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Abstract — We investigate super-resolution methods for image reconstruction from data provided by a family of scanning

instruments like the Herschel observatory. To do this, we constructed a model of the instrument that faithfully reflects the

physical reality, accurately taking the acquisition process into account to explain the data in a reliable manner. The inversion,

i.e. the image reconstruction process, is based on a linear approach resulting from a quadratic regularized criterion and numerical

optimization tools. The application concerns the reconstruction of maps for the SPIRE instrument of the Herschel observatory.

The numerical evaluation uses simulated and real data to compare the standard tool (coaddition) and the proposed method. The

inversion approach is capable to restore spatial frequencies over a bandwidth four times that possible with coaddition and thus

to correctly show details invisible on standard maps. The approach is also applied to real data with significant improvement in

spatial resolution.

Key words. Techniques: image processing, data acquisition modelling, inverse problem, deconvolution, super-resolution,

regularization, image processing. Methods: statistical, numerical. Astronomical instrumentation, methods and techniques

1. Introduction

Map making is a critical step in the processing of astronomi-

cal data of various imaging instruments (interferometers, tele-

scopes, spectro-imager, etc.), and two recent special issues

have been published (Leshem et al. 2010, 2008) on the sub-

ject. Because the observed sky may contain structures of vari-

ous scales, from extended emission to point sources, the chal-

lenge is to design reconstruction methods that deliver maps that

are photometrically valid for the broadest range of spatial fre-

quencies.

For long-wavelength instruments, be they ground based

(SCUBA/JCMT, LABOCA/APEX, etc.), on-board balloons

(Archeops, BLAST, etc.) or space borne (IRAS, ISO, Spitzer,

WMAP, Planck, Herschel, etc.), the task is especially challeng-

ing for two reasons. First, the physical resolution is poor at

these wavelengths. Second, the distance between the detectors

of these instruments generally prevents a proper sampling of

the focal plane, given the maximum spatial frequency allowed

by the optical response. Therefore, specific scanning strategies

have to be defined, which depend on the detector positions and
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need to be closely combined with a well designed image recon-

struction method.

The Herschel Space Observatory (Pilbratt et al. 2010) was

launched in May 2009 together with the Planck satellite. It con-

tinuously covers the 55–672µm spectral range with its very

high spectral resolution spectrometer HIFI (de Graauw et al.

2010) and its two photometers / medium resolution spectrom-

eters PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al.

2010). With a 3.5 m primary mirror, Herschel is the largest

space telescope launched to date. In order to take full advan-

tage of the telescope size, the accurate representation and pro-

cessing of the highest spatial frequencies presents a particular

challenge. To this end, two step-by-step photometer pipelines

have been developed by the instrument consortia by (Griffin

et al. 2008) for SPIRE and by (Wieprecht et al. 2009) for

PACS: they produce flux density timelines corrected for var-

ious effects, calibrated and associated with sky coordinates

(level-1 products), then produce maps (level-2 products). An

important step is the correction of the 1/f noise components,

which can be correlated or uncorrelated between bolometers.

For SPIRE, a significant fraction of the correlated component

is processed using the signals delivered by blind bolometers.

For PACS, it is currently processed using different kinds of fil-
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tering. The glitches caused by the deposit of thermal energy

by ionizing cosmic radiation are flagged or corrected. Finally,

the timeline outputs can be simply coadded on a spatial grid

to produce “naive maps”, with a rounded pointing approxima-

tion. Maximum likelihood approaches with the same coaddi-

tion algorithm, namely MADmap (Cantalupo et al. 2010) and

SANEPIC (Patanchon et al. 2008) have also been developed to

compute maps, using the spatial redundancy to correct for the

1/f noise.

There are several drawbacks to these pipelines. First, be-

cause they work on a step-by-step basis, the performance of

the whole process is limited by the step with the worst perfor-

mance. Second, the ultimate performance of one step is out of

reach because only a reduced part of the available information

is handed over from the previous step. This mean that better

perfomances can be achieved by a more global approach. More

important, the instrument and the telescope properties (mainly

the diffraction) are not taken into account, which is why the

maps are unavoidably smoothed by the Point Spread Function

(PSF), whereas the scanning strategy allows higher spatial fre-

quencies to be indirectly observed.

To overcome these limitations, we resorted to an inverse

problem approach (Idier 2008) that is based on an instrument

model and an inverson method.

– It requires an instrument model that faithfully reflects the

physical reality to distinguish in the observations between

what is caused by the instrument and what is due to the

actual sky. To this end, an important contribution of our

paper is an analytical instrument model based on a physi-

cal description of the phenomena as functions of continu-

ous variables. Moreover, it includes scanning strategy, mir-

ror, wavelength filter, feedhorns, bolometers and read-out

electronics. The point for the resolution is the following.

On the one hand, the field of view is covered by hexag-

onally packed feedhorn-coupled bolometers, the sampling

period is twice the PSF width, which potentially lead to

spectral aliasing for wide-band objects. On the other hand,

the scanning strategy with a pointing increment lower than

the bolometer spacing introduces an higher equivalent sam-

pling frequency. Therefore, it is crucial to properly take into

account the scanning strategy and the whole instrument in-

cluding irregular sampling to obtain super-resolution (see

also the analysis in (Orieux et al. 2009)). To the best of our

knowledge, a physical model of the instrument this accu-

rate has never been used in a map making method.

– The inversion of our instrument model constitutes an ill-

posed problem (Idier 2008) because of the deficit of avail-

able information induced by convolution with the instru-

ment PSF. Moreover, the ill-posedness becomes all the

more marked as the resolution requirement increases. The

inversion methods must therefore exploit other information

by regularization to compensate for the deficits in the ob-

servations. Each reconstruction method is therefore special-

ized for a certain class of maps (point sources, diffuse emis-

sion, superposition of the two, etc.) according to the infor-

mation that is included. From this standpoint, the present

paper is essentially devoted to extended emission.

The method is linear w.r.t. the data for the sake of simplicity

and computational burden. From the methodological point

of view, it is built within the framework of quadratic reg-

ularization (Tikhonov & Arsenin 1977; Andrews & Hunt

1977). It relies on a criterion involving an adequation mea-

sure (observed data vs model output) and a spatial smooth-

ness measure. From a numerical standpoint, we resort to a

gradient-based optimisation algorithm (Nocedal & Wright

2000) to compute the map.

Moreover, in as much as it relies on two sources of informa-

tion, the method is based on a trade-off tuned by means of

an hyperparameter. It is empirically set in the present paper

and work in progress, based on (Robert & Casella 2000)

and (Orieux et al. 2010), is devoted to the question of the

hyperparameter and instrument parameter auto-calibration

(myopic and unsupervised inversion).

One of the most striking results of our research is the cor-

rect restoration of small-scale structures (wide-band), which

are not detectable on naive maps. This result is reached thanks

to the developed instrument model together with the used inver-

sion: they jointly enable the proposed method to reduce instru-

ment effects, overtake instrument limitations and restore high

spatial frequencies.

In the image processing community, these capabilities are

referred to as super-resolution (Park et al. 2003) and we were

partly inspired by recent developments in this field. They are

usually based on various (scene or camera) motion or scan-

ning strategy. Some of them account for possible rotation (Elad

& Feuer 1999) and/or a magnifying factor (Rochefort et al.

2006). Other approaches introduce an edge-preserving prior

(Nguyen et al. 2001; Woods et al. 2006). These works rely on

the description of the unknown object as a function of con-

tinuous variables that is decomposed on pixel indicator basis

(Hardie et al. 1997; Patti et al. 1997), on a truncated discrete

Fourier basis (Vandewalle et al. 2007), on a family of regularly

shifted Gaussian functions (Rodet et al. 2008), or spline family

(Rochefort et al. 2006). Other approaches have been proposed,

based on shift-and-add step (Farsiu et al. 2004) followed by

a deconvolution step (Molina & Ripley 1989). Finally, sev-

eral contributions are devoted to the performance of super-

resolution approaches (Champagnat et al. 2009; Orieux et al.

