptic-
parabolic system of equations involving coefficients varying on a fast scale. Resolving the
finest scales induces a prohibitive numerical cost, both in terms of computational time and
memory storage. Our goal consists in finding relevant “averaged” models, combined with
efficient numerical methods. It turns out that the main part of the computational effort
is precisely devoted to the evaluation of the coefficients of the effective equations which
are obtained by the homogenization analysis. We shall propose methods which lead to a
considerable speed-up of this crucial step.

A strong motivation relies on the modeling of radionuclide transport in devices for the
storage of nuclear waste. This leads to consider nonlinear systems of parabolic equations,
coupling the time-evolution of the radionuclide concentration C(t, x) (for the sake of sim-
plicity we consider only one single species of radionuclides) to the velocity field U(t, x) of
the water flow. The flow takes place in a complex porous medium made of clay, limestone
and marl — so that the physical properties vary a lot from place to place. The modeling of
radionuclide transport in disposal facilities of radioactive waste therefore requires to deal
with PDEs whose coefficients are highly heterogeneous on short scales. The realization of
routine simulations should however rely on fast computations, which excludes to resolve
the finest scales. Homogenization is the natural tool to derive effective models, which
hopefully smoothes out in a consistent way the small scale features of the problem. In
the case of the nonlinearly coupled system treated here, (periodic) homogenization alone
is not enough to drastically reduce the computational cost, since a so-called cell-problem
(which is itself an elliptic PDE) has to be solved at each Gauss point of the computational
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domain — this could surprise the expert: although diffusion coefficients are assumed to
be purely periodic, and the equations are linear, the nonlinear coupling condition makes
the homogenized diffusion matrix depend on the space variable. This is where the re-
duced basis (RB) method comes into the picture: these cell-problems can be viewed as a
d-parameter (d being the space dimension) family of elliptic equations, which is an ideal
setting for the RB method. A further practical issue is related to the dependence of the
elliptic operator upon the parameters, which is not affine (according to the terminology of
the RB approach) and therefore requires a specific treatment. This article is devoted to
the homogenization and numerical approximation of solute transfer equations driven by
diffusion and convection, with a coupling with hydrodynamics in porous media.

A typical set of equations describing radionuclides transport is as follows:

φ(R∂tC + a∂tp)− divx(D(U)C − UC) + φRλC = S, (1.1)

µU = −k(∇xp+ ρged), (1.2)

φb∂tp+ divx(U) = q, (1.3)

for t ≥ 0 and x lying in some given bounded domain Ω ⊂ R
d, with d = 2 or d = 3.

The system is completed by initial and boundary conditions, which can be of Dirichlet,
Neumann, or mixed type. In this system, the fluid velocity U(t, x) is related to the
pressure p(t, x) through the Darcy law (1.2) where ρ > 0 stands for the fluid density,
g > 0 is the gravity acceleration, and ed stands for the vertical unit vector. The physical
properties of the porous medium are embodied into the porosity φ > 0 and the permeability
tensor k, which are both functions of the space variable x ∈ Ω. In simple cases the
permeability is scalar, but in general it takes into account the anisotropy of the porous
medium. Thus x 7→ k(x) is matrix–valued, and throughout this work it will be assumed
to satisfy an ellipticity condition, uniformly over Ω. The latency retardation factor R > 0,

and the degradation coefficient λ = ln(2)
T , only depend on the species of radionuclide under

consideration, with T the half–time of the element. Couplings are due to several physical
effects:

• The constituents of the mixture have different compressibility, which are described
by the coefficients a, b. A typical formula reads a = (ζ1 − ζ2)C(1 − C), and
b = ζ2 + (ζ1 − ζ2)C, for some ζ1 ≥ ζ2 > 0. In practice the coefficients ζ1, ζ2 are
small, and we usually assume that the flow is indeed incompressible. In particular,
we shall consider ζ1 = ζ2 = 0, and therefore also a = b = 0. The incompressibility
assumption greatly simplifies the model, and we shall make this assumption in the
rest of this work.

• The viscosity µ > 0 depends on a complex way on the concentration. For instance
Koval’s law reads µ : C ∈ [0, 1] 7→ µ0

(1+((µ0/µ1)1/4−1)C)4
, for some 0 < µ0 < µ1.

• The diffusion tensor D depends on the velocity U . To be more specific it splits as
follows

D = D0 + D(U).

The leading part reads D0 = φDref with Dref the molecular diffusion coefficient of
the species and φ > 0 the porosity. The correction depends on the velocity field
as follows

D(U) = α|U |I + β
U ⊗ U

|U |
, α, β ≥ 0. (1.4)
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This correction has dispersive effects. Note that, unless U lies in L∞, the diffusion
tensor has unbounded coefficients.

Of course, these nonlinear couplings are sources of difficulties from the mathematical view-
point. In the incompressible case, a definitive breakthrough is due to [23]. The theory
has been completed in [24] with existence–uniqueness results in dimension 2 and in [15]
with results on the existence of weak solutions, including nonlinear models with possible
degeneracy due to concentration dependent viscosity, and unbounded diffusion and con-
vection coefficients in the concentration equation. Compressible effects are dealt with in
[2], assuming a constant viscosity, and in [3], restricting to the one-dimension framework.
A more general case is discussed in [17]. We also mention [16] where, additionally, tem-
perature variations are accounted for in the model, [29] where further nonlinear reaction
terms are treated, and [4] where the case of vanishing D0 is analyzed, which potentially
yields degenerate diffusion. Note that the models above describe the miscible displacement
of two fluids in a porous medium. The immiscible case rises new difficulties and requires
different techniques, see [25] and the references therein.

As said above, the transfer of radionuclides takes place in a highly heterogeneous
medium. Simulations resolving the finest scales, that means with a mesh size far smaller
than the smallest characteristic scales of the space heterogeneities, would lead to a prohib-
itive numerical cost, both in terms of memory capacities and computational time. This
observation motivates the quest of an effective model, that corresponds to the limit where
the scale of heterogeneities is small compared to the length scale of observation. Assuming
periodic variations, we can guess formulae for the effective coefficients by means of two–
scale ansatz, as described in e. g. [6]. The justification of the asymptotic model then relies
on the use of “two–scale convergence” techniques, following [30] and [1] (the extension of
these techniques to random media is described in [9]). The asymptotic analysis faces the
difficulties mentioned above: nonlinear couplings, unbounded coefficients... Results in this
direction can be found in [18] and the references therein. However, even if homogenized
models can be derived, it is likely that the obtained formulae are not very useful on a
practical viewpoint. Indeed, the effective coefficients are usually defined, at each space
point x ∈ Ω, by an average over the elementary cell Y of the periodic medium

Feffective(x) =

∫

Y

f(x, y) dy

of a function y 7→ f(x, y) which is itself defined by solving a PDE, say of elliptic type, on
the cell Y, endowed with periodic boundary conditions. Therefore, the determination of
the effective coefficients has still an important numerical cost since at each Gauss point x
of Ω one needs to solve an elliptic PDE and compute such integrals!

This work precisely addresses the questions

(1) of finding effective equations for the transport of radionuclides in porous media,
at least in some simplified framework,

(2) of designing numerical methods to compute efficiently the coefficients of the effec-
tive models, without using the brutal and prohibitive method consisting of solving
independently the cell-problems and computing the suitable averages at each Gauss
point of the computational domain.
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The model under investigation here has been derived for the benchmark COUPLEX, see
[8]. This benchmark is based on a set of simplified but realistic models for the transport
of radionuclides around a nuclear waste repository. It allows to evaluate the pros and cons
of several numerical strategies that can be used in this context. We wish to complete the
benchmark by considering the corresponding homogenization problem. In this work, we
restrict to the simplest situation where the hydraulic regime is established and governed
by a mere diffusion equation. For the sake of completeness, let us remind the basis of
the modeling. It is convenient to define the hydrodynamic load (or piezoelectric height)
Θ = p

ρg + z, z = xd ∈ R being the height coordinate. We neglect the dependence of the

viscosity upon the concentration (in which case µ is a constant), so that we are led to

U(x) = −K(x)∇xΘ(x). (1.5)

together with
∇x · U(x) = q(x). (1.6)

In (1.5)–(1.6), we have set K = ρg
µ k. Equations (1.5)–(1.6) define the convection and dif-

fusion terms to be used in the PDE that describes the migration of radionuclides dissolved
in the saturated porous medium. The concentration C(t, x) obeys the equation

Rφ∂tC −∇ · (D(U)∇C − UC) +RφλC = S (1.7)

with D(U) = D0 + D(U), and D as in (1.4). We shall write the system (1.5)–(1.7) in
dimensionless form, and we shall make a small parameter 0 < ε ≪ 1 appear, which is
the ratio of the typical period of the heterogeneities over the length scale of reference.
The rescaled system has the same form as (1.5)–(1.7), but now the permeability matrix
takes the form K(x/ε), with K a periodic function. We can consider oscillating source
terms q, S and diffusion coefficient D0 as well. As it will be shown in the next section, the
effective model in the regime ε→ 0 has the form

{
∇ · U∗ = q∗,
∂tC

∗ −∇ · (D∗∇C∗ − U∗C∗) + λC∗ = S∗.
(1.8)

where the coefficients S∗, q∗ are determined by suitable “average” operations on the os-
cillating coefficients S, q, while the velocity field U∗ and the diffusion coefficient D∗ are
given by relation of the form

U∗ = U(K, q), D∗ = D(D0, U
∗), (1.9)

involving suitable functionals U and D. This paper is organized as follows. In Section 2
we present the existence–uniqueness theory for the system (1.5)–(1.7), together with the
homogenization result, which provides formulae for the effective coefficients in the regime
of fast oscillations of the properties of the medium. We pay a specific attention to the
discussion of the uniqueness of weak solutions, which is not standard due to the fact that
the diffusion term D is unbounded. Section 3 is devoted to the numerical approximation
of the homogenized system. Since the direct approach for the computation of the effective
coefficients remains prohibitive in terms of computational cost, we develop a numerical
strategy based on the RB method (see [28] and the references therein for elliptic equations,
and [10] for an application to homogenization). The guideline of the RB approach is the
construction of a suitable Galerkin basis “adapted” to the parametrized set of equations.
We present in detail the application of the RB method to the system (1.5)–(1.7). Again,
the fact that the diffusion coefficients are unbounded raises some interesting problems,
this time not only for the analysis but also for the practical implementation of the RB
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method and the choice of the estimator. Numerical results demonstrate the ability of the
method to provide accurate results with a substantial speed-up.

