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FLUCTUATION OF SOLUTIONS TO LINEAR ELLIPTIC EQUATIONS

WITH NOISY DIFFUSION COEFFICIENTS

ANTOINE GLORIA

Abstract. We consider a linear elliptic equation in divergence form on a bounded
domain (or onR

d) in dimension d ≥ 2, whose coefficients are perturbed by a stationary
noise of correlation length ε > 0. We give estimates on the fluctuation of the solution
in function of the correlation length ε of the noise, both in terms of strong L2 and
weak L1 norms. This result can be seen as a quantification of the propagation of
uncertainties in linear elliptic partial differential equations.

Keywords: quantification of uncertainty, fluctuation, stochastic perturbation, vari-
ance estimate, stochastic homogenization.
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1. Motivation and informal statement of the results

Let A be a uniformly elliptic conductivity function on a smooth bounded domain D of
R
d, and let f ∈ L2(D). We consider the elliptic equation in D

{

−∇ ·A∇u = f in D,
u = 0 on ∂D,

(1.1)

and its unique weak solution u in H1
0 (D). We now perturb the conductivity A by some

stochastic stationary noise Bε with correlation length ε > 0 (namely we assume that Bε(x)
and Bε(y) are independent for all |x−y| > ε), and such that A+Bε ∈ L∞(D,Aαβ) almost
surely (i. e. A+Bε is uniformly elliptic with constant α > 0, and uniformly bounded with
constant β ≥ α). The weak solution uε ∈ H1

0 (D) to
{

−∇ · (A+Bε)∇uε = f in D,
u = 0 on ∂D,

(1.2)

is not deterministic any longer: It fluctuates according to the noiseBε. We wish to quantify
the fluctuation of uε around its mean value 〈uε〉 (where 〈·〉 denotes the expectation with
respect to the noise) in function of the correlation length ε of Bε. To this aim, we consider
two different norms for the fluctuation: The (strong) L2(D) norm of the variance, that is

Fs(ε) =

ˆ

D
var [uε(x)] dx

=

〈
ˆ

D
(uε(x)− 〈uε(x)〉)2dx

〉

;
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2 A. GLORIA

and the variance of a weak L2(D) norm, that is

Fw(ε, g) := var

[
ˆ

D
g(x)uε(x)dx

]

=

〈

(
ˆ

D
g(x)(uε(x)− 〈uε(x)〉)dx

)2
〉

,

for any fixed g ∈ L2(D).

What scaling can we expect for Fs(ε) and Fw(ε, g) ? We begin with the strong norm, and
interprete problem (1.2) in terms of stochastic homogenization (see for instance [15]). To
this aim, we consider A ≡ Id. Let us then denote by Φ the corrector vector associated
with (e1, . . . , ed) (where {e1, . . . , ed} is the canonical basis of Rd). From a formal two scale
expansion, one has

uε(x, ω) = u0(x) + εΦ(
x

ε
, ω) · ∇u0(x) + . . . , (1.3)

where u0 is the (deterministic) solution to the homogenized equation in D

−∇ · Ahom∇u0 = f.

In the periodic case (that is, when Bε is assumed to be ε-periodic instead of stationary),
it is known that the error between uε and the first two terms of the expansion (1.3) is of

order ε3/2 in L2(D). One cannot hope better in our stochastic setting, and we momentarily
assume this also holds here. In dimension d > 2, Otto and the author have proved that Φ
can be chosen stationary, 〈Φ〉 = 0, and

〈

|Φ|2
〉

< ∞ (see [6, Corollary 2]). Hence, by the
triangle inequality,

〈
ˆ

D
(uε(x)− 〈uε(x)〉)2dx

〉1/2

≤
〈
ˆ

D
(uε(x)− u0(x))

2dx

〉1/2

+

〈
ˆ

D
(〈uε(x)〉 − u0(x))

2dx

〉1/2

(1.3)
=

〈

ε2
ˆ

D
(Φ(

x

ε
, ω) · ∇u0(x))2dx+O(ε3)