2009).

The paper is organized as follows. The instrument model

describing the relationship between the measured data and the

unknown sky is presented in Section 2. Section 3 details the

method that we propose to inverse the data and compute high-

resolution maps. Finally, Section 4 presents experimental re-

sults, first on simulated data (Section 4.1), then on real data

(Section 4.2).

2. Instrument model

The prime objective of the instrument model is the reproduc-

tion of observed data taking into account the physics of the

acquisition. In addition, the reconstruction algorithms use the

instrument model many times, it is therefore necessary to adopt

hypotheses and approximations to the reduce computational
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burden. This is one of the differences to a simulator (Sibthorpe

et al. 2009; Sibthorpe & Griffin 2006), which is designed to be

run once per data set.

2.1. Physical models

2.1.1. Mode of observation

The sky, X (α, β, λ), is characterized by two spatial dimensions

(α, β) and one spectral dimension λ. To model telescope trans-

lations, we used a frame of reference defined by the instrument.

The map at the input is time-dependent and can be written

X (α, β, λ, t) = X
(
α− pα(t), β − pβ(t), λ

)
, (1)

where α and β define the central angular position of the ob-

servation and (pα(t), pβ(t)) the translations into the two direc-

tions as a function of time t.
Here, we present only the “Large map” protocol. Data

were acquired over a complete observation sequence composed

of two almost perpendicular directions and several scans back

and forth for each of the two directions. The pointing accel-

eration and deceleration phases were not included in the zone

of interest and there was no rotation during the observation se-

quence. The pointing functions are therefore written

pα(t) = vαt+ cα and pβ(t) = vβt+ cβ (2)

for scanning at a constant velocity (vα, vβ). The pointing accu-

racy is of the order of a few seconds of arc. This protocol en-

ables us to introduce spatial redundancy, which is an essential

element for the reconstruction of a sky at a resolution greater

than the detector spatial sampling period (Orieux et al. 2009;

Champagnat et al. 2009).

2.1.2. Optics

The Herschel Telescope is a classical Cassegrain instrument

with a 3.5 m diameter primary mirror and a 308 mm diame-

ter secondary mirror. The SPIRE photometer has three chan-

nels for a single field of view. The light is split by a combi-

nation of dichroics and flat-folding mirrors. The spectral chan-

nels are defined by a sequence of metal mesh filters and the re-

flection/transmission edges of the dichroics. They are centred

at approximately 250, 350 and 500µm (noted as PSW, PMW

and PLW respectively). We assumed the overall transmission

curves of the wavelength filter hk(λ), for k = 1, 2, 3, as given

by the SPIRE Observers’ Manual (no analytical form is avail-

able).

The three detector arrays contain 139 (250µm), 88

(350µm) and 43 (500µm) bolometers, each coupled to the

telescope beam with hexagonally close-packed circular feed-

horns. The beam solid angle is apodized by a bell-shaped

weight whose width increases with λ. Efforts have been made

to correctly integrate the feedhorns in the instrument model but

the detailed coupling of feedhorns on incoming radiation is, to

the best of our knowledge (Griffin et al. 2002), not fully under-

stood at present.

Our final choice as an effective PSF for the telescope cou-

pled with feedhorns was a Gaussian shape ho(α, β, λ). This

choice has two advantages: (i) it allows a closed equation for

the instrument model (see Sec. 2.2), and (ii) it agrees with the

response measured from observations of Neptune (Griffin et

al. 2010). As a first approach, we assumed isotropic Gaussians

with standard deviations σo(λ) = cλ proportional to the wave-

length since the width of the beam varies almost linearly with

the wavelength. The widths obtained are close to the FWHM

measured on the sky with 18.1′′, 25.2′′, and 36.9′′at 250µm,

350µm and 500µm, respectively (Griffin et al. 2010). The

feedhorn diameter is 2Fλ, which introduces a detector spatial

sampling period of 2Fλ (50′′for the 350µm array, or equiva-

lently with sampling frequency fs ≈ 0.02 arcsecond−1).

The output after each feedhorn is then written as a 2D con-

volution of the input X (α, β, λ, t) and the effective PSF ho in

addition to the hk wavelength filter

X lm
k (λ, t) = hk(λ)

∫∫
X (α, β, λ, t)

ho (α− αlm, β − βlm, λ) dαdβ (3)

where (αlm, βlm) is the direction pointed at by the feedhorn

(l,m), for l = 1, . . . L and m = 1, . . .M . The k subscript can

be safely removed from X lm
k since each spectral band is pro-

cessed separately. Finally, the optics was modelled as a linear

invariant system w.r.t. continuous variable.

2.1.3. Bolometers

To set up the bolometer model, we took the thermal model of

(Sudiwala et al. 2002), which was also used in the simulator

developed by (Sibthorpe et al. 2009). Bolometers absorb the

entire received radiation

P lm(t) =

∫

λ

X lm(λ, t) dλ, (4)

and this power provides the system excitation. The temperature

T lm(t) determines the system output. The link between the in-

put P (t) and the response T (t) is described by the differential

equation deduced from a thermal balance,

C
dT

dt
−
R(T )V 2

p

R2
c

+
G0

T ν
0 (ν + 1)

(
T ν+1 − T ν+1

0

)
= P,

where C is the heat capacity of the bolometer, R(T ) is its re-

sistivity, T0 is the temperature of the thermal bath, ν is a physi-

cal parameter that depends on the bolometer, G0 is the thermal

conductance (at temperature T0) and Vp and Rc are the polar-

ization voltage and charge. No explicit solution of this equation

is available in the literature. Sudiwala’s approach (Sudiwala

et al. 2002), which we adopted here, is to linearize this equation

around an operating point (T̄ , P̄ ). In the following, we consider

only the variable part of the flux and exclude the constant part

that defines the operating point. All constants are defined with

respect to the operating point.

For SPIRE, most of the observations should be carried out

in the linear regime (Griffin 2006, 2007). We therefore consid-

ered that a development is sufficient to model the bolometer

behaviour correctly. Then, knowing the variations of the resis-

tivity R(T ) with temperature, it is possible to determine the
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tension at the terminals. This first-order development models

the bolometer as a first-order, low-pass filter with an impulse

response

hb(t) = S exp [−t/τ ] , (5)

where the gain S and the time constant τ depend on the phys-

ical parameters in the differential equation (Sudiwala et al.

2002). The values of these parameters are defined with respect

to the operating point and correspond to the official SPIRE

characteristics (Griffin 2006, 2007). The output voltage around

the operating point can then be written as a function of the in-

cident flux,

ylm(t) =

∫

t′

∫

λ

X lm(λ, t′)hb(t
′ − t)dt′ dλ . (6)

Finally, downstream, we have the read-out electronics,

composed of several stages (modulation, amplification, low-

pass filter, demodulation, quantification). However, except for

the low-pass filters, they seem to have negligible effects to the

other elements and are not included in our model. The equa-

tions are nevertheless available (Griffin 2007) and it is possible

to integrate them into the model.

The low-pass filters introduce a delay on the data with re-

spect to the telescope position along the scan. As a trade-off

between model accuracy and computational burden, we have

chosen to model the combination of the low-pass filter and

the bolometer as a unique first-order filter. The time constant1

value (0.2 s) is taken to be representative of the combination.