We shall make use of the following notation:

• R
+ = [0,+∞);

• 0 < T <∞ is a final time;
• d ≥ 1 denotes the space dimension;
• Md(R) is the set of d× d real matrices, I is the identity matrix;
• Ω is an open bounded Lipschitz domain of Rd;
• For all p ∈ [1,∞] and s ∈ N, Lp(Ω) denotes the space of p-integrable functions
on Ω, W s,p(Ω) denotes the Sobolev space of p-integrable functions whose s-first

distributional derivatives are p-integrable, W 1,p
0 (Ω) the closure in W 1,p(Ω) of the

space C∞
0 (Ω) of smooth functions compactly supported in Ω;

• For p = 2, we denote the Hilbert spaces W 1,2(Ω) and W 1,2
0 (Ω) by H1(Ω) and

H1
0 (Ω), respectively.

• Y = (0, 1)d is the periodic cell, and H1
#(Y) denotes the closure of the subspace of

C∞(Rd) made of Y-periodic functions with vanishing mean.

2. Well-posedness and homogenization

2.1. Main results. We consider the following weakly coupled system of PDEs:




U = −K∇Θ in Ω,
∇ · U = q in Ω,
∂tC −∇ · (D(U)∇C − UC) + λC = S in ]0, T [×Ω.

(2.1)

We let λ > 0, and for the source terms we let q ∈ L∞(Ω) and S ∈ L2(0, T ;H−1(Ω)). The
weak coupling condition reads

D(U)(x) := D0 (x) + α|U(x)|I + β
U (x)⊗ U (x)

|U (x) |
, (2.2)

for a. e. x ∈ Ω, where α > 0, β ≥ 0. The functions x 7→ K(x) and x 7→ D0(x) are matrix-
valued; they both satisfy uniform bounds and strong ellipticity condition, uniformly over
Ω: namely, there exists Λ > 0 such that for a. e. x ∈ Ω and all ξ ∈ R

d

|K(x)ξ| ≤ Λ|ξ|, ξ ·K(x)ξ ≥ Λ−1|ξ|2,
|D0(x)ξ| ≤ Λ|ξ|, ξ ·D0(x)ξ ≥ Λ−1|ξ|2.

The system (2.1) is completed by boundary conditions and an initial condition, which
for simplicity we take as follows (mixed Neumann-Dirichlet boundary conditions could be
considered as well) 




Θ = 0 on ∂Ω,
C (0, ·) = Cinit in Ω,
C = 0 on ]0, T [×∂Ω,

(2.3)

for some Cinit ∈ L2(Ω).

We are interested in the case when K is an ε-periodic matrix, and ε → 0. Before we
turn to this problem, we first define a notion of weak solution for the coupled system
(2.1)–(2.3), and give an existence and uniqueness result.

5
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Definition 2.1. Aweak solution of (2.1)–(2.3) is a pair (Θ, C) ∈ H1
0 (Ω)×L

2(0, T ;H1
0 (Ω))∩

C0(0, T ;L2(Ω)) such that ∂tC ∈ L2(0, T ;H−1(Ω)),
∫ T
0

∫
Ω ∇C · D(U)∇C < ∞ with

U = −K∇Θ, and which satisfies (2.1)–(2.3) in the following sense:

• Θ is a weak solution in H1
0 (Ω) to (2.1)1,2 & (2.3)1;

• For all v ∈ L2(0, T ;H1
0 (Ω))∩L

2(0, T ;L∞(Ω)) such that
∫ T
0

∫
Ω ∇v ·D(U)∇v < ∞,

we have
∫ T

0
〈∂tC, v〉H−1,H1

0
+

∫ T

0

∫

Ω
∇v ·D(U)∇C +

∫ T

0

∫

Ω
vU · ∇C

+

∫ T

0

∫

Ω
Cv(q + λ) =

∫ T

0
〈S, v〉H−1,H1

0
.

The following theorem states the existence and uniqueness of such weak solutions.

Theorem 1. For all q ∈ L∞(Ω), S ∈ L2(0, T ;H−1(Ω)), and Cinit ∈ L2(Ω), there exists a

unique weak solution to (2.1)–(2.3) in the sense of Definition 2.1.

We now turn to the periodic homogenization of (2.1)–(2.3). Let K be a Y = (0, 1)d-
periodic matrix. For all ε > 0, we consider the coupled system





Uε = −Kε∇Θε in Ω,
∇ · Uε = q in Ω,
∂tCε −∇ · (D(Uε)∇Cε − UεCε) + λCε = S in ]0, T [×Ω,
Θε = 0 on ∂Ω,
Cε (0, ·) = Cinit in Ω,
Cε = 0 on ]0, T [×∂Ω,

(2.4)

where q, S,Cinit and the function D are as above, and Kε is defined by Kε(x) := K(x/ε)
on Ω. Theorem 1 ensures the existence and uniqueness of a weak solution (Θε, Cε) of (2.4)
for any ε > 0. The following result characterizes the asymptotic behavior of (Θε, Cε) as
ε→ 0.

Theorem 2. Let q ∈ L∞(Ω), S ∈ L2(0, T ;H−1(Ω)), Cinit ∈ L2(Ω), D be as in (2.2), and
K be a Y-periodic bounded and strongly elliptic matrix. For all ε > 0, we set Kε := K(·/ε).
Then the unique weak solution (Θε, Cε) to (2.4) converges to some (Θ0, C0) in the following

senses: strongly in L2(Ω) and L2((0, T ) × Ω), and weakly in H1(Ω) and L2(0, T ;H1(Ω)).
In addition Cε converges in C0([0, T ], L2(Ω) − weak) to C0, and (Θ0, C0) is the unique

weak solution to



U0 = −K∗∇Θ0 in Ω,
∇ · U0 = q in Ω,
∂tC0 −∇ · (D∗∇C0 − U0C0) + λC0 = S in ]0, T [×Ω,
Θ0 = 0 on ∂Ω,
C0 (0, ·) = Cinit in Ω,
C0 = 0 on ]0, T [×∂Ω,

(2.5)

where K∗ is a constant matrix, and D∗(x) is a function of ∇Θ0(x) which we define below.

To this aim we need to introduce auxiliary quantities. For all i ∈ {1, . . . , d}, we let ϕi

denote the unique periodic weak solution in H1
#(Y) to

−∇ ·K(ei +∇ϕi) = 0. (2.6)
6
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The matrix K∗ is strongly elliptic and characterized by: for all i, j ∈ {1, . . . , d}

ej ·K
∗ei =

∫

Y

(ej +∇ϕj) ·K(ei +∇ϕi). (2.7)

This allows to uniquely define the funtion Θ0 through the homogenized Darcy equation

(2.5)1,2. The homogenized drift is then given by

U0 = −K∗∇Θ0.

It remains to define D∗. Let Ũ , D̃ be defined on Ω× Y as follows:

Ũ(x, y) = −K(y)(I+∇ϕ(y))∇Θ0(x), (2.8)

D̃(x, y) = D0(x) + α|Ũ (x, y)|I + β
Ũ(x, y)⊗ Ũ(x, y)

|Ũ(x, y)|
= D0(x) + D(Ũ(x, y)), (2.9)

where ϕ = (ϕ1, . . . , ϕd). For all i ∈ {1, . . . , d} and a. e. x ∈ Ω, we let Φi(x, ·) denote the

unique periodic weak solution in H1
#(Y) to the elliptic equation parametrized by x:

−∇y · D̃(x, y)(ei +∇yΦi(x, y)) = 0.

The homogenized coefficients D∗ are then characterized by: for all x ∈ Ω and all i, j ∈
{1, . . . , d},

ej ·D
∗(x)ei =

∫

Y

(ej +∇yΦj(x, y)) · D̃(x, y)(ei +∇yΦi(x, y)) dy. (2.10)

Although the diffusion D∗ is not of the form (2.2), for all x ∈ Ω, D∗(x) only depends
on ∇Θ0(x), and D

∗ ∈ L2(Ω). Hence existence and uniqueness of weak solutions for the
homogenized system can be proved the same way as for Theorem 1, and we leave the de-
tails to the reader. From the homogenization point of view, Theorem 2 is a rather direct
application of two-scale convergence and Theorem 1. Although D(U) is unbounded, it is
square-integrable and the homogenized system remains elliptic-parabolic (for the homog-
enization of elliptic equations with unbounded coefficients which are not equi-integrable,
nonlocal effects may appear, and we refer the reader to [5] and [11]). In the case of strong
coupling, homogenization has been proved in [18]. Yet [18] is an overkill for the problem
under consideration (uniqueness is not discussed in [18] though), and we display the main
arguments of a simpler proof in Appendix A.

Remark 2.1. In this statement we have considered only the case of a purely periodic
oscillating matrix K. Note that, even in this simple case, the matrix D̃ depends on both
the slow variable x ∈ Ω and the fast variable y ∈ Y. The result generalizes readily to the
case of a modulated matrix K(x, x/ε). Similarly, oscillating source terms and diffusion
coefficients D0, depending on x and x/ε, can be considered.

Since the specific feature of the coupled model under investigation is the uniqueness of
weak solutions, we prove Theorem 1 in detail in the following subsection.

2.2. Proof of Theorem 1. The difference with respect to previous contributions on the
strongly coupled system is the fact that weak solutions can be proved to be unique for the
weakly coupled system. The only subtle feature of the system is the integrability condition
on D and U , which are square-integrable but not necessarily essentially bounded. The
proof is based on regularization and compactness arguments. We shall only prove the
uniqueness of weak solutions in detail.

7
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For the reader convenience we quickly sketch the proof of existence of weak solutions as
well. We divide the proof into six steps, and proceed by regularization. In the first step
we recall a standard result essentially due to J.-L. Lions. In the second step we introduce
the regularizations for U and D(U). In the third step we apply Step 1 and derive a priori
estimates. In Step 4 from these a priori estimates we deduce by compactness and Aubin-
Simon’s arguments that the weakly coupled system admits a distributional solution. We
then show in Step 5 that this solution satisfies a weak formulation of the equation. We
prove uniqueness of weak solutions in Step 6.

