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This paper tackles the problem of image deconvolution with joint estimation of

PSF parameters and hyperparameters. Within a Bayesian framework, the solution

is inferredvia a globala posteriori law for unknown parameters and object. The

estimate is chosen as the posterior mean, numerically calculated by means of a

Monte-Carlo Markov chain algorithm. The estimates are efficiently computed in

the Fourier domain and the effectiveness of the method is shown on simulated

examples. Results show precise estimates for PSF parameters and hyperparameters

as well as precise image estimates including restoration ofhigh-frequencies and

spatial details, within a global and coherent approach.c© 2012 Optical Society of

America

OCIS codes:100.1830, 100.3020, 100.3190, 150.1488

1. Introduction

Image deconvolution has been an active research field for several decades and recent contributions

can be found in papers such as [1–3]. Examples of applicationare medical imaging, astronomy,

nondestructive testing and more generally imagery problems. In these applications, degradations

induced by the observation instrument limit the data resolution while the need of precise interpre-

tation can be of major importance. For example, this is particularly critical for long-wavelength

astronomy (seee.g.,[4]). In addition, the development of a high quality instrumentation system

must rationally be completed by an equivalent level of quality in the development of data process-

ing methods. Moreover, even for poor performance systems, the restoration method can be used to

bypass instrument limitations.
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When the deconvolution problem is ill-posed a possible solution relies on regularization,i.e., in-

troduction of information in addition to the data and the acquisition model [5,6]. As a consequence

of regularization, deconvolution methods are specific to the class of image in accordance with the

introduced information. From this standpoint, the presentpaper is dedicated to relatively smooth

images encountered for numerous applications in imagery [4,7,8]. The second order consequence

of ill-posedness and regularization is the need to balance the compromise between different sources

of information.

In the Bayesian approach [1, 9], information about unknownsis introduced by means of proba-

bilistic models. Once these models are designed, the next step is to build thea posteriorilaw, given

the measured data. The solution is then defined as a representative point of this law and the two

most classical are (1) the maximizer, and (2) the mean. From acomputational standpoint, the first

leads to a numerical optimization problem and the latter leads to a numerical integration problem.

However, the resulting estimate depends on two sets of variables in addition to the data.

1. Firstly, the estimate naturally depends on the response of the instrument at work, namely the

point spread function (PSF). The literature is predominantly devoted to deconvolution in the

case of known PSF. On the contrary, the present paper is devoted to the case of unknown

or poorly known PSF and there are two main strategies to tackle its estimation from the

available data set (without extra measurements).

(i) In most practical cases, the instrument can be modeled using physical operating descrip-

tion. It is thus possible to find the equation for the PSF, at least in a first approximation.

This equation is usually driven by a relatively small numberof parameters. It is a com-

mon case in optical imaging where a Gaussian-shaped PSF is often used [10]. It is also

the case in other fields: interferometry [11], magnetic resonance force microscopy [12],

fluorescence microscopy [13],. . . Nevertheless, in real experiments, the parameter values

are unknown or imperfectly known and need to be estimated or adjusted in addition to

the image of interest: the question is namelymyopicdeconvolution.

(ii) The second strategy forbears the use of the parametric PSF deduced from the physical

analysis and the PSF then naturally appears in a non-parametric form. Practically, the

non-parametric PSF is unknown or imperfectly known and needs to be estimated in

addition to the image of interest: the question is referred to asblind deconvolution for

example in interferometry [14–17].

From an inference point of view, the difficulty of both myopicand blind problems lies in

the possible lack of information resulting in ambiguity between image and PSF, even in the

noiseless case. In order to resolve the ambiguity, information must be added [3, 18] and it

is crucial to make inquiries based on any available source ofinformation. To this end, the

knowledge of the parametric PSF represents a precious meansto structure the problem and

possibly resolve the degeneracies. Moreover, due to instrument design process, a nominal
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value as well as an uncertainty are usually available for thePSF parameters.

In addition, from a practical and algorithmic standpoint, the myopic case,i.e., the case of

parametric PSF, is often more difficult due to the non-lineardependence of the observation

model with respect to the PSF parameters. On the contrary, the blind case,i.e., the case of

non-parametric PSF, yields a simpler practical and algorithmic problem since the observation

model remains linear w.r.t. the unknown elements given the object.

Despite the superior technical difficulty, the present paper is devoted to the myopic format

since it is expected to be more efficient than the blind formatfrom an information standpoint.

Moreover, the blind case has been extensively studied and a large amount of paper is available

[19–21], while the myopic case has been less investigated, though it is of major importance.

2. Secondly, the solution depends on the probability law parameters named hyperparameters

(means, variances, parameters of correlation matrix,. . . ). These parameters adjust the shape

of the laws and in the same time they tune the compromise between the information provided

by thea priori and the information provided by the data. In real experiments, their values are

unknown and need to be estimated: the question is namelyunsuperviseddeconvolution.

For both families of parameters (PSF parameters and hyperparameters), two approaches are

available. In the first one, the parameter values are empirically tuned or estimated in a preliminary

step (with Maximum Likelihood [7] or calibration [22] for example), then the values are used in a

second step devoted to image restoration given the parameters. In the second one, the parameters

and the object are jointly estimated [2,19].

For the myopic problem, Jalobeanuet al. [23] address the case of a symmetric Gaussian PSF.

The width parameter and the noise variance are estimated in apreliminary step by Maximum-

Likelihood. A recent paper [24] addresses the estimation ofa Gaussian blur parameter, as in our

experiment, with an empirical method. They found the Gaussian blur parameter by minimizing the

absolute derivatives of the restored images Laplacian.

The present paper addresses the myopic and unsupervised deconvolution problem. We propose

a new method that jointly estimates the PSF parameters, the hyperparameters, and the image of

interest. It is built in a coherent and global framework based on an extendeda posteriori law

for all the unknown variables. The posterior law is obtainedvia the Bayes rule, founded ona

priori laws: Gaussian for image and noise, uniform for PSF parameters and gamma or Jeffreys for

hyperparameters.

Regarding the image prior law, we have paid special attention to the parametrization of the

covariance matrix in order to facilitate law manipulationssuch as integration, conditioning or hy-

perparameter estimation. The possible degeneracy of thea posteriori law in some limit cases is

also studied.

The estimate is chosen as the mean of the posterior law and is computed using Monte-Carlo

simulations. To this end, Monte-Carlo Markov chain (MCMC) algorithms [25] enable to draw

3



samples from the posterior distribution despite its complexity and especially the non-linear depen-

dence w.r.t. the PSF parameters.