Finally, we accounted for regular time sampling that takes

the values at times t = nTs (with a sampling frequency Fs =
1/Ts ≈ 30Hz) and then ynlm = ylm(nTs), for n = 1, . . . N .

Given the scanning speed of 30′′s−1 this induces a spatial sam-

pling period of 2′′ between two succesive time samples for one

bolometer, while the detector sampling period is 50′′ for the

350µm array.

2.1.4. Complete model equation

Adding these elements yields the equation of the acquisition

chain. For a spectral channel k, the time signal at the bolometer

(l,m) at time n is

ynlm =

∫∫
hk(λ)

∫∫
X
(
α− pα(t), β − pβ(t), λ

)

ho(α− αlm, β − βlm, λ) dα dβ hb(nTs − t) dλ dt. (7)

This equation introduces four integrals: two from the optics

(spatial convolution), one from the spectral integration, and one

from the time convolution. This is the fundamental equation of

the instrument model since it describes the data ynlm bolometer

by bolometer at each instant as a function of the sky X (α, β, λ).
It should be noted that this model includes the discretization

process (and possible aliasing) in the sense that the data ynlm is

a discret set and X is a function of continuous variables.

1 For the illustration on real data in Section 4.2, the correction

of the low-pass filter was performed using the Herschel Interactive

Processing Environment (Ott 2010), and the time constant of the first-

order low-pass filter was set to the time constant for the bolometer

alone (5.7 ms).

2.1.5. Super-resolution sky model

The model of the sky is an important element for the recon-

struction method. As stated in the introduction and presented

in Section 2.1.1, the sub-pixel scanning strategy should allow

for reverse aliasing and enable to estimate a super-resolved

sky (Orieux et al. 2009). The model of X must therefore be

suitable for super-resolved reconstruction and, in particular, al-

lows a fine description of the physical reality and integration

with the instrument model.

Firstly, unlike conventional models of SPIRE (Sibthorpe

et al. 2009; Cantalupo et al. 2010), we considered the sky spec-

trum within each channel. The emission observed by SPIRE is

mainly caused by thermal equilibrium (between emission and

absorption of UV and visible photons from incident radiation),

and the intensities can be written

Iλ = τλ0
×
(
λ

λ0

)−β

×Bλ(T ), (8)

where τλ0
is the optical depth at wavelength λ0, β is the spec-

tral index, Bλ is the Planck function, and T the dust tempera-

ture. The SPIRE data alone do not allow the proper measure-

ment of the dust temperature (the combination of SPIRE and

PACS is mandatory, (Abergel et al. 2010)), consequently we

decided to exclude the dust temperature in our sky model and

work in the Rayleigh-Jeans approximation, so that Bλ(T ) ∝
λ−4. Moreover, we assumed β = 2, which is the “standard”

value of the diffuse ISM (e.g., (Boulanger et al. 1996)). Finally,

we have

X (α, β, λ) = λ−̺X (α, β) (9)

with ̺ = 6. However, as we will see in Section 2.2, the wave-

length integration of the acquisition model will be performed

numerically. In other words, the spectrum profile can be set ad-

equately with the available knowledge of the observed sky.

Secondly, X (α, β) was generated onto a family of func-

tions regularly shifted in space: ψij(α, β) = ψ(α − iδα, β −
jδβ) where ψ is an elementary function and (δα, δβ) are the

shifts between the ψij in (α, β). We then obtain

X (α, β) =
∑

ij

xij ψ(α− iδα, β − jδβ), (10)

where ψ is the generating function and xij are the coefficients.

In addition, the axis α is determined by the first scan of the

observation.

One of the purposes of this model is to describe maps with

arbitrary fine details, that is to say, arbitrary wide band. Within

this model, the usual function ψ is the cardinal sine with shift

and width adapted to the target band. However, cardinal sines

require analytical calculations that cannot be made explicit. To

lighten the computational burden, we chose Gaussian ψ func-

tions. These functions are parametrized by their spatial shifts

(δα, δβ) and their standard deviations (σα, σβ). The parameters

(δα, δβ) are chosen to be equal to the inverse of the target band

width as for the cardinal sines. In the numerical processing of

Section 4, the values of (δα, δβ) are equal to the sampling pe-

riod of 2′′ induced by the scanning scheme of the “Large map”

protocol (Orieux 2009). For the Gaussian function width pa-

rameters (σα, σβ), we determined the value that minimizes the
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difference between the width at half-maximum of the cardinal

sine and the Gaussian: σα/β ≈ 0.6 δα/β in a similar manner in

α and β.

2.2. Explicit calculation of the acquisition model

Given the linearity of the instrument model (7) and the sky

model (9)-(10), the instrument output for a given sky is

ynlm =
∑

ij

xij

∫
λ−̺hk(λ)

∫∫
ho(α− αlm, β − βlm, λ)

ψ
(
α−iδα−pα(t), β−jδβ−pβ(t)

)
dαdβ hb(nTs−t) dt dλ .

(11)

Thus, to obtain the contribution of a sky coefficient xij to a

data item ynlm, it is necessary to calculate four integrals, whose

discretization by brute force would result in time-consuming

numerical computations.

Concerning the optics, the convolution of the function ψ
with the optical response ho appears in Eq. (11) and, because

these are Gaussians, the convolution can be made explicit

∫∫
ψ
(
α−iδα−pα, β−jδβ−pβ

)
ho(α−αlm, β−βlm) dαdβ

∝ exp

[
− (pα + iδα − αlm)2

2Σ2
α

− (pβ + jδβ − βlm)2

2Σ2
β

]
(12)

with, in a similar manner in α and β: Σ2
α/β = σ2

α/β + σ2
o .

For the integral over time, only the constant velocity phases

can be explicitly described for the “Large map” protocol. To

integrate over time in (11), we used the expressions of (2) for

pα(t) and pβ(t), which gives

∑

ij

xij

∫
λ−̺hk(λ)

∫
exp

[
− (vαt+ cα + iδα − αlm)2

2Σ2
α

]

exp

[
− (vβt+ cβ + jδβ − βlm)2

2Σ2
β

]
hb(nTs − t) dt dλ . (13)

It can be shown that explicit integration can be performed by

including the Gaussians and the bolometer response (see details

of the calculations in appendix B, and the model becomes

ynlm =
S

2
√
2πΣv

∑

ij

xij

∫
λ−̺hk(λ)

erfcx

(
ΣαΣβ√
2τΣv

− Σβvα(oα + nTsvα)√
2ΣαΣv

− Σαvβ(oβ + nTsvβ)√
2ΣβΣv

)

exp

[
− (oα + nTsvα)

2

2Σ2
α

− (oβ + nTsvβ)
2

2Σ2
β

]
dλ. (14)

In this equation, the angles oα and oβ are defined by oα =
cα + iδα − αlm and oβ = cβ + jδβ − βlm. Moreover, Σ2

v =
Σ2

βv
2
α +Σ2

αv
2
β .

The data point ynlm does not depend directly on the “scan-

ning time” t because it is integrated. It depends on time

through the sampling instant n occuring only in nTsv{α,β},

i.e. a distance. In practice, the sampling period along the scans

Ts
√
v2α + v2β is much shorter than the sampling period of the

detecteor array. Thus, this properly modelled sampling scheme

is a key element for reconstruction with an higher resolution.

In addition, the time constant of the bolometer and the elec-

tronics τ appears only in the argument of the function erfcx. It

is consequently through this function that the bolometers and

the electronics influence the spatial response.

The dependence on the wavelength through σo(λ) pre-

cludes explicit integration with respect to λ. However, the inte-

gral depends neither on the data nor on the unknown object but

only on the protocol. Accordingly, for a given protocol, these

integrals can be calculated once and for all. Finally, the work

described above allow three explicit intergration of the four in-

troduced by the initial model.