Step 1. Case of bounded coefficients and drifts.
Let D : Ω → Md(R) be uniformly bounded and strongly elliptic, and U ∈ L∞(Ω,Rd). We
consider the equation




∂tC −∇ · (D∇C − UC) + λC = S in ]0, T [×Ω,
C (0, ·) = Cinit in Ω,
C = 0 on ]0, T [×∂Ω,

(2.11)

Then for all S ∈ L2(0, T ;H−1(Ω)) and Cinit ∈ L2(Ω) there exists a unique function
C ∈ L2(0, T ;H1

0 (Ω)) ∩ C
0(0, T ;L2(Ω)) such that ∂tC ∈ L2(0, T ;H−1(Ω)), which satisfies

the weak form of (2.11): for all v ∈ L2(0, T ;H1
0 (Ω)) and all T > 0,

∫ T

0
〈∂tC, v〉H−1,H1

0
+

∫ T

0

∫

Ω
∇v ·D∇C −

∫ T

0

∫

Ω
CU · ∇v

+ λ

∫ T

0

∫

Ω
Cv =

∫ T

0
〈S, v〉H−1,H1

0
.

Note that by an exponential change of time, one may assume λ to be as large as desired
(which then ensures the coercivity of the bilinear form). We refer the reader to [31, Chap-
ter 12] for details. In the sequel we shall use the following equivalent weak formulation:
for all v ∈ L2(0, T ;H1

0 (Ω)) and all T > 0,
∫ t

0
〈∂tC, v〉H−1,H1

0
+

∫ t

0

∫

Ω
∇v ·D∇C +

∫ t

0

∫

Ω
∇C · Uv

+

∫ t

0

∫

Ω
(q + λ)Cv =

∫ t

0
〈S, v〉H−1,H1

0
, (2.12)

which we obtain by using the divergence theorem and the identity ∇ · U = q.

Step 2. Regularizations.
First note that the elliptic part of the system




U = −K∇Θ in Ω,
∇ · U = q in Ω,
Θ = 0 on ∂Ω,

(2.13)

admits a unique weak solution Θ ∈ H1
0 (Ω). The associated drift U = −K∇Θ is not

essentially bounded, but square-integrable. Likewise the associated diffusion coefficients
D(U) are not essentially bounded, but square-integrable. In particular, the advection-
diffusion equation




∂tC −∇ · (D(U)∇C − UC) + λC = S in ]0, T [×Ω,
C (0, ·) = Cinit in Ω,
C = 0 on ]0, T [×∂Ω,

(2.14)

8



NUMERICAL HOMOGENIZATION OF A NONLINEARLY COUPLED ELLIPTIC-PARABOLIC SYSTEM 9

does not satisfy the assumptions of Step 1. We regularize D(U) and U , and begin
with the diffusion coefficients. Since D(U) is a symmetric matrix, for a. e. x ∈ Ω
there exist α1(x), . . . , αd(x) ≥ 0, and a unitary matrix P (x) such that D(U)(x) =
P T (x)diag(α1(x), . . . , αd(x))P (x). For all M > 0 and a. e. x ∈ Ω, we define DM(x)
as follows:

DM (x) := P T (x)diag(min{α1(x),M}, . . . ,min{αd(x),M})P (x).

In particular, DM converges monotonically to D(U) in L2(Ω) as M → ∞. For the regu-
larization of U , we prefer to regularize the defining equation ∇ ·U = q rather than using
truncation. We consider KM and qM two sequences of smooth functions such that KM

and qM converge to K and q in Lr(Ω) for all r < ∞, respectively. We define ΘM as the
unique weak solution in H1

0 (Ω) to

−∇ ·
(
KM∇ΘM

)
= qM ,

and set UM := −KM∇ΘM . By elliptic regularity, UM belongs to L∞(Ω). Furthermore,
UM converges to U in L2(Ω) (the argument relies on Meyers’ estimate, which implies that
∇ΘM , and thus UM , converge in Lp(Ω) for some p > 2 depending only on the constant
Λ).

Hence, for all M > 0, Step 1 implies there exists a unique weak solution CM ∈
L2(0, T ;H1

0 (Ω)) ∩ C
0(0, T ;L2(Ω)) such that ∂tC

M ∈ L2(0, T ;H−1(Ω)) to the regularized
equation





∂tC
M −∇ ·

(
DM∇CM − UMCM

)
+ λCM = S in ]0, T [×Ω,

CM (0, ·) = Cinit in Ω,
CM = 0 on ]0, T [×∂Ω.

(2.15)

It remains to pass to the limit as M → ∞.

Step 3. A priori estimates.
The weak form of (2.15) with test-function CM itself yields for all 0 < t ≤ T ,

∫ t

0

〈
∂tC

M , CM
〉
H−1,H1

0
+

∫ t

0

∫

Ω
∇CM ·DM∇CM −

∫ t

0

∫

Ω
CMUM · ∇CM

+ λ

∫ t

0

∫

Ω
(CM )2 =

∫ t

0

〈
S,CM

〉
H−1,H1

0
.

Since ∇ · UM = qM , we have by the divergence theorem

−

∫ t

0

∫

Ω
CMUM · ∇CM = −

1

2

∫ t

0

∫

Ω
UM · ∇(CM )2 =

1

2

∫ t

0

∫

Ω
q(CM )2

so that the weak form turns into

1

2

∫

Ω
(CM (·, t))2 +

∫ t

0

∫

Ω
∇CM ·DM∇CM

+

∫ t

0

∫

Ω
(CM )2

(
1

2
qM + λ

)
=

1

2

∫

Ω
C2
init +

∫ t

0

〈
S,CM

〉
H−1,H1

0
.

9



10 A. GLORIA, T. GOUDON, AND S. KRELL

Recalling that one may take λ such that 1
2 inf q

M + λ ≥ 1
2 inf q + λ = λ∗ > 0, we finally

deduce by coercivity of DM (and arbitrariness of t):

1

2
sup

0<t≤T

∫

Ω
(CM (·, t))2 + Λ−1‖∇CM‖2L2(0,T ;L2(Ω)) + λ∗‖CM‖2L2(0,T ;L2(Ω))

≤ ‖S‖L2(0,T ;H−1(Ω))‖C
M‖L2(0,T ;H1

0 (Ω)) +
1

2
‖Cinit‖

2
L2(Ω).

Using this estimate and the equation again, we finally obtain that CM is bounded in
L2(0, T ;H1

0 (Ω)) ∩ L
∞(0, T ;L2(Ω)) and that ∂tC

M is bounded in L2(0, T ;H−1(Ω)), uni-
formly in M .

Step 4. Compactness and existence of distributional solutions.
By weak compactness and Aubin-Simon’s theorem (see [33]), there exists a function C ∈
L2(0, T ;H1

0 (Ω)) ∩ C
0(0, T ;L2(Ω)) with ∂tC ∈ L2(0, T ;H−1(Ω)) such that CM converges

weakly to C in L2(0, T ;H1
0 (Ω)), strongly in L2(0, T ;L2(Ω)), and such that ∂tC

M converges
weakly to ∂tC in L2(0, T ;H−1(Ω)).

It is easy matter to check that C solves (2.14) in the sense of distributions, and satisfies
the initial condition as a continuous function in time taking values in L2(Ω).

Step 5. Weak formulation of the system.
In this step, we shall prove that (Θ, C) is a weak solution of (2.1)–(2.3) in the sense

of Definition 2.1. We start by showing that
∫ T
0

∫
Ω ∇C · D(U)∇C < ∞, which is not

obvious a priori since ∇C ∈ L2(Ω) and D(U) ∈ L2(Ω). Let M ′ > 0 be fixed. By weak
lower-semicontinuity, since ∇CM converges weakly to ∇C in L2(0, T ;L2(Ω)),

∫ T

0

∫

Ω
∇C ·DM ′

∇C ≤ lim inf
M→∞

∫ T

0

∫

Ω
∇CM ·DM ′

∇CM .

Since M 7→ DM is an increasing function in the sense of symmetric matrices, the a priori
estimate of Step 3 implies for all M ≥M ′,

∫ T

0

∫

Ω
∇CM ·DM ′

∇CM ≤

∫ T

0

∫

Ω
∇CM ·DM∇CM ≤ ‖Cinit‖

2
L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω)).

Hence,
∫ T

0

∫

Ω
∇C ·DM ′

∇C ≤ ‖Cinit‖
2
L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω)),

and the desired estimate
∫ T

0

∫

Ω
∇C ·D(U)∇C ≤ ‖Cinit‖

2
L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω))

follows from the monotone convergence theorem asM ′ → ∞, using again the monotonicity
of M 7→ DM .

Let v ∈ L2(0, T ;H1
0 (Ω)) ∩ L

2(0, T ;L∞(Ω)) be such that
∫ T
0

∫
Ω∇v · D(U)∇v < ∞. In

order to prove that that C is a weak solution, we need to pass to the limit as M → ∞ in
10
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the weak formulation (2.12) for CM , that is,

∫ t

0

〈
∂tC

M , v
〉
H−1,H1

0
+

∫ t

0

∫

Ω
∇v ·DM∇CM +

∫ t

0

∫

Ω
∇CM · UMv

+

∫ t

0

∫

Ω
(q + λ)CMv =

∫ t

0
〈S, v〉H−1,H1

0
.

In view of the regularity of v, the convergence of UM to U in L2(Ω), and the weak
compactness of CM obtained in Step 4, the only nontrivial term to treat is the second-
order term, and we shall prove that

lim
M→∞

∫ T

0

∫

Ω
∇v ·DM∇CM =

∫ T

0

∫

Ω
∇v ·D(U)∇C.

Let M ′ > 0 be fixed. We rewrite the above term as
∫ T

0

∫

Ω
∇v ·DM∇CM =

∫ T

0

∫

Ω
∇v · (DM −DM ′

)∇CM +

∫ T

0

∫

Ω
∇v ·DM ′

∇CM . (2.16)

We focus on the second term of the r. h. s. and first take the limit as M → ∞. Since DM ′

is bounded, this yields

lim
M→∞

∫ T

0

∫

Ω
∇v ·DM ′

∇CM =

∫ T

0

∫

Ω
∇v ·DM ′

∇C.

We conclude by the dominated convergence theorem that

lim
M ′→∞

lim
M→∞

∫ T

0

∫

Ω
∇v ·DM ′

∇CM =

∫ T

0

∫

Ω
∇v ·D(U)∇C

since by Young’s inequality and monotonicity of M 7→ DM ,

|∇v ·DM ′

∇C| ≤
1

2
(∇v ·D(U)∇v +∇C ·D(U)∇C),

which is integrable.
It remains to prove that the first term of the r. h. s. of (2.16) vanishes as M ′ and M

go to infinity. By Cauchy-Schwarz inequality and monotonicity of M 7→ DM , we have
∣∣∣∣
∫ T

0

∫

Ω
∇v · (DM −DM ′

)∇CM

∣∣∣∣

≤

(∫ T

0

∫

Ω
∇v · (D −DM ′

)∇v

)1/2(∫ T

0

∫

Ω
∇CM ·DM∇CM

)1/2

.