The paper is structured in the following manner. Sec. 2 presents the notations and states the

problem. The three following sections describe our methodology: firstly the Bayesian probabilistic

models are detailed in Sec. 3; then a proper posterior law is established in Sec. 4; an MCMC

algorithm to compute the estimate is described in Sec. 5. Numerical results are shown in Sec. 6.

Finally, Sec. 7 is devoted to conclusion and perspectives.

2. Notations and convolution model

ConsiderN pixels real square images represented in lexicographic order by vectorx ∈ RN , with

generic elementsxn. The forward model writes

y = Hw x+ ǫ (1)

wherey ∈ R
N is the vector of data,Hw a convolution matrix,x the image of interest andǫ the

modelization errors or the noise. Vectorw ∈ RP stands for the PSF parameters, such as width or

orientation of a Gaussian PSF.

The matrixHw is block-circulant with circulant-block (BCCB) for computational efficiency

of the convolution in the Fourier space. The diagonalization [26] of Hw writesΛH = FHwF
†

whereF is the unitary Fourier matrix and† is the transpose conjugate symbol. The convolution,

in the Fourier space, is then
◦

y = ΛH

◦

x+
◦

ǫ (2)

where ◦

x = Fx, ◦

y = Fy and◦

ǫ = Fǫ are the 2D discrete Fourier transform (DFT-2D) of image,

data and noise, respectively.

SinceΛH is diagonal, the convolution is computed with a term-wise product in the Fourier

space. There is a strict equivalence between a description in spatial domain (Eq. (1)) and in Fourier

domain (Eq. (2)). Consequently, for coherent description and computational efficiency, all the de-

velopments are equally done in the spatial space or in the Fourier space.

For notational convenience, let us introduce the componentat null-frequency◦x0 ∈ R and the

vector of component at non-null frequencies◦

x∗ ∈ CN−1 so that the whole set of components writes
◦

x = [
◦

x0,
◦

x∗].

Let us note1 the vector ofN components equal to1/N , so that1tx is the empirical mean level

of the image. The Fourier components are the
◦

1n and we have:
◦

10 = 1 and
◦

1n = 0 for n 6= 0.

Moreover,Λ1 = F11tF † is a diagonal matrix with only one non-null coefficient at null frequency.

3. Bayesian probabilistic model

This section presents the prior law for each set of parameters. Regarding the image of interest, in

order to account for smoothness, the law introduces high-frequency penalization through a differ-
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ential operator on the pixel. A conjugate law is proposed forthe hyperparameters and a uniform

law is considered for the PSF parameters.

Moreover, we have paid a special attention to the image priorlaw parametrization. In the next

section we present several parametrization in order to facilitate law manipulations such as inte-

gration, conditioning or hyperparameter estimation. Moreover, the correlation matrix of the image

law may become singular in some limit cases resulting in a degenerated prior law (whenp(x) = 0

for all x ∈ RN ). Based on this parametrization, Sec. 4 studies the degeneracy of the posterior in

relation with the parameters of the prior law.

3.A. Image prior law

The probability law for the image is a Gaussian field with a given precision matrixP parametrized

by a vectorγ. The pdf reads

p(x|γ) = (2π)−N/2 det[P ]1/2 exp
[
−
1

2
xtPx

]
. (3)

For computational efficiency, the precision matrix is designed (or approximated) in a toroidal man-

ner, and it is diagonal in the Fourier domainΛP = FPF †. Thus, the law forx also writes

p(x|γ) = (2π)−N/2 det[F ] det[ΛP ]
1/2 det[F †] exp

[
−
1

2
xtF †

ΛPFx

]
(4)

= (2π)−N/2 det[ΛP ]
1/2 exp

[
−
1

2
◦

x
†
ΛP

◦

x

]
(5)

and it is sometimes referred to [27] as a Whittle approximation (see also [28, p.133]) for the

Gaussian law. The filter obtained for fixed hyperparameters is also the Wiener-Hunt filter [29], as

described in Sec. 5.A.

This paper focuses on smooth images, thus on positive correlation between pixels. It is intro-

duced by high-frequencies penalty using any circulant differential operator:p-th differences be-

tween pixels, Laplacian, Sobel. . . The differential operator is denoted byD and its diagonalized

form byΛD = FDF †. Then, the precision matrix writesP = γ1D
tD and its Fourier counterpart

writes

ΛP = γ1Λ
†
D
ΛD = diag

(
0, γ1|

◦

d1|
2, . . . , γ1|

◦

dN−1|
2
)

(6)

whereγ1 is a positive scale factor,diag builds a diagonal matrix from elementary components and
◦

dn is then-th DFT-2D coefficient ofD.

Under this parametrization ofP , the first eigenvalue is equal to zero corresponding to the ab-

sence of penalty for the null frequency◦

x0, i.e., no information accounted for about the empirical

mean level of the image. As a consequence, the determinant vanishesdet[P ] = 0 resulting in a

degenerated prior. To manage this difficulty, several approaches have been proposed.

Some authors [2,30] still use this prior despite its degeneracy and this approach can be analyzed

in two ways.
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1. On the one hand, it can be seen as a non-degenerated law for◦

x∗, the set of non-null frequency

components only. In this format, the prior does not affect any probability to the null frequency

component and the Bayes rule does not apply to this component. Thus, this strategy yields

an incomplete posterior law, since the null frequency is notembedded in the methodology.

2. On the other hand, it can be seen as a degenerated prior for the whole set of frequencies. The

application of the Bayes rule is then somewhat confusing dueto degeneracy. In this format,

the posterior law cannot be guaranteed to remain non-degenerated.

Anyway, none of the two standpoints yields a posterior law that is both non-degenerated and

addressing the whole set of frequencies.

An alternative parametrization relies on the energy ofx. An extra termγ0I, tuned byγ0 > 0, in

the precision matrix [31], introduces information for all the frequencies including◦x0. The precision

matrix writes

ΛP = γ0I + γ1Λ
†
DΛD

= diag
(
γ0, γ0 + γ1|

◦

d1|
2, . . . , γ0 + γ1|

◦

dN−1|
2
)

(7)

with a determinant

det[ΛP ] =
N−1∏

n=0

(
γ0 + γ1|

◦

dn|
2
)
. (8)

The obtained Gaussian prior is not degenerated and undoubtedly leads to a proper posterior. Nev-

ertheless, the determinant Eq. (8) is not separable inγ0 and γ1. Consequently, the conditional

posterior for these parameters is not a classical law and future development will be more difficult.