Eq. (14) models the acquisition of the data item ynlm at time

n by bolometer (l,m) from the coefficients xij . These equa-

tions can be written

ynlm =
∑

ij

xij Hlmn(ψij), (15)

where H is calculated from Eq. (14). The model is linear and

we can therefore write

y = Hx, (16)

where y and x are vectors of size LMN and IJ , and H

is a LMN × IJ matrix, each row of which can be deduced

from (14) by varying l,m, n for fixed i, j.

2.3. Invariant structure

Initially, the physical model (7) is based on convolutive (so in-

variant) transforms w.r.t. continuous variables. However, the

discretization operation is inhomogeneous, consequently the

invariance property does not hold anymore, which lead to long

computational time. Nevertheless, the trace of this initial in-

variance can still be perceived because H is a sum of terms

at different spatial positions of the Gaussians (cf. Eq. (14)).

Because the problem is now discretized, we seek to bring out

an invariance by quantified shifts in

cα + iδα + nTsvα − αlm

for the α direction, and similarly for β. With the approxima-

tion that the terms are multiples of a common factor ∆α, the

continuous shift is

oα + nTsvα = (n0 + in1 + nn2 − ln3 −mn4)∆α .

The pointed directions are therefore rounded to match the grid

of sky. The MADmap and SANEPIC methods use this idea

but there is a notable difference: they perform the operation

on a low-resolution grid, which limits the map resolution. In

contrast, the developments proposed here exploit the idea of a

high-resolution grid, enabling super-resolution reconstruction.

By acting in the same way in the β direction, we have

ynlm =
∑

ij

xij H
(
(n0 + in1 + nn2 − ln3 −mn4)∆α,

(n′
0 + in′

1 + nn′
2 − ln3 −mn4)∆β

)
(17)
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and by computing the discrete convolution, we obtain

ỹ(i′, j′) =
∑

ij

xij H
(
(i− i′)∆α, (j − j′)∆β

)
. (18)

Therefore, ynlm = ỹ(i′, j′) if, and only if,

i− i′ = in1 + ln3 +mn4 − nn2 − n0 (19)

j − j′ = jn′
1 + ln3 +mn4 − nn′

2 − n′0 . (20)

In these conditions, the data y, for a given scanning direction

are computed by discrete convolution (18) followed by (in-

homogeneous) down-sampling defined by (19)-(20), which is

much more efficient than using a generic linear model (16).

First of all, the decomposition by convolution then decimation

is faster than the direct calculation and, what is more, the con-

volution can be computed by FFT. Finally, given that only the

impulse response is necessary, there is no need to compute and

store all elements of the matrix.

In this form, some computations may be made even though

they are useless, because the convolution is performed for all

indices, whereas only some of them are used. In practice, the

excess computation is reduced because we chose shifts (δα, δβ)
close to the sampling period induced by the scanning scheme.

Almost all convolution results are observed, from 1 to 7 times

for PSW as illustrated in Fig 1.

There is, however, the disadvantage that the bolometer po-

sitions are approximated. Yet these positions are important be-

cause they allow to best exploit the data and to properly manage

the information needed to estimate high frequencies. We chose

a step ∆ that is close to the sampling period along the scan, i.e.

∆ ≈ 2′′. The error introduced is therefore small. This can be

seen to be all the more valid when we consider the expected

level of noise and telescope pointing errors, which are of the

same order of magnitude, 2′′.
Finally, the initial model (16) is decomposed in the discrete

convolution defined by (18) following the (inhomogeneous)

down-sampling defined by (19)-(20), that is to say, H is fac-

torised and

y = Hx = PHcx, (21)

where Hc is a convolution matrix and P a pointing matrix

that takes the values observed after convolution. It has one,

and only one, “1” per row because each data item can only

come from one position. Some columns may be entirely zero

because certain coefficients may not be observed. Conversely,

some columns may contain several “1” because certain coeffi-

cients may be observed several times.

To summarize, using an approximation of the pointed di-

rection, we have separated the model H into two sub-models

H = PHc, where Hc is invariant and P contains the non-

invariant structure. This decomposition is broadly similar to the

one generally found in super-resolution in the field of image

processing (see references in the introduction).

Fig. 1 presents this decomposition for the PSW detector

with a velocity of 30′′/s towards the left: spatial redundancy

contained in P (the blacker the pixel, the more often it was

observed) and spatial impulse response (the time response of

the bolometer and the electronics is clearly visible as the spatial

extent of the Gaussian lobe).

Figure 1. Factorised physical model (PSW detector, velocity of 30′′/s

towards the left): map of spatial redundancies P (left) and spatial im-

pulse response Hc (right). The spatial scales are different for better

visualisation of the impulse response.

2.4. Conclusion

We have constructed a linear instrument model from the phys-

ical description of the phenomena involved during acquisition:

scanning, optics, filters, bolometers, and electronics were taken

into account, together with a description of the sky in contin-

uous variables in the three dimensions. We next explicitly de-

scribed certain calculations and approximated the model in a

factorised form to lighten the numerical computational burden.

The proposed model differs from those currently used in

SANEPIC (Patanchon et al. 2008) or MADmap (Cantalupo

et al. 2010) in that it includes the physics of acquisition.

Moreover, unlike monochromatic models (Sibthorpe et al.

2009), the sky model extends spectrally across the whole chan-

nel. Again, unlike (Sibthorpe et al. 2009), our bolometer model

is linearized, which simplifies the developments and allows the

bolometer time response to be made explicit.

Finally, the consistent, global definition of the acquisition

allows the over-sampling to be directly exploited and a process-

ing method to be designed that uses these properties to estimate

the sky at higher resolution than the detector sampling period.

3. Data inversion for high-resolution maps

The previous section was dedicated to the instrument model

and we deduced the relationship between the measured data z

and the unknown sky X or its coefficients x through

z = HX + o+ n = Hx+ o+ n . (22)

The matrix H is relatively complex and high-dimensional, but

the forward model (16) remains linear. The terms o and n ac-

count for measurement and modelling errors and quantify the

data uncertainties. The term o is the noise mean (offset) and

n is a zero-mean white and stationnary Gaussian noise with

variance σ2
n. We assumed that each bolometer denoted b is af-

fected by an unknown offset ob. Eq. (16) can be rewritten for

the bolometer b

zb = Hbx+ ob + nb, (23)

where zb contains data from bolometer b, Hb is the correspond-

ing part of the instrument model and (nb, ob) accounts for er-

rors of the bolometer b. This section presents the method to

estimate the unknown x and the offsets o from the data z.

We tackled the map-making question in an inverse prob-

lem framework. Abundant literature is available on the sub-

ject (Idier 2008; Demoment 1989; Tikhonov & Arsenin 1977;

Twomey 1962). As presented in the previous section, the instru-

ment model embeds convolutions and low-pass systems. The

inverse problem is ill-posed (Park et al. 2003) and this is par-

ticularly true when super-resolution is intended. In this context,

a naive inversion, such as a least-squares solution, would lead

to an unacceptably noisy and unstable solution.
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A usual class of solutions relies on regularization, i.e. the

introduction of prior information on the unknown object x to

compensate for the lack of information in the data. A con-

sequence of regularization is that reconstruction methods are

specific to a class of (sky) maps, according to the introduced

information. From this standpoint, the present paper considers

extended sources and relatively spatially regular maps.