The second factor of the r. h. s. is bounded by Step 3 uniformly in M . We therefore
focus on the first factor. Since D − DM ′

≤ D in the sense of symmetric matrices and
∇v ·D∇v ∈ L1(Ω), the dominated convergence theorem yields

lim
M ′→∞

∫ T

0

∫

Ω
∇v · (D −DM ′

)∇v = 0,

and therefore

lim
M ′→∞

lim sup
M→∞

∣∣∣∣
∫ T

0

∫

Ω
∇v · (DM −DM ′

)∇CM

∣∣∣∣ = 0,

which concludes the proof of this step.
11



12 A. GLORIA, T. GOUDON, AND S. KRELL

Step 6. Uniqueness of weak solutions.
Since equation (2.14) is linear with respect to C, uniqueness follows formally from the
weak formulation tested with the solution C itself. However, we cannot directly proceed
this way since C /∈ L2(0, T ;L∞(Ω)) a priori and it is not clear whether it can be used as
an admissible test function. Instead we use a standard truncation argument: for all N > 0
we define a function ϕN : R → R as

ϕN (x) :=





−N for x < −N,
x for |x| ≤ N,
N for x > N,

and we test the weak formulation of (2.14) with CN := ϕN (C) ∈ L2(0, T ;H1
0 (Ω)) ∩

L∞((0, T ) × Ω). This yields

∫ T

0
〈∂tC,CN 〉H−1,H1

0
+

∫ T

0

∫

Ω
∇CN ·D(U)∇C +

∫ T

0

∫

Ω
CNU · ∇C

+

∫ T

0

∫

Ω
CCN (q + λ) =

∫ T

0
〈S,CN 〉H−1,H1

0
. (2.17)

It is easy to prove that CN → C in L2(0, T ;H1(Ω)) as N → ∞ so that we can pass to the
limit in the first and last terms of the l. h. s. and in the r. h. s. of (2.17). It remains to
treat the last two terms. We begin with the Dirichlet form. By definition of ϕN and CN ,

∇CN ·D(U)∇C = ∇C ·D(U)∇C 1|C|≤N ≤ ∇C ·D(U)∇C.

Hence, the dominated convergence theorem yields

lim
N→∞

∫ T

0

∫

Ω
∇CN ·D(U)∇C =

∫ T

0

∫

Ω
∇C ·D(U)∇C.

We now turn to the third term of the l. h. s. of (2.17), which we treat together with the
term involving q. In particular since ∇ · U = q, the divergence theorem yields

∫ T

0

∫

Ω
CNU · ∇C +

∫ T

0

∫

Ω
CCNq = −

∫ T

0

∫

Ω
CU · ∇CN .

Note that by definition of ϕN and CN we can rewrite this identity as
∫ T

0

∫

Ω
CNU · ∇C +

∫ T

0

∫

Ω
CCNq = −

∫ T

0

∫

Ω
CNU · ∇CN .

Using that ∇ · U = q and the divergence theorem again, this turns into
∫ T

0

∫

Ω
CNU · ∇C +

∫ T

0

∫

Ω
CCNq = −

∫ T

0

∫

Ω
CNU · ∇CN

= −
1

2

∫ T

0

∫

Ω
U · ∇C2

N

=
1

2

∫ T

0

∫

Ω
qC2

N .

Passing to the limit in the last identity yields

lim
N→∞

(∫ T

0

∫

Ω
CNU · ∇C +

∫ T

0

∫

Ω
CCNq

)
=

1

2

∫ T

0

∫

Ω
qC2.

12
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Gathering the results of this step, we obtain the following identity:

1

2

∫

Ω
C2(T, ·) +

∫ T

0

∫

Ω
∇C ·D(U)∇C

+

∫ T

0

∫

Ω
C2
(1
2
q + λ

)
=

∫ T

0
〈S,C〉H−1,H1

0
+

1

2

∫

Ω
C2
init,

since
∫ T
0 〈∂tC,C〉H−1,H1

0
= 1

2

∫
ΩC

2(T, ·) − 1
2

∫
ΩC

2(0, ·). This implies uniqueness of weak

solutions, and concludes the proof of Theorem 1.

3. Numerical approximation of the homogenized system

In this section we propose a numerical strategy to approximate the weak solution to
the homogenized system (2.5). There are essentially three steps to solve (2.5):

(1) the computation of K∗ and the approximation of Θ0. The latter is solution of a
standard elliptic equation once K∗ is known, see (2.5)1,2.

(2) the approximation of D∗(x) at every Gauss point x of Ω. This requires to solve
a family of elliptic equations on the periodic cell Y, parametrized by the Gauss
points x via ∇Θ0(x).

(3) To find the solution of the advection-diffusion equation (2.5)3.

As we shall see, the bottleneck of the numerical approximation of (2.5) in terms of com-
putational cost is the approximation of D∗ in the second step. A large part of this section
is dedicated to this problem, and we shall use a reduced basis approach to drastically
reduce this computational cost. We have chosen not to focus on the numerical strategy to
solve the advection-diffusion equation (2.5)3 since the equation is rather “standard” once
D∗ is known. In particular, for the numerical tests of the coupled system we use a naive
P1-finite element method in space combined with the implicit Euler method in time. For
more efficient and modern methods, we refer the reader to [32, 21, 22, 34, 35, 13, 14]. The
main contribution of this section (a numerical method for the computation of D∗) can
indeed be combined with any strategy to solve the advection-diffusion equation (2.5)3.

In the first subsection we present a direct approach to solve (2.5), and complement the
homogenization result of Theorem 2 by numerical tests showing the rate of convergence
of (Θε, Cε) towards (Θ0, C0). As expected, the computational time to approximate D∗

becomes rapidly prohibitive as the number of discretization points increases. In the sec-
ond subsection we turn to the RB method. We first quickly recall the rationale of the
approach, and discuss what can be expected in terms of convergence. We then turn to
the practical implementation of the method, propose an a posteriori estimator adapted to
homogenization problems (but not limited to the specific one treated here), and present
an original and effective way of fast-assembling of the RB matrix, which is the major dif-
ficulty encountered in the RB method when the dependence of the diffusion matrix upon
the parameter is not affine — as it is the case here.

Before we turn to the core of this section let us point out that, as the attentive reader
may have already noticed, it is not clear a priori that the finite element method converges
since the diffusion matrix in (2.5)3 is unbounded. The method does indeed converge to the
expected solution. This property can be proved along the lines of the existence-uniqueness
theory developed in Section 2.

13



14 A. GLORIA, T. GOUDON, AND S. KRELL

3.1. Direct approach.

3.1.1. Space and time discretizations. We discretize the homogenized problem (2.5) with
a finite element method in space and the implicit Euler scheme in time. Let TΩ,h0 and
TY,h1 be regular tessellations of Ω and of Y, respectively, into d-simplices of meshsizes

h0, h1 > 0. We denote by Vk
Ω,h0

the space of Pk finite elements associated with TΩ,h0 for

k = 0 and 1 (for k = 1, we only consider functions which vanish on the boundary), and by
V1
Y,h1

(resp. V0
Y,h1

) the subspace of H1
#(Y) (resp. L2(Y)) made of P1-periodic (resp. P0)

finite elements associated with TY,h1 . As quickly mentioned above, a natural strategy to
solve (2.5) is as follows:

Algorithm 1. (1) Numerical approximationK∗
h1

ofK∗: compute for all k ∈ {1, . . . , d}

Galerkin approximations ϕh1
k of ϕk in V1

Y,h1
defined by: For all ψ ∈ V1

Y,h1
∫

Y

∇ψ ·K(ek +∇ϕh1
k ) = 0. (3.1)

Define then for all k, l ∈ {1, . . . , d},

el ·K
∗
h1
ek =

∫

Y

(el + ϕh1
l ) ·K(ek +∇ϕh1

k ).

For future reference, we set ϕh1 = (ϕh1
1 , . . . , ϕ

h1
d ) ∈ H1

#(Y,R
d).

(2) Compute the Galerkin approximation Θh0
0 ∈ V1

Ω,h0
of the solution to (2.5)1,2,4 with

K∗
h1

in place of K∗, unique solution in V1
Ω,h0

to: for all w ∈ V1
Ω,h0

,
∫

Ω
∇w ·K∗

h1
∇Θh0

0 =

∫

Ω
qw.

It defines Uh0
0 = −K∗

h1
∇Θh0

0 , too.

(3) Approximation D∗
h0

∈ V0
Ω,h0

(each entry of the matrix is piecewise constant on

TΩ,h0) of the homogenized diffusion D∗. Let ΠV0
Ω,h0

denote the L2-projection onto

V0
Ω,h0

. For every element T of the tessellation TΩ,h0 , ∇Θh0
0 |T is constant, and we

define D∗
h0
|T as follows: for all k, l ∈ {1, . . . , d},

el ·D
∗
h0
|Tek =

∫

Y

(el +∇Φh1
l |T ) · D̃

h1 |T (ek +∇Φh1
k |T ),

where

D̃h1 |T (y) := ΠV0
Ω,h0

D0|T +D(Ũh1 |T (y)),

Ũh1 |T (y) := −K(y)(I+∇ϕh1(y))∇Θh0
0 |T ,

and Φh1
k |T ∈ V1

Y,h1
is the unique periodic weak solution to: for all Ψ ∈ V1

Y,h1
,

∫

Y

∇Ψ · D̃h1 |T (ek +∇Φh1
k |T ) = 0. (3.2)

(4) Approximation of C0. Let N ∈ N
∗. The time interval [0, T ] is uniformly discretized

with a fixed time step ∆t = T
N . For all n ∈ {0, · · · , N}, we set tn = n∆t, and

14
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define the approximation Ch0,n
0 ∈ V1

Ω,h0
of C0(tn, ·) by induction as the unique

solution to: for all v ∈ V1
Ω,h0

,

∫

Ω

Ch0,n+1
0 − Ch0,n

0

∆t
+

∫

Ω
∇v · (D∗

h0
∇Ch0,n+1

0 − Uh0
0 Ch0,n+1

0 ) +

∫

Ω
λCh0,n+1

0 v =

∫

Ω
Sn+1v.

Since we use an implicit time discretization, there is no CFL condition — note
that we could have used a semi-implicit scheme as well (see for instance [31]).