Moreover, the non-null frequencies◦x∗ are controlled by two parametersγ0 andγ1

p(
◦

x|γ0, γ1) = p(
◦

x0|γ0)p(
◦

x∗|γ0, γ1). (9)

The proposed approach to manage the degeneracy relies on theaddition of a term for the null

frequency onlyΛ1 = diag (1, 0, . . . , 0)

ΛP = γ0Λ
†
1Λ1 + γ1Λ

†
DΛD. (10)

= diag
(
γ0, γ1|

◦

d1|
2, . . . , γ1|

◦

dN−1|
2
)
.

The determinant has a separable expression

det[ΛP ] = γ0γ
N−1
1

N−1∏

n=1

|
◦

dn|
2 , (11)

i.e., the precision parameters have been factorized. In addition, each parameter controls a different

set of frequencies:

p(
◦

x|γ0, γ1) = p(
◦

x0|γ0)p(
◦

x∗|γ1) ,
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γ0 drives the empirical mean level of the image◦

x0 andγ1 drives the smoothness◦x∗ of the image.

With the Fourier precision structure of Eq. (10), we have thenon-degenerated prior law for the

image that addresses separately all the frequencies with a factorized partition function w.r.t.(γ0, γ1)

p(x|γ0, γ1) = (2π)−N/2
N−1∏

n=1

|
◦

dn| γ
1/2
0 γ

(N−1)/2
1 exp

[
−
γ0
2
‖

◦

x0‖
2 −

γ1
2
‖ΛD∗

◦

x∗‖
2
]
. (12)

whereΛD∗ is obtained fromΛD without the first line and column. The next step is to write thea

priori law for the noise in an explicit form and the other parameters, including the law parameters

γ and the instrument parametersw.

3.B. Noise and data laws

From a methodological standpoint, any statistic can be included for errors (measurement and

model errors). It is possible to account for correlations inthe error process or to account for a

non-Gaussian law,e.g.,Laplacian law, generalized Gaussian law, or other laws based on robust

norm,. . . In the present paper, the noise is modeled as zero-mean white Gaussian vector with un-

known precision parameterγǫ

p(ǫ|γǫ) = (2π)−N/2 γN/2
ǫ exp

[
−
γǫ
2
‖ǫ‖2

]
. (13)

Consequently, the likelihood for the parameters given the observed data writes

p(y|x, γǫ,w) = (2π)−N/2γN/2
ǫ exp

[
−
γǫ
2
‖y −Hwx‖

2
]
. (14)

It naturally depends on the imagex, on the noise parameterγǫ and on the PSF parametersw

embedded inHw. It clearly involves a least squares discrepancy that can berewritten in the Fourier

domain:‖y −Hwx‖2 = ‖
◦

y −ΛH

◦

x‖2.

3.C. Hyperparameters law

A classical choice for hyperparameter law relies on conjugate prior [32]: the conditional posterior

for the hyperparameters is in the same family as its prior. Itresults in practical and algorithmic

facilities: update of the laws amounts to update of a small number of parameters.

The three parametersγ0, γ1 andγǫ are precision parameters of Gaussian laws Eq. (12) and (14)

and a conjugate law for these parameters is the Gamma law (seeAppendix B). Given parameters

(αi, βi), for i = 0, 1 orǫ, the pdf reads

p(γi) =
1

βαi

i Γ(αi)
γαi−1
i exp (−γi/βi) , ∀γi ∈ [0,+∞[ (15)

In addition to computational efficiency, the law allows for non-informative priors. With specific

parameter values, one obtains two improper non-informative prior : the Jeffreys’ lawp(γ) = 1/γ
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and the uniform lawp(γ) = U[0,+∞[(γ) with (αi, βi) set to(0,+∞) and(1,+∞), respectively.

Jeffreys’ law is a classical law for the precisions and is considered as non-informative [33]. This

law is also invariant to power transformations: the law ofγn [33, 34] is also a Jeffreys’ law. For

these reasons development is done using the Jeffreys’ law.

3.D. PSF parameters law

Regarding the PSF parametersw, we consider that the instrument design process or a physical

study provides a nominal valuew with uncertaintyδ, that is to sayw ∈ [w − δ , w + δ]. The

”Principle of Insufficient Reason” [33] leads to a uniform prior on this interval

p(w) = Uw,δ(w) (16)

whereUw,δ is a uniform pdf on[w − δ , w + δ]. Nevertheless, within the proposed framework,

the choice is not limited and other laws, such as Gaussian, are possible. Anyway other choices do

not allow easier computation because of the non-linear dependency of the observation model w.r.t.

PSF parameters.

4. Proper posterior law

At this point, the prior law of each parameter is available: the PSF parameters, the hyperparameters

and the image. Thus, the joint law for all the parameters is built by multiplying the likelihood

Eq. (14) and thea priori laws Eq. (12), (15) and (16)

p(
◦

x, γǫ, γ0, γ1,w,
◦

y) = p(
◦

y|
◦

x, γǫ,w)p(
◦

x|γ0, γ1)p(γǫ)p(γ0)p(γ1)p(w) (17)

and explicitly

p(
◦

x, γǫ, γ0, γ1,w,
◦

y) =
(2π)−N ∏N−1

n=1 |
◦

dn|

βαǫ

ǫ Γ(αǫ) β
α0
0 Γ(α0) β

α1
1 Γ(α1)

γαǫ+N/2−1
ǫ γ

α0−1/2
0 γ

α1+(N−1)/2−1
1 exp

[
−
γǫ
βǫ
−

γ0
β0
−

γ1
β1

]
Uw,δ(w)

exp
[
−
γǫ
2
‖

◦

y −ΛH

◦

x‖2 −
γ0
2
‖

◦

x0‖
2 −

γ1
2
‖ΛD

◦

x‖2
]
. (18)

According to the Bayes rule, thea posteriorilaw reads

p(
◦

x, γǫ, γ0, γ1,w|
◦

y) =
p(

◦

x, γǫ, γ0, γ1,w,
◦

y)

p(
◦

y)
(19)

wherep(◦

y) is a normalization constant

p(
◦

y) =
∫

p(
◦

y,
◦

x,γ,w) d
◦

x dγ dw. (20)
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As described before, settingγ0 = 0 leads to degenerated prior and joint laws. However, when

the observation system preserves the null frequencyγ0 can be considered as a nuisance parameter.

In addition, only prior information on the smoothness is available.