Since it is defined as a function of continuous variables, the

regularity can be measured by the squared energy2 of deriva-

tives of X . For first derivatives in both directions, it can be

shown (see appendix A) that

∥∥∥∥
∂X (α, β)

∂α

∥∥∥∥
2

+

∥∥∥∥
∂X (α, β)

∂β

∥∥∥∥
2

= xt (Dα +Dβ)x, (24)

where D = Dα + Dβ is obtained from the sum of the auto-

correlation of the derivative of ψ with respect to α and β and is

similar to a discrete gradient operator. This relation illustrates

the equivalence between the measure on the continuous func-

tion X and the measure on coefficient x, thanks to the use of a

Gaussian generating function.

With the regularity measure (24) and the white Gaussian

model hypothesis for n, the regularized least-squares criterion

is

JX (X ,o) = ‖z −HX − o‖2+

µ

(∥∥∥∥
∂X (α, β)

∂α

∥∥∥∥
2

+

∥∥∥∥
∂X (α, β)

∂β

∥∥∥∥
2
)
. (25)

Another consequence of ill-posedness and regularization is the

need to tune the compromise between different sources of in-

formation. The hyperparameter µ tunes this trade-off. With

Eq. (22) and (24), we obtain a regularized least-squares cri-

terion that depends only on the coefficients

Jx(x,o) = ‖z −Hx− o‖2 + µxtDx, (26)

The desired map is defined as the minimizer

x̂, ô = argmin
x,o

Jx(x,o).

As a consequence X̂ (α, β) =
∑

ij x̂ij ψ(α− iδα, β − jδβ), is

the optimum of the criterion Eq. (25).

Remark 1. A Bayesian interpretation of criterion (26) is a

Gaussian posterior law with Gaussian iid likelihood, Gaussian

correlated prior and flat prior law for o. An advantage of the

Bayesian interpretation is the ability to derive an uncertainty

around the maximum through the variance (see Sec. 4) of the

posterior law. Another important advantage of the Bayesian in-

terpretation deals with the estimation of hyperparameter and

instrument parameters (Orieux et al. 2010).

The proposed algorithm for the computation of x̂ and ô is

an alternating minimization algorithm: after an initialization,

the following two steps are iterated

2 As an alternative, a non-quadratic norm of the derivative, e.g. con-

vex penalty, could also be used. Its interest is less penalization of high

gradients in the map. Unfortunately, the measure on coefficients is no

more explicit.

1. Find x̂ for fixed o

x̂k+1 = argmin
x

‖z −Hx− ôk‖2 + µxtDx (27)

2. Find ô for fixed x

ôk+1 = argmin
o

‖z −Hx̂k+1 − o‖2 (28)

until a criterion is met. For fixed x, the solution is straightfor-

ward and ôb is the empirical mean of the residual zb−Hbx for

each bolometer separately. For fixed o, the solution Eq. (27) is

unique and explicit

x̂ =
(
HtH + µD

)−1
Ht(z − o) . (29)

The estimator is linear w.r.t. data z. Unfortunately, since H is

not circulant, x̂ cannot be computed with a “brute force” algo-

rithm: the practical inversion of the Hessian matrix HtH+µD
is impossible (the size of this matrix is the square of the number

of coefficients x). The proposed solution relies on an iterative

conjugate gradient descent algorithm (Nocedal & Wright 2000;

Shewchuk 1994). The most expensive part is the computation

of the product between the matrix HtH and the current point

xk and it can be efficiently computed based on FFT, decima-

tion, and zero-padding (see appendix C).

4. Experimental results

This part illustrates the improvement that our approach can

bring w.r.t. to the standard approach based on coaddition first

using simulated data and then with actual data transmitted by

Herschel.

4.1. Simulated data

4.1.1. Experimental protocol

We chose three 20′ × 20′ maps used by the SPIRE consortium

to assess reconstruction methods (Clements et al. 2006): a map

of galactic cirrus (Fig. 3) complying with the a priori regularity

model, a map of galactic cirrus superimposed on point sources

(Fig. 6), and a galaxy map (Fig. 7).

We studied the PMW channel and the “Large Map” proto-

col with three scans in each direction and a velocity of 30′′/s.

The data were generated using a simulated map of coefficients

x and (Clements et al. 2006) the instrument model (16), con-

sidering for this simulation part that the bolometers are not af-

fected by any offset. We used a flat spectrum (̺ = 0 in Eq. (9))

for the simulations and the inversions. The noise is zero-mean

white Gaussian with three levels characterized by their stan-

dard deviation σn (“standard noise” hereafter), 10σn (“high

noise”) and 0.1σn (“low noise”). The standard deviation is the

same for all bolometers and, unless stated otherwise, all data

sets were generated with the same noise realization.

The proposed reconstruction for the 20′ × 20′ maps per-

formed using δα = δβ = 2′′, i.e. maps of 600 × 600 coeffi-

cients. We compare our results with the map obtained by coad-

dition, with 6′′ as pixel size.

In agreement with Section 3, the map was reconstructed

as the minimizer of criterion (25)-(26) and the minimization
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was performed by a conjugate gradient algorithm with optimal

step size. The value of the criterion decreases at each iteration

and a few tens of iterations appear to be sufficient to reach the

minimum.

In the simulated cases, the original map (the “sky truth”)

is known, accordingly, we can quantitatively assess the recon-

struction through an error measure defined by

E =
∑

i,j

|x∗ij − x̂ij | /
∑

i,j

|x∗ij |, (30)

where x∗ and x̂ are the coefficients of the true map and the

reconstructed map.

Figure 2. Reconstruction error E vs regularization parameter µ for of

cirrus with “standard noise”. The minimum error is Emin = 0.08 for

the proposed method, while E = 0.12 for µ = 0.

The estimate x̂ depends on the regularization parameter, as

illustrated in Fig. 2. A non-zero optimum value µopt appears

(here ∼ 1012) for which E is a minimum, which confirm the

interest of the regularization. A value lower than 1011 leads

to an under-regularized map and a value greater than 1013 to

an over-regularized one. In the following, it is, of course, the

optimal value that is used to reconstruct the maps. Also, it ap-

pears empirically that µ needs to vary by a factor 2 around µopt

to obtain a noticeable modification of the map. This result is

confirmed in Fig. 2, where the minimum is not very marked

compared to the horizontal scale.

Fig. 2 also illustrates the improvement provided by the re-

gularization: the errors for the non-regularized and optimum-

regularized maps are 0.12 and 0.08 respectively.

4.1.2. Restoration of galactic cirrus

Fig. 3 summarises the results concerning the cirrus in the “stan-

dard noise” case. The proposed map is very close to the true

one. Our method restores details of small spatial scales (with

spectral extension from low to high frequency) that are in-

visible on the coaddition but present on the true map (see

the profiles in Figs. 3(d) and 3(e), especially the fluctuations

around pixels 250 and 350). In addition, our method also cor-

rectly restores large-scale structures, which correspond to low-

frequencies down to the null frequency (mean level of the map).

We conclude that our method properly estimates the photome-

try.

Remark 2. Moreover, the reconstruction method is linear with

respect to the data (see Section 2), which means that the use of

arbitrary units is valid.

To quantify the gain in correctly restored bandwidth, we

considered the power spectra of the maps (Fig. 4) for the

true sky, the sky convolved with the PSF ho (see Sect.

2.1.2), the coaddition, and the proposed sky. As mentioned

in Section 2.1.2, the sampling frequency of the detector is

fs ≈ 0.02 arcsecond−1. Consequently the acquired data

during one integration cannot correctly represent frequen-

cies above fs/2 ≈ 0.01 arcsecond−1. We have also seen in

Section 2.1.2 that the FWHM of the PSF is 25.2′′at 350µm,

i.e. a cutoff frequency of the optical transfer function of ≈
0.04 arcsecond−1. The attenuation effect of the convolution

by the PSF on the true map is visible the power spectra of

the convolved and coaddition maps for all frequencies above

≈ 0.008 arcsecond−1 (Fig. 4).