3.1.2. Numerical tests. To illustrate Theorem 2 when the homogenized system is solved
using the direct approach of Algorithm 1, we consider a numerical test suggested by
ANDRA1. We take d = 2 and let Ω =]0, 2[2 be a square domain, and [0, T ] be the time
interval with T = 1. The permeability is defined on the domain Y =]0, 1[2 by:

∀y = (y1, y2) ∈ Y, ∀y1 ∈]0, 1[, K(y1, y2) =

{
4.94064, if y2 ≥ 0.5,

0.57816, if y2 < 0.5.

We consider boundary conditions which are slightly different than in Theorem 2 and
Algorithm 1 — note that the adaptations are straightforward in both cases — :





Dirichlet boundary conditions: Let x = (x1, x2) ∈ ∂Ω

For x1 ∈ (0, 2), h0(x1, x2) =





5

3
, if x2 = 2,

5

3
+ 0.5, if x2 = 0,

For x2 ∈ (0, 2), C0(x1, x2) =

{
1, if x1 = 0,

0, if x1 = 2.

Homogeneous Neumann boundary conditions elsewhere.

(3.3)

The parameters used in the numerical tests are gathered in Table 1.

T = 1 D0 = 4.38 I α = 2
10 β = 2

100 λ = ln(2)
1.57 ∆t = 10−3

Table 1. Parameters

In Table 2 we compare the approximations (Θεh1
ε , Cεh1

ε ) of the solutions to the hetero-

geneous system (2.4) to the approximation (Θh0
0 , C

h0
0 ) of the solution to the homogenized

system (2.5), for several values of ε (the discretization parameters h1 and h0 being fixed).
The periodic cell Y is discretized with 8 elements per dimension (note that the correctors
ϕ1 and ϕ2 happen to belong to the finite element space V1

Y,h1
in the case treated here

because of the laminate structure of K), and the macroscopic domain Ω is discretized
using 2× 8/ε elements per dimension to compute (Θεh1

ε , Cεh1
ε ). For the approximation of

(Θh0
0 , C

h0
0 ), we take h0 = 1/100. This yields

• V1
Y,h1

has dimension 81;

• V1
Ω,h0

has dimension ∼ 40000;

• V1
Ω,h0,ε

has dimension ∼ 256ε−2.

1Agence nationale pour la gestion des déchets radioactifs — http://www.andra.fr
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16 A. GLORIA, T. GOUDON, AND S. KRELL

We display in Table 2 the L2(Ω) norm of the error Θh0
0 −Θεh1

ε and the L2(Ω×]0, T [)-norm

of the error Ch0
0 − Ch1

ε for ε ∈ {0.2, 0.1, 0.05, 0.025}. These results have been obtained
using FreeFem++ (see [27]). The linear systems are solved with a direct solver. We obtain
a first order of convergence for both errors.

ε
‖h

h0
0 −h

εh1
ε ‖L2

‖h
h0
0 ‖L2

Rate
‖C

h0
0 −C

εh1
ε ‖L2(L2)

‖C
h0
0 ‖L2(L2)

Rate

0.2 1.667e-3 - 5.528e-4 -

0.1 8.095e-4 1.04 2.525e-4 1.13

0.05 3.992e-4 1.02 1.270e-4 0.99

0.025 1.983e-4 1.01 6.704e-5 0.92

Table 2. Error in function of ε

As can be seen on Table 2 the apparent convergence rates are of order 1, which is con-
sistent with a formal two-scale expansion, and shows the interest of replacing (Θε, Cε) by
its homogenized counterpart (h0, C0). Although the computational time for the approxi-
mation of (Θ0, C0) is much smaller than the computational time for the approximation of
(Θε, Cε) when ε is small, this method rapidly becomes prohibitive when the tessellation
of Y gets finer since the approximation of D∗ then becomes quite expensive.

The last part of this article is devoted to the speed up of the approximation of D∗, with
a numerical cost which should ideally be independent of the meshsize h1 of TY,h1 . From

now on we assume D̃ in (2.9) to be a symmetric matrix (that is, we assume D0 to be
symmetric).

3.2. Reduced basis method for homogenization problems. In this section we de-
scribe how to apply the reduced basis method to the homogenized problem under consid-
eration, assuming in addition that D0 in (2.2) is a constant matrix.

3.2.1. General presentation. The reduced basis method was introduced for the accurate
online evaluation of (outputs of) solutions to a parameter-dependent family of elliptic
PDEs. The basis of the method and further references can be found in [28]. The application
to the homogenization of elliptic equations is discussed in [10]. Abstractly, it can be viewed
as a method to determine a “good” N -dimensional space SN to be used in approximating
the elements of a set F =

{(
Φ1(ξ), ...,Φd(ξ)

)
, ξ ∈ P

}
of parametrized elements lying in

a Hilbert space S, the parameter ξ ranging a certain subset P ⊂ R
n.

Let us describe how the computation of the effective coefficients we are concerned with
belongs to such a framework. First of all, the auxiliary function Θ0 is simply determined
by solving the problem (2.5)1,2, with effective coefficients obtained by solving the cell
equations (2.6). There is no difficulty in this step and ∇xΘ0 can be considered as given in
this discussion. Then, we write the effective coefficient (2.9) for the concentration equation
(2.5)3 as follows

D̃(x, y) = D̂(∇xΘ0(x))(y)
16
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where ξ ∈ R
d 7→ D̂(ξ) ∈ L∞(Y,Md(R)) is defined by

D̂(ξ)(y) = D0 + α|M(y)ξ|I + β
M(y)ξ ⊗M(y)ξ

|M(y)ξ|
= D0 + D(M(y)ξ),

M(y) = K(y)(I+∇ϕ(y)),

ϕ = (ϕ1, . . . , ϕd) solutions of (2.6).

(3.4)

We recall that α, β > 0, and D0 is a positive-definite symmetric matrix while M : Y →
Md(R) is a square-integrable function. We are interested in the solution Φk(ξ) to the
problem: for all Ψ ∈ H1

#(Y),

∫

Y

∇Ψ(y) · D̂(ξ)(y)(ek +∇Φk(ξ)(y)) dy = 0.

In the present context, S = H1
#(Y) and we wish to find a convenient finite dimensional

approximation space SN which allows to describe those solutions. The working plan faces
the following technical difficulties:

• Here the parameter ξ ranges over the whole R
d while the method is designed to

deal with parameters lying in a compact set.
• The method simplifies significantly when the dependence of D upon ξ is affine. In
such a case it is described and analyzed in full details, but here the dependence
with respect to the parameter is more intricate and the implementation of the
method will require additional devices.

• The matrix M is square-integrable only and not essentially bounded, so that the
available statements that could be useful to analyze the method simply do not
apply.

We will go back to these issues later on; let us now introduce the basis of the RB method.

Let n ≥ 1 and let D : Rn → L∞(Y,Md(R)) be a function taking values in a set of
(y ∈ Y)-dependent d × d symmetric real matrices, satisfying uniform bounds and elliptic
estimates. We suppose that D(ξ) depends continuously on the parameter ξ ∈ R

n. Given a
compact subset K of Rn, we set FK = {(Φ1(ξ), . . . ,Φd(ξ)), ξ ∈ K}, where Φk(ξ) ∈ H1

#(Y)

denotes the unique periodic weak solution to the problem: for all Ψ ∈ H1
#(Y),

∫

Y

∇Ψ(ξ)(y) · D(ξ)(y)(ek +∇Φk(ξ)(y)) dy = 0.

The set FK is therefore compact in H1
#(Y).

To construct the N -finite dimensional space SN intended to approximate S = H1
#(Y),

we proceed by induction using a greedy algorithm. To this aim we need a reliable estimator

which measures the error between Φk(ξ) for some ξ ∈ K and its approximation Φ
j
k(ξ) in

Sj for 0 ≤ j ≤ N , which is defined as the unique weak solution Φ
j
k(ξ) ∈ Sj to: for all

Ψ
j
∈ Sj ,

∫

Y

∇Ψ
j
(ξ)(y) · D(ξ)(y)(ek +∇Φ

j
k(ξ)(y)) dy = 0. (3.5)

17



18 A. GLORIA, T. GOUDON, AND S. KRELL

Recalling that we are dealing with a homogenization problem, the quantity of interest is
the symmetric homogenized matrix D

∗
(ξ) defined for all k, l ∈ {1, . . . , d} by (see (2.10))

el ·D
∗
(ξ)ek =

∫

Y

(el +∇Φl(ξ)) · D(ξ)(ek +∇Φk(ξ)) dy.

We denote by D
∗,j

(ξ) the approximation of D
∗
(ξ) using Sj , that is for all k, l ∈ {1, . . . , d}

el ·D
∗,j

(ξ)ek =

∫

Y

(el +∇Φ
j
l (ξ)) · D(ξ)(ek +∇Φ

j
k(ξ)) dy.

A standard calculation using (3.5) and the symmetry of D yields

el · (D
∗
(ξ)−D

∗,j
(ξ))ek =

∫

Y

(∇Φl(ξ)−∇Φ
j
l (ξ)) · D(ξ)(∇Φk(ξ)−∇Φ

j
k(ξ)) dy.

This shows that the error on the homogenized matrix is a suitable estimator. We thus

define the estimator E
j
: K × {1, . . . , d} → R

+ as

E
j
(ξ, k) =

√√√√ |ek · (D
∗
(ξ)−D

∗,j
(ξ))ek|

ek ·D
∗
(ξ)ek

.

So defined, and recalling that D is assumed to take values in the set of uniformly elliptic
symmetric matrices (say with ellipticity constants 0 < ν ≤ ν <∞), the estimator is such
that there exist C1, C2 > 0 verifying for all suitable j, k, ξ the inequality

C1E
j
(ξ, k) ≤ ‖∇Φk(ξ)−∇Φ

j
k(ξ)‖L2(Y) ≤ C2E

j
(ξ, k). (3.6)

The induction procedure is then as follows. For all j ∈ {0, ..., N − 1}, choose ξj+1 ∈ K
and kj+1 ∈ {1, . . . , d} such that

(ξj+1, kj+1) = argmax
K,{1,...,d}

E
j
,

define

Ψj+1 =
Φkj+1

(ξj+1)− Φ
j
kj+1

(ξj+1)

‖∇Φkj+1
(ξj+1)−∇Φ

j
kj+1

(ξj+1)‖L2(Y)

and set

Sj+1 := span {Ψ1, . . . ,Ψj+1}.