In Bayesian framework, a solution to eliminate the nuisanceparameters is to integrate them out

in the a posteriori law. According to our parametrization Sec. 3.A, the integration of γ0 is the

integration of a Gamma law. Application of Appendix B.B onγ0 in thea posteriorilaw Eq. (19)

provides

p(
◦

x, γǫ, γ1,w|
◦

y) =
p(

◦

x0)p(
◦

y,
◦

x∗, γǫ, γ1,w|
◦

x0)∫
p(

◦

x0)p(
◦

y,
◦

x∗, γǫ, γ1,w|
◦

x0) dγǫ dγ1 dw d
◦

x∗ d
◦

x0

(21)

with

p(
◦

x0) =
∫

p(
◦

x0|γ0)p(γ0) dγ0

=


1 +

β0
◦

x
2
0

2




−α0−1/2

. (22)

Now the parameter is integrated, the parametersα0 andβ0 are set to remove the null frequency

penalization. Since we haveα0 > 0 andβ0 > 0 we get(1 + β0
◦

x
2
0/2)

−α0−1/2 ≤ 1 and the joint law

is majored


1 +

β0
◦

x
2
0

2




−α0−1/2

p(
◦

y,
◦

x∗, γǫ, γ1,w|
◦

x0) ≤ p(
◦

y,
◦

x∗, γǫ, γ1,w|
◦

x0). (23)

Consequently, by the dominated convergence theorem [35], the limit of the law withα0 → 1

andβ0 → 0 can be placed under the integral sign at the denominator. Then the null-frequency

penalizationp(◦

x0) from the numerator and denominator are removed. It is equivalent with the

integration of theγ0 parameter under a Dirac (see appendix B). The equation is simplified and the

integration with respect to◦x0 in the denominator Eq. (20)
∫

R

p(
◦

y|
◦

x, γǫ,w)p(
◦

x∗|γ1)p(γ1, γǫ,w) d
◦

x0 ∝
∫

R

p(
◦

y0|
◦

x0, γǫ,w) d
◦

x0 (24)

∝
∫

R

exp

[
−
γǫ
2

(
◦

y0 −
◦

h0
◦

x0

)2
]
d

◦

x0 (25)

converges if and only if
◦

h0 6= 0: the null frequency is observed. If this condition is met, Eq. (21)

with β0 = 0 andα0 = 1 is a proper posterior law for the image, the precision parameters and the

PSF parameters. In other words, if the average is observed, the degeneracy of thea priori law is

not transmitted to thea posteriorilaw.
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Then, the obtaineda posteriorilaw writes

p(
◦

x, γǫ, γ1,w|
◦

y) =
p(

◦

x, γǫ, γ1,w,
◦

y)

p(
◦

y)

∝ γαǫ+N/2−1
ǫ γ

α1+(N−1)/2−1
1 Uw,δ(w)

exp
[
−
γǫ
2
‖

◦

y −ΛH

◦

x‖2 −
γ1
2
‖ΛD∗

◦

x∗‖
2
]
exp

[
−
γǫ
βǫ
−

γ1
β1

]
.

(26)

Finally, inference is done on this law Eq. (26). If the null frequency is not observed, or information

must be added, the previous Eq. (19) can be used.

5. Posterior mean estimator and law exploration

This section presents the algorithm to explore the posterior law Eq. (19) or (26) and to compute an

estimate of the parameters. For this purpose, Monte Carlo Markov chain is used to provide samples.

Firstly, the obtained samples are used to compute differentmoments of the law. Afterwards, they

are also used to approximate marginal laws as histograms. These two representations are helpful

to analyse thea posteriorilaw, the structure of the available information and the uncertainty. They

are used in Sec. 6.C.2 to illustrate the mark of the ambiguityin the myopic problem.

Here, the samples of thea posteriorilaw are obtained by a Gibbs sampler [25, 36, 37]: it con-

sists in iteratively sampling the conditional posterior law for a set of parameters given the other

parameters (obtained at previous iteration). Typically, the sampled laws are the law of◦

x, γi and

w. After a burn-in time, the complete set of samples are under the jointa posteriorilaw. The three

next sections present each sampling step.

5.A. Sampling the image

The conditional posterior law of the image is a Gaussian law

◦

x
(k+1)

∼ p
(

◦

x|
◦

y, γ(k)
ǫ , γ

(k)
0 , γ

(k)
1 ,w(k)

)
(27)

∼ N
(
µ(k+1),Σ(k+1)

)
. (28)

The covariance matrix is diagonal and writes

Σ
(k+1) =

(
γ(k)
ǫ |Λ

(k)
H
|2 + γ

(k)
0 |Λ1|

2 + γ
(k)
1 |ΛD|

2
)−1

(29)

and the mean

µ(k+1) = γ(k)
ǫ Σ

(k+1)
Λ

†
H

(k)
◦

y. (30)

where† is the transpose conjugate symbol. The vectorµ(k+1) is the regularized least square solu-

tion at the current iteration (or the Wiener-Hunt filter). Clearly, if the null-frequency is not observed
◦

h0 = 0 and if γ0 = 0, the covariance matrixΣ is not invertible and the estimate is not defined as

described Sec. 4.
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Finally, since the matrix is diagonal, the sample◦

x
(k+1)

is obtained by a term-wise product of

Fǫ (whereǫ is white Gaussian) with the standard deviation matrix
(
Σ

(k+1)
)1/2

followed by the

addition of the meanµ(k+1) also computed with term-wise products Eq. (30). Consequently, the

sampling of the image is effective even with high-dimensional object.

5.B. Sampling precision parameters

The conditional posterior laws of the precisions are Gamma corresponding to their prior law with

parameters updated by the likelihood

γ
(k+1)
i ∼ p

(
γi|

◦

y,
◦

x
(k+1)

,w(k)
)

(31)

∼ G
(
γi|α

(k+1)
i , β

(k+1)
i

)
. (32)

Forγǫ, γ0 andγ1 the parameters law are, respectively,

α(k+1)
ǫ = αǫ +N/2 and β(k+1)

ǫ =
(
β−1
ǫ +

1

2
‖

◦

y −Λ
(k)
H

◦

x
(k+1)
‖2
)−1

, (33)

α
(k+1)
0 = α0 + 1/2 and β

(k+1)
0 =

(
β−1
0 +

1

2

(
◦

x
(k+1)
0

)2)−1

, (34)

α
(k+1)
1 = α1 + (N − 1)/2 and β

(k+1)
1 =

(
β−1
1 +

1

2
‖ΛD

◦

x
(k+1)
‖2
)−1

. (35)

In the case of Jeffreys’ prior, the parameters are

α(k+1)
ǫ = N/2 and β(k+1)

ǫ = 2/‖
◦

y −Λ
(k)
H

◦

x
(k+1)
‖2, (36)

α
(k+1)
0 = 1/2 and β

(k+1)
0 = 2/

(
◦

x
(k+1)
0

)2
, (37)

α
(k+1)
1 = (N − 1)/2 and β

(k+1)
1 = 2/‖ΛD

◦

x
(k+1)
‖2. (38)

Remark 1 — If the a posteriori law Eq. (26) withoutγ0 is considered, there is no need to sample

this parameter (Eq. (34) and (37) are not useful) andγ
(k)
0 = 0 in Eq. (29).