The power spectrum of the proposed map perfectly fol-

lows the power spectrum of the true map, from the null fre-

quency up to a limit frequency that depends on the noise

level. In the “standard noise” case (Fig. 4(a)) this limit is

0.025 arcsecond−1, that is to say, almost three times the limit

frequency of each integration (fs/2 ≈ 0.01 arcsecond−1). It

illustrates that our method also takes full advantage of the high-

frequency temporal sampling. In any case and compared to the

coaddition, we have multiplied the spectral bandwidth by a fac-

tor ≈ 4 (starting from the null frequency) where frequencies

attenuated by the optical transfer function are accurately in-

verted.

Our method also yields the uncertainties through the

Bayesian interpretation (see remark 1), from the standard de-

viation σ̂ of the a posteriori law (Figs. 5(a) and 5(b)). The un-

certainties increase as we move away from the centre of the

map because the data contain less information. Moreover, we

see in Fig. 5(c) that the true map is inside a ±3σ̂ interval around

the estimated map. In the Fourier space (Figs. 5(d)), up to the

0.03 arcsecond−1, the true power spectrum is inside a ±3σ̂ in-

terval around the estimated power spectrum.

The possibilities of restoring frequencies obviously depend

on the noise levels, as illustrated in the spectra shown on

Fig. 4. When the noise level is lower, it is possible to restore

slightly higher frequencies: up to 0.03 arcsecond−1 for “low

noise”, compared to 0.025 arcsecond−1 for “standard noise”.

Conversely, in the case of “high noise”, our method no longer

restores the frequencies attenuated by the optical transfer func-

tion Fig. 4(b). The deconvolution effect is reduced and the es-

sential effect is one of denoising. Nevertheless, the proposed

method gives better (or equivalent) results than coaddition in

all cases.

4.1.3. Other types of sky

Our method is based on spatial regularity information but to

assess its robustness as it is, we tested it with two other types

of sky in which the spatial regularity is less pronounced: galac-

tic cirrus superimposed on point sources, and a galaxy image

(Figs. 6 and 7).

The coaddition map (Fig. 6(c)) is smoother than the pro-

posed one (Fig. 6(b)), and several point sources are visible on

the proposed map but not on the coaddition one. The ampli-

tude of point sources is underestimated but markedly less so by

the proposed method than by coaddition (Figs. 6(d) and 6(e)).

Rebounds also appear around the point sources, a feature char-

acteristic of linear deconvolution (resulting from a quadratic

criterion).
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Figure 3. Comparison of results. Fig. 3(a) shows the true map, Fig. 3(b) presents the proposed map and Fig. 3(c) the coaddition. A horizontal

profile is shown in Fig. 3(d) and Fig. 3(e) gives a zoom.

(a)
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noise

(b)

High

noise

(c)

Low

noise

Figure 4. Circular means of power spectra for the three levels of noise (standard deviations: σn, 10σn and 0.1σn). The parameter µ is chosen

to be optimal each time from the point of view of the error E (Eq. (30)).
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Figure 5. Uncertainty provided by the a posteriori standard deviation σ̂. Fig. 5(a) shows the map of the standard deviation for each pixel and

Fig. 5(b) gives a profile. Fig. 5(c) shows a profile of the true map as a solid line and the two dashed lines give a ±3σ̂ interval around the

estimated map. Fig. 5(d) shows the power spectrum of the true map as a solid red line and the two dashed lines give a ±3σ̂ interval around the

estimated power spectrum in the “standard noise” case.

The galaxy does not contain any point source but has spatial

structures that are more complex than the galactic cirrus. These

structures are considerably better restored by our method than

by coaddition (Fig. 7) and it is particularly clear around pixels

250 and 300.

In conclusion, the proposed method is flexible and shows

a good restoration capacity for various types of maps. In par-

ticular, it possesses a certain robustness compared to an input

sky presenting characteristics that are poorly taken into account

by the a priori model based on regularity information. It pro-

vides a sky that is closer to the real one than that obtained by

coaddition, even in the least favourable cases.

4.2. Processing real data

We conducted tests with real data of the reflection nebula

NGC 7023 and of the Polaris flare (which is a high Galactic

latitude cirrus cloud) performed during the science demonstra-

tion phase of Herschel and already presented in (Abergel et al.

2010) and (Miville-Deschênes et al. 2010), respectively. In or-

der to run our algorithm, we took the level-1 files processed us-

ing HIPE. The true sky is not known, of course, so the value of

the regularization parameter was fixed for each of the spectral

channels by a trade-off between the gain in spectral resolution

and the amplification of the noise.

Figs. 8 to 12 illustrate the results for NGC 7023 and the

Polaris flare. The gain in spatial resolution is spectacular in

the three channels. It is interesting to note that the map of

NGC 7023 obtained by our method in the longest wavelength

channel (500µm, PLW channel) shows spatial structures that

are not visible in the coaddition but are real since they are

visible at shorter wavelengths (250µm, PSW channel), as il-

lustrated for instance in the right panel of Fig. 9. The same

panel also shows that negative rebounds appear on the sharpest

side of the brightest filament of NGC 7023. This filament is the

narrowest structure of the map and its width is comparable to
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Figure 6. Restoration of cirrus superimposed on point sources.
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Figure 7. Restoration of galaxy.

Figure 8. Central part (23′
×23′) of NGC 7023 in the three channels PSW, PMW and PLW (left, middle and right, respectively). Top panels:

coadded maps; bottom panels: proposed maps.

the width of the PSF. Similar rebounds were also seen in our

simulations with point sources (Fig. 6). The Polaris flare does

not contain comparable bright and narrow filament, so the pro-

posed map does not present this kind of artefact. The zoom on

a 10′×10′ square (Fig. 11) illustrates the gain in angular reso-

lution for faint structures.

Fig. 12 shows that the power spectra of the proposed maps

of the Polaris flare in the three channels follow the expected

power law that is typical of the infrared emission of high

Galactic cirrus P (k) α kγ with γ = −2.7 (e.g., (Miville-

Deschênes et al. 2010)) on a frequency range from 10−3 to 3×
10−2 arcsecond−1. For the simulated data of our Section 4.1,

the attenuation effect of the convolution by the PSF is accu-

rately inverted up to the frequency where the noise is domi-

nant. Thanks to this correction, the contrast of the small-scale

structures is enhanced (Figs. 10 and 12) w.r.t. the coaddition,

since the energy of each structure is put in a shorter number of

pixels than for the coaddition. At smaller frequencies, (Miville-

Deschênes et al. 2010) have shown that the SPIRE spectra are

attenuated compared to IRAS, which is likely owing to the cor-

rection of 1/f noise attributed to thermal drifts in the prepro-

cessing of the data.

5. Conclusion

We have proposed a new method for super-resolved image re-

construction for scanning instruments and its application to the

SPIRE instrument of the Herschel observatory.

The first key element is an instrument model that describes

the physical processes involved in the acquisition. To explain

the data in a reliable way, our model combines the descriptions

of three elements: (i) the sky as a function of continuous vari-

ables in the three dimensions (two spatial and one spectral),

(ii) the optics and the rest of the instrumentation (bolometer,

electronics, etc.) and (iii) the scanning strategy. We thus arrived

at a linear model in integral form (Eq. (7)). We then wrote it

in a matrix form (Eq. (16)) by making certain calculations ex-

plicit. Next, by coming close to the pointed directions (on a fine

grid), we decomposed it into a convolution followed by inho-

mogeneous down-sampling (Eq. (21)). This model provides a

faithful link between the data, the sky actually observed, and

the instrument effects.