By induction, for all j ∈ {0, ..., N}, dimSj+1 = j + 1, since by construction Ψj+1 is
orthogonal to Sj for the following scalar product of H1

#(Y)

(Ψ1,Ψ2) 7→

∫

Y

∇Ψ1 · D(ξj+1)∇Ψ2 dy.

Note that usually, in the RB literature, the vectors Ψj are orthogonalized using the same
scalar product for all j (whereas here, the scalar product depends on j). The choice made
here makes the computation of the reduced basis simpler (and the generated space Sj+1

is the same).

What convergence rate can be expected in terms of N ? In the case when n = 1 and
D has a dependence of the form D(ξ) = D0 + ξD1 (that is D is an affine function on the
real line, and K is just a segment), the combination of results from [28] (see also the more

18
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general case treated in [19]) and [7] (see also [12]) shows that there exist c, C > 0 such
that for all N ≥ 1,

sup
K,{1,...,d}

E
N

≤ C exp(−cN).

The convergence being exponential in N , the reduced basis method is expected to yield
accurate results for moderate N (say for N which is much smaller than the dimension of
the finite element space V1

Y,h1
for instance). Note that this yields a complete control of

the error on the homogenized coefficients since for all k, l ∈ {1, . . . , d} by Cauchy-Schwarz’
inequality and definition of the estimator,

|el · (D
∗
(ξ)−D

∗,N
(ξ))ek| =

∣∣∣∣
∫

Y

(∇Φl(ξ)−∇Φ
N
l (ξ)) · D(ξ)(∇Φk(ξ)−∇Φ

N
k (ξ))

∣∣∣∣

≤

√
(el ·D

∗
(ξ)el)(ek ·D

∗
(ξ)ek)E

N
(ξ, k)E

N
(ξ, l)

≤ C̃ exp(−2cN)

for some constant C̃ depending only on C and d, ν, ν.

In the case under consideration here things are more complex than in [28] and [7] for
the following three reasons:

• the parameter ξ is in R
d (that is n = d > 1 in the cases of interest);

• a priori K = R
d, which is not a compact set;

• the function ξ 7→ D(ξ) is nonlinear.

The algorithm described in this paragraph is not of any practical use yet since in order

to choose ξj+1 and kj+1, one needs to know E
j
(ξ, k) for all ξ and k. In the following

paragraph we describe the standard way to proceed in practice.

3.2.2. Practical reduced basis method. In practice we do not have access to {E
j
(ξ, k), ξ ∈

K, k ∈ {1, . . . , k}} since:

• the corrector Φk(ξ) has to be approximated in a finite-dimensional subspace V of

H1
#(Y), so that E

j
is approximated by some E

j .

• the space K has to be replaced by some finite set K.

The construction of the reduced basis is then as follows.

Algorithm 2. Let N ∈ N, p ≥ N , K =
{
ξm, m ∈ {1, ..., p}

}
be a subset of K, and V be

a finite-dimensional subspace of H1
#(Y).

(1) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, let Φk(ξm) ∈ V be an approximation of
the corrector Φk(ξm) in V, that is the unique element of V such that for all Ψ ∈ V

∫

Y

∇Ψ(y) · D(ξm)(y)(ek +∇Φk(ξm)(y)) dy = 0,

and let D∗
kk(ξm) be the approximation of ek ·D

∗
(ξm)ek given by

D∗
kk(ξm) =

∫

Y

(ek +∇Φk(ξm)) · D(ξm)(ek +∇Φk(ξm)) dy.

(2) Set V0 = {0}.
(3) While 0 ≤ j < N

19



20 A. GLORIA, T. GOUDON, AND S. KRELL

(a) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, let Φj
k(ξm) ∈ V be an approximation

of the corrector Φk(ξm) in Vj, that is the unique element of Vj such that for
all Ψj ∈ Vj∫

Y

∇Ψj(y) · D(ξm)(y)(ek +∇Φj
k(ξm)(y)) dy = 0,

and let D∗,j
kk (ξm) be the approximation of D∗

kk(ξm) given by

D∗,j
kk (ξm) =

∫

Y

(ek +∇Φj
k(ξm)) · D(ξm)(ek +∇Φj

k(ξm)) dy.

(b) For all m ∈ {1, ..., p} and k ∈ {1, . . . , d}, define the estimator Ej(m,k) as

E
j(m,k) =

√
|ek ·D∗(ξm)ek −D∗,j

kk (ξm))|

ek ·D∗(ξm)ek
,

and set

(mj , kj) = argmax
K,{1,...,d}

E
j(m,k).

(c) Define

Ψj+1 :=
Φkj(ξ

m)− Φj
kj
(ξm)

‖∇Φkj(ξ
m)−∇Φj

kj
(ξm)‖L2(Y)

,

and set

Vj+1 = span {Ψi, 1 ≤ i ≤ j + 1}.

(d) j = j + 1.

Provided p is chosen large enough and V has dimension larger than N , one has as in
the previous paragraph dimVN = N .

What convergence rate can be expected in terms of N ? Going back to the example
mentioned in the previous paragraph, that is for D(ξ) = D0 + ξD1 and K a segment, the
answer is given in [7]. In particular it is proved that the exponential estimate is stable in
the sense that if the reduced basis VN is constructed starting from approximations of the
correctors {Φk(ξ), ξ ∈ K, k ∈ {1, . . . , d}} within an error e, then the error estimate is of
the form

sup
K,{1,...,d}

E
N

≤ C exp(−cN) + Ce.

In Algorithm 2 there are two origins for the error e:

• The fact that H1
#(Y) is replaced by a finite-dimensional space V, so that for all

ξ ∈ K and k ∈ {1, . . . , d}, Φk(ξ) is a finite-dimensional approximation of Φk;
• The fact that for the greedy algorithm, the argmax of the estimator is taken in K
and not in K.

The first source of error is standard and can be controlled by a priori or a posteriori
estimates. In the affine case above, the second source of error can also be estimated.
Indeed, as proved in [20], the maps Φk : K → H1

#(Y), ξ 7→ Φk(ξ) are analytic for all

k ∈ {1, . . . , d}. In particular, if K is a sampling of K with “meshsize” h, for all ξ ∈ K,
Φk(ξ) can be approximated by interpolation in

{
Φk(ξm), m ∈ {1, ..., p}

}
within an error

of order hq for any q ∈ N. Hence the practical reduced basis method remains efficient in
20
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this specific case. However, this analysis is restricted to the affine case and it does not
apply in our context.

3.2.3. About fast-assemby of the matrix. Let K, K, and N ∈ N and VN be as in Algo-
rithm 2. For all ξ ∈ K and k ∈ {1, . . . , d}, the approximation of Φk(ξ) in the reduced basis
VN is given by the unique function ΦN

k (ξ) ∈ VN such that for all ΨN ∈ VN ,
∫

Y

∇ΨN · D(ξ)(ek +∇ΦN
k (ξ)) dy = 0. (3.7)

Expanding ΦN
k (ξ) in the basis VN as ΦN

k (ξ) =
∑N

j=1 uj(ξ)Ψj , the above equation is
equivalent to the linear system

M(ξ)U = B(ξ, k),

where for all j ∈ {1, ..., N}, Uj = uj(ξ) andB(ξ, k)j = −
∫
Y
∇Ψj ·D(ξ)ek dy, and theN×N

matrix M(ξ) is given by its entries M(ξ)j1j2 =
∫
Y
∇Ψj1 · D(ξ)∇Ψj2 for all 1 ≤ j1, j2 ≤ N .

In particular, in order to compute ΦN
k (ξ), one needs to solve (3.7), and therefore construct

the matrix M(ξ) and the r. h. s. B(ξ, k).

Without further assumption on the function ξ 7→ D(ξ), the exact calculation of M(ξ)
and B(ξ, k) requires:

• the storage of the coordinates of each vector Ψj of the reduced basis VN in the
finite dimensional space V,

• the computation of integrals over Y.

In particular, both the information to be stored and the computational cost to construct
M(ξ) and B(ξ, k) scale like the dimension dim(V) of the finite-dimensional space V (which
can be prohibitively large). Yet, if ξ 7→ D(ξ) has specific structural properties, the in-
formation to be stored and the computational cost can be drastically reduced. This is
the case when ξ 7→ D(ξ) is affine. Let us go back to the example of D(ξ) = D0 + ξD1.
Then, the entries of the matrix M(ξ) and of the r. h. s. B(ξ, j) take the form: for all
1 ≤ j, j1, j2 ≤ N ,

M(ξ)j1j2 =

∫

Y

∇Ψj1 ·D0∇Ψj2 + ξ

∫

Y

∇Ψj1 ·D1∇Ψj2 dy,

B(ξ, k)j =

∫

Y

∇Ψj ·D0ek + ξ

∫

Y

∇Ψj ·D1ek dy.

In particular, provided we store the two N ×N matrices M1 and M2, and the two d×N
matrices B1 and B2 defined by: for all 1 ≤ j, j1, j2 ≤ N and k ∈ {1, . . . , d},

(M1)j1j2 =
∫
Y
∇Ψj1 ·D0∇Ψj2 dy, (M2)j1j2 =

∫

Y

∇Ψj1 ·D1∇Ψj2 dy,

(B1)kj =
∫
Y
∇Ψj ·D0ek dy, (B2)kj =

∫

Y

∇Ψj ·D1ek dy,

one may reconstruct M(ξ) and B(ξ, k) by the simple formulae

M(ξ) = M1 + ξM2, B(ξ, k) = (B1)k + ξ(B2)k,

where (B1)k and (B2)k are the k-th column of B1 and B2, respectively.
The gain is twofold:

• the dimension of the information to store is 2N2 + 2dN , which is independent of
dim(V),

21



22 A. GLORIA, T. GOUDON, AND S. KRELL

• the computation of M(ξ) and B(ξ, k) only requires N2 + N multiplications and
N2 + N additions, and not the computation of N2 + N integrals on Y (using an
integration rule which should be exact for functions of V).

The same strategy allows one to easily compute the approximation D∗,N (ξ) of the homog-

enized matrix D
∗
(ξ), via the formula: for all k, l ∈ {1, . . . , d},

ek ·D
∗,N (ξ)el =

∫

Y

(ek +∇ΦN
k (ξ)) · D(ξ)(el +∇ΦN

l (ξ)) dy

= ek

(∫

Y

D0 dy + ξ

∫

Y

D1 dy

)
el

+

N∑

j=1

uj(ξ)ek ·

(∫

Y

D0∇Ψj dy + ξ

∫

Y

D1∇Ψj dy

)
,

so that one only has to store 2d2 + 2dN real numbers to compute the approximation of
the homogenized matrix.