5.C. Sample PSF parameters

The conditional law for PSF parameters writes

w(k+1) ∼ p
(
w|

◦

y,
◦

x
(k+1)

, γ(k+1)
ǫ

)
(39)

∝ exp

[
−
γ(k+1)
ǫ

2
‖

◦

y −ΛH,w
◦

x
(k+1)
‖2
]

(40)

where parametersw are embedded in the PSFΛH . This law is not standard and intricate: no algo-

rithm exists for direct sampling and we use the Metropolis-Hastings (M.-H.) method to bypass this

difficulty. In M.-H. algorithm, a samplewp is proposed and accepted with a certain probability.

This probability depends on the ratio between the likelihood of the proposed value and the likeli-

hood of the current valuew(k). In practice, in the independent form described in appendixC, with

prior law as proposition law, it is divided in several steps.
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1. PROPOSITION: Sample a proposition

wp ∼ p(w) = U[a b](w). (41)

2. PROBABILITY OF ACCEPTATION: Calculate the criterion

J
(
w(k),wp

)
=

γ(k+1)
ǫ

2

(
‖

◦

y −ΛH,w(k)
◦

x
(k+1)
‖2 − ‖

◦

y −ΛH,wp

◦

x
(k+1)
‖2
)
. (42)

3. UPDATE: Samplet ∼ U[0 1] and takes

w(k+1) =





wp if log t < J

w(k) otherwise.
(43)

5.D. Empirical mean

The sampling of◦x, γ andw are repeated iteratively until the law has been sufficientlyexplored.

These samples
[

◦

x
(k)
,γ(k),w(k)

]
follow the globala posteriorilaw of Eq. (19). By the large num-

bers law, the estimate, defined as the posterior mean, is approximated by

x̂ = F †
E[

◦

x] ≈ F †

[
1

K

K−1∑

k=0

◦

x
(k)

]
. (44)

As described by Eq. (44), to obtain an estimate of the image inthe spatial space, all the computation

are achieved recursively in the Fourier space with a singleIFFT at the end. An implementation

example in pseudo code is described Fig. 9.

6. Deconvolution results

This section presents numerical results obtained by the proposed method. In order to completely

evaluate the method, true value of all parametersx, w, γǫ but alsoγ1, γ0 is needed. In order to

achieve this, an entirely simulated case is studied: image and noise are simulated under their re-

spective prior laws Eq. (12) and (13) with given values ofγ0, γ1 andγǫ. Thanks to this protocol,

all experimental conditions are controlled and the estimation method is entirely evaluated.

The method has also been applied in different conditions (lower signal to noise ratio, broader

PSF, different and realistic (non-simulated) images, . . . )and showed similar behaviour. However,

in the case of realistic images, since the true value of the hyperparametersγ0 andγ1 is unknown,

the evaluation cannot be complete.

6.A. Practical experimental conditions

Concretely, a128 × 128 image is generated in the Fourier space as the product of a complex

white Gaussian noise and thea priori standard deviation matrixΣ = (γ0Λ
†
1Λ1 + γ1Λ

†
D
ΛD)−1/2,

given by Eq. (10). The chosen matrixΛD results from theFFT-2D of the Laplacian operator

[0 1 0; 1− 4 1; 0 1 0] /8 and the parameter values areγ0 = 1 andγ1 = 2.
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These parameters provide the image shown in Fig. 1(a) : it is an image with smooth features

similar to a cloud. Pixels have numerical values between−100 and150, and the profile line 68

shows fluctuations around a value of−40.

Thea priori law for the hyperparameters are set to the non-informative Jeffreys’ law by fixing

the (αi, βi) to (0,+∞), as explained in Sec. 3.C. In addition, the PSF is obtained inthe Fourier

space by discretization of a normalized Gaussian shape

◦

h(να, νβ) = exp

(
− 2π2

(
ν2
α(wα cos

2 ϕ+ wβ sin
2 ϕ)

+ ν2
β(wα sin

2 ϕ+ wβ cos
2 ϕ)

+ 2νανβ sinϕ cosϕ (wα − wβ)
))

(45)

with frequencies(να, νβ) ∈ [−0.5; 0.5]2. This low-pass filter, illustrated in Fig. 2, is controlled by

three parameters:

• two width parameterswα andwβ set to 20 and 7, respectively. Theira priori laws are uniform:

p(wα) = U[19 21](wα) andp(wβ) = U[6 8](wα) corresponding to an uncertainty of about 5%

and 15% around the nominal value (see Sec 3.D).

• a rotation parameterϕ set toπ/3. The a priori law is also uniformp(ϕ) = U[π/4 π/2](ϕ)

corresponding to 50% uncertainty.

Then, the convolution is computed in the Fourier space and the data are obtained by adding

a white Gaussian noise with precisionγǫ = 0.5. Data are shown Fig. 1(b): they are naturally

smoother than the true image and the small fluctuations are less visible and corrupted by the noise.

The empirical mean level of the image is correctly observed (the null frequency coefficient ofHw

is
◦

h0 = 1) so the parameterγ0 is considered as a nuisance parameter. Consequently it is integrated

out under a Dirac (see Sec. 4). This is equivalent to fix its value to 0 in the algorithm Fig. 9, line 4.

Finally, the method is evaluated on two different situations.

1. The unsupervised and non-myopic case: the parametersw are known. Consequently, there

is no Metropolis-Hastings step (Sec. 5.C): lines 9 to 16 are ignored in the algorithm of Fig. 9

andw is set to its true value. To obtain sufficient law exploration, the algorithm is run until

the difference between two successive empirical means is less than10−3. In this case, 921

samples are necessary and they are computed in approximately 12 seconds on a processor at

2.66 GHz with Matlab,

2. The unsupervised and myopic case: all the parameters are estimated. To obtain sufficient

law exploration, the algorithm is run until the difference between two successive empirical

means is less than5 × 10−5. In this case, 18 715 samples are needed and they are computed

in approximately 7 minutes.

Remark 2 — The algorithm has also been run for up to 1 000 000 samples, inboth cases, without
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perceptible qualitative changes.

6.B. Estimation results

6.B.1. Images

The two results for the image are given Figs. 1(c) and 1(d) forthe non-myopic and the myopic

cases, respectively.