On the sole basis of this instrument model and the data,

the inversion is an ill-posed problem, especially if resolution

enhancement is desired. The lack of information brought by

the data, considering the limitations of the instrument, leads

to instability of the inversion, which is all the more noticeable
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Figure 9. Profiles along the three sections shown in the top left panel of Fig. 8. Each panel shows the profiles within the PSW, PMW and PLW

channels, offset for clarity from bottom to top, respectively. Left panel: horizontal profile; central and right panels: vertical profiles. Black:

coadded maps, blue: proposed maps.

Figure 10. 85′
×110′ rectangle in the Polaris flare for the PSW channel (the total field observed during the science demonstration phase of

Herschel is presented in (Miville-Deschênes et al. 2010)). Left panel: coadded map. Right panel: proposed result.

when the target resolution is high. This difficulty is overcome

by a standard regularization method that constitutes the second

key element. The method relies on spatial regularity informa-

tion introduced by quadratic penalisation and on a quadratic

data attachment term, the trade-off being governed by a regu-

larization parameter. Thus, the inversion is based on a relatively

standard linear approach and its implementation uses standard

numerical optimization tools (conjugate gradient with optimal

step).

The presented results for the SPIRE instrument illustrate,

for simulated and real data, the potential of our method.

Through the use of the accurate instrument model and a pri-

ori regularity information, we restored spatial frequencies over

a bandwidth ∼ 4 times that obtained with coaddition. In all

channels, the attenuation by the optical transfer function is ac-

curately inverted up to the frequency where the noise is domi-

nant. The photometry is also properly restored.

A future work will focus on the question of hyperparame-

ter and instrument parameter estimation, that is to say, unsu-

pervised and myopic problems. We have a work in progess

about this problem and it is developed in a Bayesian frame-

work and resorts to an Markov Chain Monte-Carlo algorithm.

Moreover, an estimation of the correlation matrix parameters

(cutoff frequency, attenuation coefficients, spectral profile, etc.)

could be achieved for the object or the noise (typically for the

1/f noise).

From another perspective, quadratic prior is known for

possible excessive sharp edge penalisation in the restored

object. The use of convex L2 − L1 penalisation (Künsch

1994; Charbonnier et al. 1997; Mugnier et al. 2004; Thiébaut

2008) can overcome this limitation, if needed. Moreover,

the proposed method can be specialized to deal with con-

struction/separation of two superimposed components: (i)

an extended component together with (ii) a set of point

sources (Giovannelli & Coulais 2005).

Finally, another relevant contribution could rely on the in-

troduction of the spectral dependence between the different

channels in the data inversion. The conjunction with a PACS

direct model and the joint inversion of SPIRE and PACS data

would greatly improve the map reconstruction.
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Appendix A: Energy spectral density

This appendix gives the details of the calculations concerning

the regularity measure used in Section 3 and its frequency in-

terpretation. Based on Eq. (10), the energy of the first derivative

can be written

∥∥∥∥
∂X
∂α

∥∥∥∥
2

=

∫∫

R2

(
∂X
∂α

)2

dα dβ

=
∑

iji′j′

xij xi′j′

∫∫

R2

(
∂

∂α
ψi′j′

)(
∂

∂α
ψij

)
dα dβ.

By noting the derivative ψ′
α = ∂ψ/∂α, we obtain the autocor-

relation Ψα = ψ′
α ⋆ ψ

′
α of the first derivative of the generating

function and we have

∥∥∥∥
∂X
∂α

∥∥∥∥
2

=
∑

iji′j′

xij xi′j′

∫∫

R2

ψ′
α

(
α− i′δα, β − j′δβ

)

ψ′
α

(
α− iδα, β − jδβ

)
dα dβ

=
∑

iji′j′

xij xi′j′ [ψ
′
α ⋆ ψ

′
α] {(i′ − i)δα, (j

′ − j)δβ}

=
∑

iji′j′

xij xi′j′Ψα {(i′ − i)δα, (j
′ − j)δβ} . (A.1)

As there is a finite number of coefficients xij , the measure can

be put in the form of a quadratic norm

∥∥∥∥
∂X
∂α

∥∥∥∥
2

= xtDαx

where the matrix Dα is obtained from Ψα. Considering the

invariant structure of (A.1), the matrix Dα has a Tœplitz struc-

ture. The calculation is performed by discrete convolution and

can be computed by FFT.

By introducing the dimension β,

∥∥∥∥
∂X
∂α

∥∥∥∥
2

+

∥∥∥∥
∂X
∂β

∥∥∥∥
2

= xtDαx+ xtDβx.

The quadratic regularity measure on the function X with con-

tinuous variables is expressed through a quadratic regularity

measure on the coefficients x.
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The autocorrelation Fourier transform (FT) is the energy

spectral density, i.e. the squared modulus of the FT of ψ′
α

◦

Ψα(fα, fβ) =

∫∫

R2

Ψα(α, β)e
−2jπ(αfα+βfβ) dα dβ

=

∣∣∣∣
∫∫

R2

ψ′
α(α, β)e

−2jπ(αfα+βfβ) dα dβ

∣∣∣∣
2

= 4π2f2α

∣∣∣
◦

ψ(fα, fβ)
∣∣∣
2

,

where
◦

ψ is the FT of ψ. When the dimension β is introduced,

the a priori energy spectral density for the sky naturally has

circular symmetry

◦

Ψ(fα, fβ) = 4π2
(
f2α + f2β

) ∣∣∣
◦

ψ(fα, fβ)
∣∣∣
2

. (A.2)

This calculation brings out the frequency structure introduced

a priori for the sky according to the chosen function ψ. This is

a high-pass structure since the factor f2α+f
2
β tends to cancel

◦

Ψ
around zero, which is consistent with a regularity measure.

Appendix B: Explicit calculation of the model

In order to integrate over time in (13), we use the expressions

of (2) for pα(t) and pβ(t), which give

1

2π

1

ΣαΣβ

∫

t

exp

[
−1

2

(vαt+ cα + αij − αlm)2

Σ2
α

]

exp

[
−1

2

(vβt+ cβ + βij − βlm)2

Σ2
β

]
hb(nTs − t) dt .

With the bolometer response

hb(nTs − t) = 1[0 +∞[(nTs − t)S exp

[
−nTs − t

τ

]
,

we have

1

2π

S

ΣαΣβ
exp

[
−nTs

τ

] ∫ nTs

−∞

exp

[
−1

2

(vαt+ oα)
2

Σ2
α

]
exp

[
−1

2

(vβt+ oβ)
2

Σ2
β

]
exp

[
t

τ

]
dt

(B.1)

with oα = cα + αij − αlm and oβ = cβ + βij − βlm. This

is the integration of a truncated Gaussian since the argument of

the exponential is a quadratic form w.r.t. t.

B.1. Calculation of the argument

Here, we express the quadratic form in question

n(t) = τΣ2
β(vαt+ oα)

2 + τΣ2
α(vβt+ oβ)

2 − 2Σ2
αΣ

2
βt.

Expanding and factorizing the numerator n(t) gives

n(t) = τΣ2
β

(
v2αt

2 + 2vαoαt+ o2α
)
+

τΣ2
α

(
v2βt

2 + 2vβoβt+ o2β
)
− 2Σ2

αΣ
2
βt

=
(
(t+ a)2 + b− a2

)
/Σ2

with the constants a = Σ2
(
τΣ2

βvαoα + τΣ2
αvβoβ − Σ2

αΣ
2
β

)
,

b = τΣ2
(
Σ2

βo
2
α +Σ2

αo
2
β

)
and Σ−2 = τ

(
Σ2

βv
2
α +Σ2

αv
2
β

)
.