This fast-assembly method is very convenient and efficient, but requires the diffusion
matrix D(ξ) to be affine with respect to ξ.

3.3. Application of the reduced basis method to the homogenized system. As
said above, the evaluation of the effective coefficients for the homogenized problem involves

the parametrized matrices D̂ defined in (3.4) where the parameter ξ ranges the unboubded
set Rd. In the following paragraph we shall rewrite the problem in an equivalent form so
that we end up with a set of parameters which is compact. We address the issue of fast
assembly in the second paragraph, bearing in mind that the dependence with respect to
the parameter is not affine, and we provide with a numerical study of the method in the
last paragraph.

3.3.1. Rewriting of the problem. The starting point to rewrite the problem is the following
fact: for all ξ ∈ R

d and all k ∈ {1, . . . , d}, the corrector Φk(ξ) ∈ H1
#(Y) is solution to

−∇ ·
D̂(ξ)

1 + |ξ|
(ek +∇Φk(ξ)) = 0. (3.8)

Let Sd−1 denote the unit hypersphere in dimension d and let P = [0, 1] × Sd−1 (which is
nothing but the closed unit ball). Define

D : [0, 1] × Sd−1 −→ L2(Y,Md(R))

(ρ,X) 7−→ D(ρ,X)

by

D(ρ,X) : y 7→ (1− ρ)D0 + ρ

(
α|M(y)X|I + β

M(y)X ⊗M(y)X

|M(y)X|

)
, (3.9)

For all (ρ,X) ∈ [0, 1] × Sd−1 and k ∈ {1, . . . , d}, we define Φk(ρ,X) as the unique weak
solution in H1

#(Y) to

−∇ · D(ρ,X)(ek +∇Φk(ρ,X)) = 0. (3.10)

Let ξ ∈ R
d, and set

ρ =
|ξ|

1 + |ξ|
, X =

ξ

|ξ|
22
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so that

D̂(ξ)

1 + |ξ|
= D(ρ,X);

the identity (3.8) and (3.10) imply that

Φk(ξ) ≡ Φk(ρ,X)

by uniqueness of correctors. In particular, this shows that
{
Φk(ξ), ξ ∈ R

d, k ∈ {1, . . . , d}
}
=
{
Φk(ρ,X), (ρ,X) ∈ [0, 1) × Sd−1, k ∈ {1, . . . , d}

}
.

What we gain by applying the reduced basis method on this new formulation is that the
parameters now belong to the compact set P := [0, 1] × Sd−1.

To complete the description of the RB method, we need to choose an estimator. We
shall make use of the estimator defined in the previous subsection. Let j ∈ N and let Vj be

a subspace of H1
#(Y) of dimension j. Set for all (ρ,X) ∈ [0, 1] × Sd−1 and k ∈ {1, . . . , d},

E
j
(ρ,X, k) =

√√√√ |ek · (D
∗
(ρ,X)−D

∗,j
(ρ,X))ek |

ek ·D
∗
(ρ,X)ek

, (3.11)

where, denoting by Φ
j
k(ρ,X) the approximation of Φk(ρ,X) in Vj, we have

ek ·D
∗
(ρ,X)ek =

∫

Y

(ek +∇Φk(ρ,X)) · D(ρ,X)(ek +∇Φk(ρ,X)) dy, (3.12)

ek ·D
∗,j

(ρ,X)ek =

∫

Y

(ek +∇Φ
j
k(ρ,X)) · D(ρ,X)(ek +∇Φ

j
k(ρ,X)) dy.

Note that this estimator is consistent with the estimator associated with D̂ since we have
for all ξ ∈ R

d,

Ê

j
(ξ, k) = E

j
(ρ,X, k)

for ρ = |ξ|
1+|ξ| and X = ξ

|ξ| , the estimator Ê

j
(ξ, k) (and the matrices D̂

∗
(ξ), D̂

∗,j
(ξ)) being

defined with the matrix D̂(ξ). Since we also have for all ξ ∈ R
d

D
∗
(ρ,X) =

1

1 + |ξ|
D̂

∗
(ξ),

D
∗,j

(ρ,X) =
1

1 + |ξ|
D̂

∗,j
(ξ),

for ρ = |ξ|
1+|ξ| and X = ξ

|ξ| , it is equivalent to approximate D
∗
and D̂

∗
. We will focus on

the former in what follows.

Before we turn to fast-assembly, let us make a comment of the RB method used here.
The estimator (3.11) satisfies the second inequality of (3.6), namely there exists C2 > 0
such that for all j ∈ N, (ρ,X) ∈ [0, 1] × Sd−1, and k ∈ {1, . . . , d},

‖∇Φk(ρ,X) −∇Φ
j
k(ρ,X)‖L2(Y) ≤ C2E

j
(ρ,X, k).
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Yet the converse inequality only holds in a weaker sense. In particular, using that D
∗
(ρ,X)

and D
∗,j

(ρ,X) can be defined as

ek ·D
∗
(ρ,X)ek =

∫

Y

ek · D(ρ,X)(ek +∇Φk(ρ,X)) dy,

ek ·D
∗,j

(ρ,X)ek =

∫

Y

ek · D(ρ,X)(ek +∇Φ
j
k(ρ,X)) dy,

if M ∈ L2(Y,Md(R)) is square-integrable but not essentially unbounded, we end up with

C1E
j
(ρ,X, k) ≤ ‖∇Φk(ρ,X) −∇Φ

j
k(ρ,X)‖

1/2
L2(Y)

,

for some C1 > 0, a weaker estimate than the first inequality of (3.6). As a consequence,
the analysis of the reduced basis method and of the greedy algorithm in this case does not
follow from [12, 19, 20, 7]. Filling the gap for analyzing the convergence of the RB method
when dealing with such unbounded coefficients remains beyond the scope of the present
work. Nevertheless, the numerical experiments show the efficiency of the algorithm to
treat this case.

3.3.2. Fast-assembly procedure. In this section, we restrict our discussion to d = 2 for
notational convenience. The case d > 2 can be treated similarly. In dimension 2, the unit
sphere S1 is parametrized by [0, 2π], so that from now on, we write the element of S1 as

X = e(θ) = cos(θ)e1 + sin(θ)e2, (3.13)

and consider D as a function of ρ and θ (instead of ρ and X). The diffusion matrix
D : [0, 1] × [0, 2π] → L2(Y,Md(R)) given by (3.9), that is

D(ρ, θ) : y 7→ (1− ρ)D0 + ρ

(
α|M(y)e(θ)|I + β

M(y)e(θ)⊗M(y)e(θ)

|M(y)e(θ)|

)
,

is affine with respect to ρ, but not with respect to θ ∈ [0, 2π].
To circumvent this difficulty we use a partial Fourier series expansion in the θ-variable,

and write:

D(ρ, θ)(y) = (1− ρ)D0 + ρ

(
a0(y)

2
+

∞∑

n=1

(an(y) cos(nθ) + bn(y) sin(nθ))

)
,

where the functions y 7→ an(y) and y 7→ bn(y) are matrices which depend only on y 7→
M(y).

Given a finite-dimensional space VN = span {Ψ1, . . . ,ΨN} of dimension N ≥ 1, and
some parameters (ρ, θ) ∈ [0, 1] × [0, 2π] and k ∈ {1, . . . , d}, in order to approximate the
corrector Φk in VN , it is enough to solve the linear system

M(ρ, θ)U = B(ρ, θ, k),

where U is the vector of coordinates of Φk in VN , M(ρ, θ) is the N ×N -matrix given for
all 1 ≤ j1, j2 ≤ N by

M(ρ, θ)j1j2 = (1− ρ)

∫

Y

∇Ψj1 ·D0∇Ψj2 dy + ρ

∫

Y

∇Ψj1 ·
a0(y)

2
∇Ψj2 dy

+

∞∑

n=1

ρ cos(nθ)

∫

Y

∇Ψj1 · an(y)∇Ψj2 dy +

∞∑

n=1

ρ sin(nθ)

∫

Y

∇Ψj1 · bn(y)∇Ψj2 dy,
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and the r. h. s. is the N -vector given for all 1 ≤ j ≤ N by

B(ρ, θ, k)j = −(1− ρ)

∫

Y

∇Ψj ·D0ek dy − ρ

∫

Y

∇Ψj ·
a0(y)

2
ek dy

−
∞∑

n=1

ρ cos(nθ)

∫

Y

∇Ψj · an(y)ek dy −
∞∑

n=1

ρ sin(nθ)

∫

Y

∇Ψj · bn(y)ek dy.

In particular, provided we truncate the Fourier series expansion up to some order L ∈ N,
a fast assembly procedure can be devised if the 2(L+1) following matrices of order N and
2Lk(L+ 1) following vectors of order N are stored:
(∫

Y

∇Ψj1 ·D0∇Ψj2 dy

)

j1,j2

,

(∫

Y

∇Ψj1 ·
a0(y)

2
∇Ψj2 dy

)

j1,j2

,

(∫

Y

∇Ψj1 · an(y)∇Ψj2 dy

)

j1,j2

,

(∫

Y

∇Ψj1 · bn(y)∇Ψj2 dy

)

j1,j2

for n ∈ {1, . . . , L},

(3.14)

and for ∈ {1, . . . , d},
(∫

Y

∇Ψj ·D0ek dy

)

j

,

(∫

Y

∇Ψj ·
a0(y)

2
ek dy

)

j

,

(∫

Y

∇Ψj · an(y)ek dy

)

j

,

(∫

Y

∇Ψj · bn(y)ek dy

)

j

for n ∈ {1, . . . , L}. (3.15)

Note that the number of real numbers to be stored for the fast-assembly only depends
on L and N . In particular, if the reduced basis vectors Ψj are approximated in a finite-
dimensional subspace of H1

#(Y), this number is independent of the size of that subspace,
as desired.

In practice, once we are given the reduced basis {Ψ1, . . . ,ΨN}, the matrices (3.14) and
vectors (3.15) can be obtained by performing a fast Fourier transform of

θ 7→ α|M(y)e(θ)|I + β
M(y)e(θ)⊗M(y)e(θ)

|M(y)e(θ)|

at each Gauss point y ∈ Y to evaluate the values of an(y) and bn(y).