The effect of deconvolution is notable on the image, as well as on the shown profile. The ob-

ject is correctly positioned, the orders of magnitude are respected and the mean level is correctly

reconstructed. The image is restored, more details are visible and the profiles are closer matching

to the true image than data. More precisely, the pixels 20-25of the 68-th line in Fig. 1 show the

restoration of the original dynamic whereas it is not visible in the data. Between pixels 70 and 110,

fluctuations not visible in data are also correctly restored.

In order to visualize and study the spectral contents of the images, circular average of empirical

power spectral density is considered and called “spectrum”hereafter. The subjacent spectral vari-

able is a radial frequencyf such asf 2 = ν2
α+ν2

β. The spectrum of the true object, data and restored

object are shown Figs. 3(a) and 3(b) in non-myopic and myopiccases, respectively. It is clear that

the spectrum of the true image is correctly retrieved, in both cases, up to the radial frequency

f ≈ 0.075. Above this frequency, noise is clearly dominant and information about the image is

almost lost. In other words, the method produces correct spectral equalization in the properly ob-

served frequency band. The result is expected from a Wiener-Hunt method but the achievement is

the joint estimation of hyperparameter and instrument parameters in addition to the correct spectral

equalization.

Concerning a comparison between non-myopic and myopic cases, there is no visual differences.

The spectrum Figs. 3(a) and 3(b) in non-myopic and myopic cases respectively are visually indis-

tinguishable. This is also the case when comparing Figs. 1(c) and 1(d) and especially 68-th line.

From a more precise quantitative evaluation, a slight difference is observed and detailed below.

In order to quantify performances, a normalized euclidean distance

e = ‖x− x∗‖/‖x∗‖ (46)

between an imagex and the true imagex∗ is considered. It is computed between true image and

estimate images as well as between true image and data. Results are reported in Tab. 1 and confirm

that the deconvolution is effective with an error of approximately 6 % in myopic case compared

to 11 % with data. Both non-myopic and myopic deconvolution reduce error by a factor 1.7 with

respect to the observed data.

Regarding a comparison between non-myopic and myopic case,the errors are almost the same,

with a slightly lower value for the non-myopic case, as expected. This difference is coherent with
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the intuition: more information are injected in the non-myopic case through the true PSF parame-

ters values.

6.B.2. Hyperparameters and instrument parameters

Concerning the other parameters, their estimates are closeto the true values and are reported in

Tab. 2. Theγǫ estimate is very close to the true value witĥγǫ = 0.49 instead of 0.5 in the two

cases. The error for the PSF parameters are 0.35%, 2.7% and 1.9% forwα, wβ andϕ, respectively.

The value ofγ1 is underestimated in the two cases with approximately 1.7 instead of 2. All the true

values fall in thêµ± 3σ̂ interval.

In order to deepen the numerical study, the paper evaluates the capability of the method to

accurately select the best values for hyperparameters and instrument parameters. To this end,

we compute the estimation error Eq. (46) for a set of “exhaustive” values of the parameters

[γǫ, γ1, wα, wβ, ϕ]. The protocol is the following: 1) choose a new value for a parameter (γǫ for

example) and fix the other parameters to the value provided byour algorithm, 2) compute the

Wiener-Hunt solution (Sec. 5.A) and 3) compute the error index.

Results are reported in Fig. 4. In each case, smooth variation of error is observed when varying

hyperparameters and instrument parameters and an unique optimum is visible. By this way, one

can find the value of the parameters that provide the best Wiener-Hunt solution when the true image

x⋆ is known. It is reported on Tab. 1 and shows almost imperceptible improvement: optimization

of the parameters (based on the true imagex⋆) allow negligible improvement (smaller than 0.02 %

as reported in Tab. 1).

So, the main conclusion is that, the unsupervised and myopicproposed approach is a relevant

tool in order to tune parameters: it works (without the knowledge of the true image), as well as an

optimal approach (based on the knowledge of the true image).

6.C. A posteriori law characteristics

This section describes thea posteriorilaw using histograms, means and variances of the parame-

ters. The sample histograms, Figs. 5 and 6, provide an approximation of the marginal posterior law

for each parameter. Tabs. 1 and 2 report the variance for the image and law parameters respectively

and thus allow to quantify the uncertainty.

6.C.1. Hyperparameter characteristics

The histograms forγǫ andγ1, Fig. 5, are concentrated around a mean value in both non-myopic and

myopic cases. The variance forγǫ is lower than the one forγ1 and it can be explained as follows.

The observed data are directly impacted by noise (present atthe system output) whereas they are

indirectly impacted by the object (present at the system input). The convolution system damages

the object and not the noise: as a consequence, the parameterγǫ (that drives noise law) is more
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reliably estimated thanγ1 (that drives object law).

A second observation is the smaller variance forγ1 in the non-myopic case Fig. 5(c) than in the

myopic case Fig. 5(d). It is the consequence of the addition of information in the non-myopic case

w.r.t. the myopic one, through the value of the PSF parameters. In the myopic case, the estimates

are founded on the knowledge of an interval for the values of the instrument parameters, whereas

in the non-myopic case, the estimates are founded on the truevalues for the instrument parameters.

6.C.2. PSF parameter characteristics

Fig. 6 gives histograms for the three PSF parameters and their appearances are quite different

from the one for hyperparameters. The histograms forwα andwβ, Figs. 6(a) and 6(b) are not as

concentrated as the one of Fig. 5 for hyperparameters. Theirvariances are quite large with regards

to the interval of the prior law. On the contrary, the histogram for the parameterϕ, Fig. 6(c), has

the smallest variance. It is analyzed as a consequence of a larger sensitivity of the data w.r.t. the

parameterϕ than w.r.t. the parameterswα andwβ. In an equivalent manner, the observed data are

more informative about the parameterϕ than about the parameterswα andwβ.

6.C.3. Mark of the myopic ambiguity

Finally, a correlation between parameters(γ1, wα) and(γ1, wβ) is visible on their joint histograms

Fig. 7. It can be interpreted as a consequence of the ambiguity in the primitive myopic deconvolu-

tion problem, in the following manner: the parametersγ1 andw both participate in the interpreta-

tion of the spectral content of data,γ1 as a scale factor andw as a shape factor. An increase ofwα

or wβ results in a decrease of the cutoff frequency of the observation system. In order to explain

the spectral content of a given data set, the spectrum of the original image must contain more high

frequencies,i.e.,a smallerγ1. This is also observed on the histogram illustrated Fig. 7(a).

6.D. MCMC algorithm characteristics

Globally, the chains of Figs. 5 and 6, have a Markov feature (correlated) and explore the parameter

space. They have a burn-in period followed by a stationary state. This characteristic has always

been observed regardless the initialization. For fixed experimental conditions, the stationary state

of multiple runs was always around the same value. Considering different initializations, the only

visible change is on the length of the burn-in period.