Putting this t-quadratic form into the integral, we obtain

1

2π
S

√
πτΣ√
2

exp

[
−nTs

τ
− 1

2

b− a2

Σ2Σ2
αΣ

2
βτ

]

(
1 + erf

(
nTs + a√
2τΣΣαΣβ

))
, (B.2)

where the function erf is defined by

erf(x) =
2√
π

∫ x

0

e−θ2

dθ = −erf(−x).

This expression can be simplified by using the function

erfcx(x) = exp(x2)(1− erf(x)).

B.2. Argument of the exponential

For the sake of notational simplcity, let us note S = Σ2Σ2
αΣ

2
β .

The argument of the function exp then is

nTs
τ

− b− a2

2Σ2Σ2
αΣ

2
βτ

= −nTs
τ

− b− a2

2Sτ

+

(
n2T 2

s

2Sτ
− n2T 2

s

2Sτ

)
+

(
2nTsa

2Sτ
− 2nTsa

2Sτ

)

and then

nTs
τ

− b− a2

2Σ2Σ2
αΣ

2
βτ

= −nTs
τ

−

b+ 2nTsa+ n2T 2
s

2Sτ
+

(
nTs + a√

2Sτ

)2

.

So, by injecting this expression in (B.2), the function erfcx ap-

pears

exp

[
−nTs

τ
− b− a2

2Sτ

](
1 + erf

(
nTs + a√

2Sτ

))
=

exp

[
−nTs

τ
− b+ 2nTsa+ n2T 2

s

2Sτ

]
erfcx

(
−nTs + a√

2Sτ

)
.

The values of S, a and b can be replaced. First of all, the argu-

ment of the exponential is

− nTs
τ

−
τΣ2

(
Σ2

βo
2
α +Σ2

αo
2
β

)

2Σ2Σ2
αΣ

2
βτ

−

2nTsΣ
2
(
τΣ2

βvαoα + τΣ2
αvβoβ − Σ2

αΣ
2
β

)

2Σ2Σ2
αΣ

2
βτ

− n2T 2
s

2Sτ
=

− nTs
τ

− o2α
2Σ2

α

−
o2β
2Σ2

β

− 2nTsvαoα
2Σ2

α

− 2nTsvβoβ
2Σ2

β

+

nTs
τ

− n2T 2
s

2Σ2Σ2
αΣ

2
βτ

, (B.3)
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and the terms nTs/τ simplify. We then use the expression for

Σ2

n2T 2
s

2Σ2Σ2
αΣ

2
βτ

=
n2T 2

s v
2
α

2Σ2
α

+
n2T 2

s v
2
β

2Σ2
β

,

to obtain two perfect squares. Finally the argument of the ex-

ponential (B.3) in (B.2) is

− (oα + nTsvα)
2

2Σ2
α

− (oβ + nTsvβ)
2

2Σ2
β

. (B.4)

which is exactly the argument of a bivariate Gaussian. We

again find the same standard deviations Σα and Σβ . However,

the response of the optics, initially (oα, oβ), is now shifted by

(nTsvα, nTsvβ), i.e. the pointing difference between two suc-

cessive time samples.

B.3. Argument of the function erfcx and final
expression

Another term is needed to know the global response. It comes

from the function erfcx, which corresponds to the influence of

the bolometer. The argument of the function erfcx is

− nTs + a√
2τΣΣαΣβ

=
ΣαΣβ√
2τΣv

−

Σβvα(oα + nTsvα)√
2ΣαΣv

− Σαvβ(oβ + nTsvβ)√
2ΣβΣv

, (B.5)

where Σ2
v = Σ2

βv
2
α + Σ2

αv
2
β , and what is of interest here is

that the same factors are found in the argument of the exponen-

tial. To know the global response, we need to bring everything

together. By injecting the expressions of the arguments (B.4)

and (B.5), we obtain

1

2π
S

√
πτΣ√
2

exp

[
nTs
τ

− 1

2

b− a2

Σ2Σ2
αΣ

2
βτ

]

(
1 + erf

(
nTs + a√
2τΣΣαΣβ

))
=

S

2
√
2πΣv

exp

[
− (oα + nTsvα)

2

2Σ2
α

− (oβ + nTsvβ)
2

2Σ2
β

]

erfcx

(
ΣαΣβ√
2τΣv

− Σβvα(oα + nTsvα)√
2ΣαΣv

− Σαvβ(oβ + nTsvβ)√
2ΣβΣv

)

with, similarly for α and β: Σ2
α/β = σ2

α/β +σ
2
o , which finishes

the integration of (13) over time.

Appendix C: Direct model computation
algorithm

This part gives some more details on the concrete computation

of a model output Hx of Section 2.3. First of all, there are

four different impulse responses whatever the number of scans.

For scans in the same direction, the response is the same. Thus

we can construct four different convolution matrices Hi for

i = 1, 2, 3, 4 and apply four different discrete convolutions to

the coefficients x.

We can also deduce the structure of the transpose of the

model Ht = Ht
cP

t. The matrix P t is a data summation /

zero padding matrix (addition of the data that possess the same

pointing while setting the other coefficients to zero), and Ht
c

corresponds to a convolution with the space reversal impulse

responses.

The product by P t is very similar to the construction of

a naive map except that the data are added rather than aver-

aged. Also, the operation is done by velocity and not globally.

Finally, the products by Hc and Ht
c are convolutions computed

by FFT.
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Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M.

1997, IEEE Trans. Image Processing, 6, 298

Clements, D., Chanial, P., Bendo, G., et al. 2006, SPIRE

Mapmaking Algorithm Review Report, Tech. rep.,

Astrophysics group at Imperial College London

de Graauw, T., Helmich, F. P., Phillips, T. G., et al. 2010, A&A,

518, L6+

Demoment, G. 1989, IEEE Trans. Acoust. Speech, Signal

Processing, ASSP-37, 2024

Elad, M. & Feuer, A. 1999, IEEE Trans. Image Processing, 8,

387

Farsiu, S., Robinson, M., Elad, M., & Milanfar, P. 2004, Image

Processing, IEEE Transactions on, 13, 1327

Giovannelli, J.-F. & Coulais, A. 2005, Astron. Astrophys., 439,

401

Griffin, M., Swinyard, B., Vigroux, L., et al. 2008, in Presented

at the Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference, Vol. 7010, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series

Griffin, M. J. 2006, Revised Photometer sensitivity model,

working version after sensitivity review meeting

—. 2007, The SPIRE Analogue Signal Chain and Photometer

Detector Data Processing Pipeline, Tech. rep., University of

Wales Cardiff

Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518,

L3+

Griffin, M. J., Bock, J. J., & Gear, W. K. 2002, Applied Optics,

41, 6543

Hardie, R. C., Barnard, K. J., & Armstrong, E. E. 1997, IEEE

Trans. Image Processing, 6, 1621



14 F. Orieux et al.: Super-resolution: instrument model and regularized inversion.

Idier, J., ed. 2008, Bayesian Approach to Inverse Problems

(London: ISTE Ltd and John Wiley & Sons Inc.)
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Figure 11. Zoom on the 10′
×10′ green square seen in Fig 10. Top panels and from left to right: coadded maps in the PSW, PMW and PLW

channels, respectively; bottom panels: proposed maps in the three channels.

Figure 12. Circular means of the power spectrum of the Polaris flare in the PSW (left panels), PMW (middle panels) and PSW (right panels)

channels. The bottom panels present plots on the frequency range from 5 × 10−3 to 10−1 arcsecond−1. The red lines show the power law

P (k) ∝ kγ adjusted in a frequency range from 10−3 arcsecond−1 to 3× 10−2 arcsecond−1, with γ = −2.7. The pink solid lines show the

optical transfer functions (OTF) for each band.