3.3.3. Numerical results. Let d = 2, TY,h1 ,TY,h1
be regular tessellations of Y of meshsize

h1, h1 > 0, and V1
Y,h1

,V1
Y,h1

be the subspaces of H1
#(Y) made of P1-periodic finite elements

associated with TY,h1 and T
Y,h1

, respectively. The diffusion matrix M ∈ L2(Y,Md(R)) is

defined by

M(y) = K(y)(I+∇ϕh1(y)),

where K is a standard checkerboard: for all y = (y1, y2) ∈ Y,

K(y1, y2) =

{
4.94064, if {y1 ≥ 0.5, y2 ≥ 0.5} or {y1 < 0.5, y2 < 0.5},

0.57816, elsewhere,

and ϕh1 = (ϕh1
1 , . . . , ϕ

h1
d ) is defined as in (3.1). In the actual computations, we take

h1 ∈ {1/10, 1/20, 1/40} so that dimV1
Y,h1

∼ 100, 400, 1600. The other parameters are the
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p and h1 1/10 1/20 1/40

10 41 61 61

20 41 61 61

40 49 95 175

Table 3. Dependence of L upon h1 and p

p and h1 1/10 1/20 1/40

10 21 24 25

20 23 38 44

40 24 47 60

Table 4. Dependence of N upon h1 and p

same as in Table 1. In the rest of this paragraph, we assume that the corrector equations
are solved in V1

Y,h1
, so that the reduced basis will be a subspace of V1

Y,h1
as well.

For the reduced basis method we replace the compact space P = [0, 1]× [0, 2π] by the
finite set

{
(ρi, θj), i, j ∈ {1, ..., p}

}
, with p ≥ 2, θj = j 2πp , and ρi = (i − 1) 1

p−1 . Let us

denote by DL the diffusion matrix obtained by a truncation of the Fourier series expansion
of D at order L, and let D

∗
denote the homogenized coefficients defined in (3.12) (where

the correctors Φk(ρ,X) is in fact approximated in V1
Y,h1

, and with X related to θ through

(3.13)), and let D
∗
L be defined by

ek ·D
∗
L(ρ, θ)ek =

∫

Y

(ek +∇Φk(ρ, θ)) · DL(ρ, θ)(ek +∇Φk(ρ, θ)) dy.

We choose L such that

sup
i,j∈{1,...,p}

|D
∗
(ρi, θj)−D

∗
L(ρi, θj)|

|D
∗
(ρi, θj)|

≤ 10−6.

Numerical tests show that L depends both on h1 and on p, but not on h1. As can be

expected, the smaller h1, the finer the approximation ϕh1 of the correctors ϕ of the Darcy
equation, and therefore the more complex D (it should however stabilize as h1 → 0). We
display the results of the numerical tests on L in Table 3.

For all N ≤ p2, we denote by VN the RB space of dimension N . We then choose N
such that

sup
P

(
E
N
L (ρ, θ)

)2
≤ 10−6,

where E
N
L is the estimator associated with DL and the space VN , when the equations

are solved in V1
Y,h1

. As expected, N depends both on h1 and on p, but not on h1 ∈

{1/10, 1/20, 1/40, 1/80, 1/160, 1/320} (which is the desired scaling property). The dimen-
sion N of the reduced basis in fonction of h1 and on p is displayed in Table 4.
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p and h1 1/10 1/20 1/40

10 1.3e-03 1.1e-03 1.7e-03

20 3.4e-05 1.7e-04 2.6e-04

40 8.0e-06 2.8e-05 4.1e-05

Table 5. Dependence of the RB error upon h1 and p on a random sampling

In order to check a posteriori the efficiency of the method (both in terms of L and N), we

have picked at random a set P̃ of 100 pairs of parameters (ρ, θ) ∈ [0, 1]× [0, 2π], computed

the corresponding approximations D
∗
(ρ, θ) of the homogenized coefficients in V1

Y,h1
, and

compared them to the approximations D
∗,N
L (ρ, θ) using the reduced basis method of order

N and a Fourier series expansion of D truncated at order L. The numerical tests show
that this error

sup
P̃

|D
∗
(ρ, θ)−D

∗,N
L (ρ, θ)|

|D
∗
(ρ, θ)|

does not depend on h1 but depends again on h1 and p. More precisely, the error increases
as h1 → 0 and decreases as p increases. Theses results are displayed in Table 5.

A last comment is as follows. A close look at the points which are chosen by the greedy
algorithm shows that most of the information lies in the region ρ close to 1 and θ in
[0, π] (this latter fact is indeed a consequence of the identity D(ρ, θ) = D(ρ, π − θ)). This
motivates us to put more points in this region rather than in the rest of P, and allows us
to focus on the right region of the parameters.

In conclusion, these tests widely confirm the efficiency of the method.

Note that in order to reduce the effect of the aliasing phenomena in the fast Fourier
transform, we compute twice as many coefficients as needed (that is, up to 2L for an
effective truncation of order L).

Remark 3.1. As in Remark 2.1, we can consider modulated coefficients depending on
both the the slow and the fast variables, provided the dependence with respect to the slow
variable is smooth enough. Of course price to be paid is to increase the size of the set of
parameters P accordingly.

4. Conclusion

We consider a simple model of radionuclide transport in porous media: the radionu-
clide concentration satisfies a convection–diffusion equation where the coefficients are de-
termined through the Darcy law by solving an non homogeneous elliptic equation. A
remarkable feature of the model relies on the fact that the diffusion coefficient depends
non linearly on the velocity and does not satisfy an uniform L∞ estimate.

Nevertheless, existence-uniqueness statements can be established for this model. We
can also perform the homogenization analysis but, due to the coupling, the effective coef-
ficients remain non homogeneous, even in the simple case of purely periodic oscillations.
It impacts strongly the computational cost when using direct evaluation of the coeffi-
cients. We propose an algorithm based on Reduced Basis methods in order to speed up

27



28 A. GLORIA, T. GOUDON, AND S. KRELL

the computation. The method relies on a suitable parametrization of the problem, which
in particular allows to make use of Fast Fourier Transform algorithms. Working with
unbounded coefficients is clearly identified as a difficulty for analyzing the convergence
properties of the method, but simulations demonstrate the efficiency of the scheme which
is a valuable tool for the computation of such complex flows.

Appendix A. Proof of Theorem 2

We decompose the proof into two steps and homogenize the Darcy equation and the
advection-diffusion equation separately.

Step 1. Homogenization of the Darcy equation, and two-scale convergence of Uε and
D(Uε).
By standard two-scale convergence arguments (see [1, Theorem 2.3], and see also [30]),
the function Θε two-scale converges to Θ0 and ∇Θε two-scale converges to the function
(x, y) ∈ Ω × Y 7→ (I + ∇ϕ(y))∇Θ0(x). Likewise the flux Kε∇Θε two-scale converges to

(x, y) 7→ K(y)(I + ∇ϕ(y))∇Θ0(x) = −Ũ(x, y). In order to homogenize the advection-
diffusion equation, we need the function Kε∇Θε to be an admissible test-function for
two-scale convergence, see [1, Definition 1.4]. It is enough to prove that Kε∇Θε strongly

two-scale converges to −Ũ , that is, in addition of two-scale convergence, to prove that we
have

lim
ε→0

∫

Ω
|Kε(x)∇Θε(x)|

2 dx =

∫

Ω

∫

Y

|Ũ(x, y)|2 dydx. (A.1)

This is essentially a consequence of the following convergence of the energy:

lim
ε→0

∫

Ω
∇Θε(x) ·Kε(x)∇Θε dx

=

∫

Ω

∫

Y

(∇Θ0(x) +∇yΘ1(x, y)) ·K(y)(∇Θ0(x) +∇yΘ1(x, y)) dydx,

where Θ1(x, y) =
∑d

i=1∇iΘ0(x)ϕi(y). In particular, since K is positive-definite, we may
rewrite this identity as

lim
ε→0

∫

Ω
|Kε(x)

1/2∇Θε(x)|
2 dx =

∫

Ω

∫

Y

|K(y)1/2(∇Θ0(x) +∇yΘ1(x, y))|
2 dydx,

which upgrades the two-scale convergence of K
1/2
ε ∇Θε to (x, y) 7→ K(y)1/2(∇Θ0(x) +

∇yΘ1(x, y)) into strong two-scale convergence. We now consider a sequence vε : Ω → R
d

which two-scale converges to (x, y) 7→ v0(x, y). The sequence Vε := K
1/2
ε vε then two-

scale converges to (x, y) 7→ K(y)1/2v0(x, y). Since we have proved that K
1/2
ε ∇Θε is an

admissible test-function for the two-scale convergence, we have

lim
ε→0

∫

Ω
Kε(x)

1/2∇Θε(x) · Vε(x) dx

=

∫

Ω

∫

Y

K(y)1/2(∇Θ0(x) +∇yΘ1(x, y)) ·K(y)1/2v0(x, y) dydx.

Taking vε = Kε∇Θε then proves (A.1).

We conclude this step by the proof of the strong two-scale convergence of D(Uε) to

(x, y) 7→ D̃(x, y). This is a direct consequence of [26, Proposition 4] since (x,U) 7→
28



NUMERICAL HOMOGENIZATION OF A NONLINEARLY COUPLED ELLIPTIC-PARABOLIC SYSTEM 29

D(U)(x) is a Lipschitz function with respect to U uniformly in x, and Uε strongly two-

scale converges to Ũ .

Step 2. Homogenization of the advection-diffusion equation.
In view of the results of Step 1, this is now standard matter to prove the two-scale conver-
gence of Cε to C0. The proof of Theorem 1 provides uniform bounds on Cε which gives
weak compactness. Hence, up to extraction, Cε two-scale converges to some C0, and ∇Cε

to some (x, y) 7→ ∇C0(x) +∇yC1(x, y) (time is treated as a parameter). Since D(Uε) and

Uε strongly two-scale converge to D̃ and Ũ , respectively, there is no difficulty to pass at
the two-scale limit in the equation for Cε tested with functions (t, x) 7→ ψ(t)φ(x, x/ε) and
φ ∈ C∞(Ω, C∞

per(Y)) and ψ ∈ C∞(0, T ).

It remains to note that following the arguments of Step 5 in the proof of Theorem 1,
we obtain
∫ T

0

∫

Ω
∇C0·D

∗∇C0 =

∫

Ω

∫

Y

(∇C0(x)+∇yC1(x, y))·D̃(x, y)(∇C0(x)+∇yC1(x, y)) dydx

≤ ‖Cinit‖
2
L2(Ω) + ‖S‖2L2(0,T ;H−1(Ω)),

so that (Θ0, C0) is the unique weak solution of the homogenized system, and the whole
sequence Cε converges.
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