More precisely, the chain ofγǫ is concentrated in a small interval, the burn-in period is very

short (less than 10 samples) and its evolution seems independent of the other parameters. The

chain ofγ1 has a larger exploration, the burn-in period is longer (approximately 200 samples) and

the histogram is larger. This is in accordance with the analysis of Section 6.C.1.

About the PSF parameters, the behaviour is different for(wα, wβ) andϕ. The chain of the two

width parameters has a very good exploration with quasi-instantaneous burn-in period. Conversely,
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the chain ofϕ is more concentrated and its burn-in period is approximately 4 000 samples. This is

also in accordance with previous analysis (Section 6.C.2).

Acceptation rates in the Metropolis-Hastings algorithm are reported in Tab. 3: they are quite

small, especially for the rotation parameter. This is due tothe structure of the implemented algo-

rithm: an independant Metropolis-Hastings algorithm withthe prior law as a proposition law. The

main advantage of this choice is its simplicity but as a counterpart, a high rejection rate is observed

due to a largea priori interval for the angle parameter. A future work will be devoted to the design

of more accurate proposition law.

6.E. Robustness of prior image model

Fig. 8 illustrates the proposed method on a more realistic image with heterogeneous spatial struc-

tures. The original is the Lena image and the data has been obtained with the same Gaussian PSF

and also corruption by white Gaussian noise. The Fig. 8(b) shows that the restored image is closer

to the true one than the data. Smaller structures are visibleand edges are sharper, for example

around pixel200. The estimated parameters arêγǫ = 1.98 while the true value isγ⋆
ǫ = 2. Con-

cerning the PSF parameters, the results areŵα = 19.3, ŵβ = 7.5 and ϕ̂ = 1.15 while the true

values are respectivelyw⋆
α = 20, w⋆

β = 7 andϕ⋆ = 1.05 as in the previous section. Here again, the

estimated PSF parameters are close to the true values givinga first assessment of the capability of

the method in a more realistic context.

7. Conclusion and perspectives

This paper presents a new global and coherent method for myopic and unsupervised deconvolution

of relatively smooth images. It is built within a Bayesian framework and a proper extendeda

posteriori law for the PSF parameters, the hyperparameters and the image. The estimate, defined

as the posterior mean, is computed by means of an MCMC algorithm in less than a few minutes.

Numerical assessment testifies that the parameters of the PSF and the parameters of the prior

laws are precisely estimated. In addition, results also demonstrate that the myopic and unsupervised

deconvolved image is closer to the true image than the data and show true restored high-frequencies

as well as spatial details.

The paper focuses on linear invariant model often encountered in astronomy, medical imaging,

nondestructive testing and especially in optical problems. Non-invariant linear models can also

be considered in order to address other applications such asspectrometry [4] or fluorescence mi-

croscopy [13]. The loss of invariance property precludes entirely Fourier-based computations but

the methodology remains valid and practicable. In particular, it is possible to draw samples of the

image by means of an optimization algorithm [38].

Gaussian law, related to L2 penalization, is known for possible excessive sharp edges penaliza-

tion in the restored object. The use of convex L2− L1 penalization [39–41] or non convex L2− L0
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penalization [42] can overcome this limitation. In these cases a difficulty occurs in the development

of myopic and unsupervised deconvolution: the partition function of the prior law for the image

is in intricate or even unknown dependency w.r.t. the parameters [1, 7, 43]. However a recent pa-

per [41] overcome the difficulty resulting in an efficient unsupervised deconvolution and we plan

to extend this work for the myopic case.

Regarding noise, Gaussian likelihood limits robustness tooutliers or aberrant data and it is pos-

sible to appeal to robust law such as Huber penalization in order to bypass the limitation. Never-

theless, the partition function for the noise law is again difficult or impossible to manage and it is

possible to resort to the idea proposed in [41] to overcome the difficulty.

Finally, estimation of parameters of correlation matrix (cutoff frequency, attenuation coeffi-

cients,. . . ) is possible within the same methodological framework. This could be achieved for the

correlation matrix of the object or the noise. As for the PSF parameters, the approach could rely

on an extendeda posteriorilaw, including the new parameters and a Metropolis-Hastings sampler.
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A. Law in Fourier space

For a Gaussian vectorx ∼ N (µ,Σ), the law for ◦

x = Fx (theFFT of x) is also Gaussian whose

first two moments are the following:

• The mean is
◦

µ = E[
◦

x] = FE[
◦

x] = Fµ. (47)

• The covariance matrix is
◦

Σ = E[(
◦

x−
◦

µ)(
◦

x−
◦

µ)†] = FΣF †. (48)

Moreover, if the covariance matrixΣ is circulant it writes
◦

Σ = FΣF † = ΛΣ. (49)

i.e., the covariance matrix
◦

Σ is diagonal.

B. The Gamma probability density

B.A. Definition

The Gamma pdf forγ > 0, with given parameterα > 0 andβ > 0, is written

G(γ|α, β) =
1

βαΓ(α)
γα−1 exp (−γ/β) . (50)
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Tab. 4 gives three limit cases for(α, β). The following properties hold:

• The mean isEG[γ] = αβ

• The variance isVG[γ] = αβ2

• The maximiser isβ(α− 1) if and only if α > 1

B.B. Marginalisation

First consider aN dimensional zero-mean Gaussian vector with a given precision matrixγΓ with

γ > 0. The pdf reads

p(x|γ) = (2π)−N/2γN/2 det[Γ]1/2 exp
[
−γxt

Γx /2
]
. (51)

So consider the conjugate pdf forγ as a Gamma law with parameter(α, β) (see previous An-

nex). The joint law for(x, γ) is the product of the pdf given by Eq. (50) and Eq. (51):p(x, γ) =

p(x|γ)p(γ). The marginalization of the joint law is known [44]:

p(x) =
∫

R+

p(x|γ)p(γ) dγ

=
βN/2 det[Γ]1/2Γ (α +N/2)

(2π)N/2Γ(α)

(
1 +

βxt
Γx

2

)−α−N/2 (52)

which is aN dimensionalt-Student law of2α degrees of freedom with aβΓ precision matrix.

Finally, the conditional law reads:

p(γ|x) =
(2π)−N/2 det[Γ]1/2

βαΓ(α)
γα+N/2−1 exp

[
−γ

(
xt
Γx /2 + 1/β

)]
. (53)

Thanks to conjugacy, it is also a Gamma pdf with parametersᾱ , β̄ given byᾱ = α + N/2 and

β̄−1 = β−1 + 2/(xt
Γx).

C. The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm provides samples of a target lawf(w) that cannot be directly

sampled but can be evaluated, at least up to a multiplicativeconstant. Using the so called “instru-

ment law”q
(
wp|w(t)

)
, samples of the target law are obtained by the following iterations.

1. Sample a propositionwp ∼ q
(
wp|w(t)

)
.

2. Compute the probability

ρ = min





f (wp)

f (w(t))

q
(
w(t)|wp

)

q (wp|w(t))
, 1



 . (54)

3. Take

w(t+1) =





wp with ρ probability

w(t) with 1− ρ probability.
(55)
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At convergence, the samples follow the target lawf(w) [25, 36]. Whenq
(
wp|w

(t)
)
= q(wp) the

algorithm is named independent Metropolis-Hastings. In addition, if the instrument law is uniform,

the acceptance probability gets simpler in

ρ = min

{
f (wp)

f (w(t))
, 1

}
. (56)
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10. P. Pankajakshani, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia,

“Blind deconvolution for thin-layered confocal imaging,”Appl. Opt.48, 4437–4448 (2009).

11. E. Thibaut and J.-M. Conan, “Strict a priori constraintsfor maximum likelihood blind decon-

volution,” J. Opt. Soc. Am. A12, 485–492 (1995).

12. N. Dobigeon, A. Hero, and J.-Y. Tourneret, “Hierarchical bayesian sparse image reconstruction

with application to MRFM,” IEEE Trans. Image Processing (2009).

13. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence mi-

croscope point-spread function models,” Appl. Opt.46, 1819–1829 (2007).

20



14. L. Mugnier, T. Fusco, and J.-M. Conan, “MISTRAL: a myopicedge-preserving image restora-

tion method, with application to astronomical adaptive-optics-corrected long-exposure im-

ages,” J. Opt. Soc. Amer.21, 1841–1854 (2004).
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Table 1. Errore (Eq. (46)) and averaged standard deviationσ̂ of the posterior image

law. The “Best” error has been obtained with the knowledge ofthe true image.

Data Non-myopic Myopic Best

Error (e) 11.092 % 6.241 % 6.253 % 6.235 %

σ̂ of x law - 3.16 3.25 -
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Table 2. Quantitative evaluation: true and estimated values of hyperparameters and

PSF parameters.

γ̂ǫ ± σ̂ γ̂1 ± σ̂ ŵα ± σ̂ ŵβ ± σ̂ ϕ̂± σ̂

True value 0.5 2 20 7 1.05 (π/3)

Non-myopic Estimate 0.49±0.0056 1.78±0.14 - - -

Error 2.0 % 11 % - - -

Myopic Estimate 0.49±0.0056 1.65±0.15 20.07±0.53 7.19±0.38 1.03±0.04

Error 2.0 % 18 % 0.35 % 2.7 % 1.9 %

24



Table 3. Acceptation rate.

Parameter wα wβ ϕ

Acceptation rate 14.50 % 9.44 % 2.14 %
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Table 4. Specific laws obtained as limit of the Gamma pdf.

α β

Jeffreys 0 +∞

Uniform 1 +∞

Dirac - 0
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Fig. 1. The figure 1(a) represents a128 × 128 sample of thea priori law for the

object withγ0 = 1 andγ1 = 2. Fig. 1(b) is the data computed with the PSF shown

in Fig. 2. Figs. 1(c) and 1(d) are the estimates with non-myopic and the myopic

estimate, respectively. Profiles correspond to the 68-th line.
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Fig. 2. PSF withwα = 20, wβ = 7 andϕ = π/3. The x-axis and y-axis are reduced

frequency.
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Fig. 3. Circular average of the empirical power spectral density of the image, the

convolued image, the data (convolued image corrupted by noise) and the estimates,

in radial frequency with y-axis in logarithmic scale. The x-axis is the radial fre-

quency.
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Fig. 4. Computation of the best parameters in the sensee Eq. (46). The symbol

’×’ is the minimum and the symbol ’.’ is the estimated value by our approach. The

y-axis ofγǫ andγ1 are in logarithmic scale.
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(a) γǫ for non-myopic case
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Fig. 5. Histograms and chains for the non-myopic case in Figs. 5(a)-5(c) and the

myopic case in Figs. 5(b)-5(d) forγǫ andγ1, respectively. The symbol× localizes

the initial value and the dashed line corresponds to the truevalue. The x-axis are

iteration’s index for the chains and parameter value for thehistograms.
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Fig. 6. Histogram and chain for the PSF parameterswα in Fig. 6(a),wβ in Fig. 6(b)

andϕ in Fig. 6(c). The symbol× localizes the initial value and the dashed line

corresponds to the true value. The x-axis for the histogramsand the y-axis of the

chain are limits ofa priori law.
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Fig. 7. Joint histograms for the couple(γ1, wα) and(γ1, wβ) in Figs. 7(a) and 7(b)

respectively. The x-axis and y-axis are the parameter value.
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Fig. 8. Observed image Fig. 8(a) and restored image Fig. 8(b). Profiles correspond

to the 68-th line. The solid line is the true profile. Dashed line correspond to data in

Fig. 8(a) and estimated profiles in Fig. 8(b).
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1: Initialisation of
[

◦

x
(0)
,γ(0),w(0), k = 0

]

2: repeat

% Sample of
◦

x

3: Σ← γ(k)
ǫ |ΛH |2 + γ

(k)
0 |Λ1|2 + γ

(k)
1 |ΛD|2

4: µ← γ(k)
ǫ Σ

−1
Λ

∗
H

◦

y

5:
◦

x
(k)
← µ+Σ

−1/2. ∗ randn

% Sample of γ

6: γ(k)
ǫ ← gamrnd(αǫ, βǫ)

7: γ
(k)
1 ← gamrnd(α1, β1)

8: γ
(k)
0 ← gamrnd(α0, β0)

% Sample ofw

9: wp ← rand ∗ (a− b) + a

10: J ← γǫ
(
‖
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y −ΛH

◦

x‖2 − ‖
◦

y −ΛH,wp

◦

x‖2
)
/2

11: if log(rand) < min{J, 0} then

12: w(k) ← wp

13: ΛH ← ΛH,wp

14: else

15: w(k) ← w(k−1)

16: end if

% Empirical mean

17: k ← k + 1

18:
◦

x̄
(k)
←
∑

i
◦

x
(i)
/k

19: until |x̄(k) − x̄(k−1)|/|x̄(k)| ≤ criterion

Fig. 9. Pseudo-code algorithm.gamrnd, rand andrandn draw samples of gamma

variable, uniform variable, and zero-mean unit-variance white complex Gaussian

vector respectively.
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