〉1/2

+

(
ˆ

D

〈

uε(x)− u0(x)− εΦ(
x

ε
, ω)∇u0(x)

〉2
dx

)1/2

≤ ε
〈

|Φ|2
〉1/2 ‖∇u0‖L2(D) +O(ε3/2). (1.4)

For d > 2, we may thus expect Fs(ε) ∼ ε2. This is in agreement with the intuition that

(Fs(ε))
1/2 is a measure of a “Poincaré constant” in probability on a domain of lengthscale

ε. Note that for d = 1, explicit calculations show that Fs(ε) ∼ ε. In particular, the
corrector cannot be stationary and square integrable in probability, so that the above
argument fails. Dimension d = 2 is critical, and a logarithmic correction is to be expected.

Let us now turn to the weak norm. We further particularize the example by considering the
case of vanishing ellipticity ratio, that is, A ≡ Id, and Bε ≪ 1 is a stochastic perturbation
such that 〈Bε〉 = 0. This has already been of some help in [7] to identify relevant scalings.
In this regime, we decompose uε as uε = u0 + wε, where u0 is deterministic and solves

−△u0 = f,
2



FLUCTUATION OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH NOISY COEFFICIENTS 3

and wε fluctuates and is given by

−△wε = ∇ · Bε∇(u0 + wε) ≃ ∇ ·Bε∇u0,
at first order. Denoting by G the Green’s function of the Laplace operator on D with
homogeneous Dirichlet boundary conditions, we may write wε as

wε(x) ≃
ˆ

D
∇G(x, y) · Bε(y)∇u0(y)dy,

so that Fw takes the form

Fw(ε, g) ≃
〈

(
ˆ

D
g(x)wε(x)dx

)2
〉

=

〈

(
ˆ

D
g(x)

ˆ

D
∇G(x, y) ·Bε(y)∇u0(y)dydx

)2
〉

.

Expanding the square and recalling that the correlation length of the perturbation Bε is
ε, this turns into

Fw(ε, g) .

ˆ

D

ˆ

D
|g(x)||g(x′)|

ˆ

D

ˆ

D,|y−y′|≤ε
|∇G(x, y)||∇G(x′, y′)|

×|∇u0(y)||∇u0(y′)|dydy′dxdx′,
where . stands for ≤ up to a constant depending only on α, β, and d. Appealing then to
the “explicit” formula for the Green function of the Laplace equation (for d > 2)

G(x, z) = Cd
1

|x− z|d−2
+ g(x, z),

where g is a harmonic (and hence smooth) function, and “discarding the singularity at
zero” (the argument can be made rigorous), we then deduce that

Fw(ε, g) . εd ‖g‖2L2(D)‖∇u0‖2L2(D), (1.5)

which is the central limit theorem scaling.

Our first result is the following (suboptimal) estimates for the strong and weak measures
of the fluctuation: There exists a Hölder exponent 0 < γ < 1 depending only on the
ellipticity ratio β/α and on d (and which goes to 1 as β/α→ 1) such that

Fs(ε) . ‖f‖2L2(D)







d = 2 : ε2γ ,

d = 3 : ε1+min{1,2γ},
d > 3 : ε2,

(1.6)

Fw(ε, g) . ‖f‖2L2(D)‖g‖2L∞(D) ε
d−2(1−γ). (1.7)

In particular, only the estimate of the L2-norm of the variance for d > 3 is optimal. The
other estimates are suboptimal and are asymptotically optimal as the ellipticity ratio β/α
goes to 1.

Our proof makes use of tools developed by Otto and the author in a series of papers
dedicated to quantitative estimates in stochastic homogenization. In [7, 8, 6], the emphasis
was essentially put on the corrector equation and on error estimates for approximations of
the homogenized coefficients. In the present work, we adopt a somewhat different point of
view: We do not address the convergence of uε towards the solution of the homogenized
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4 A. GLORIA

problem at the first place, but rather investigate the statistics of uε when the correlation
length of the noise becomes small — independently of homogenization properties. In
particular, we estimate how much the solution uε fluctuates around its expectation 〈uε〉 in
terms of the correlation length ε. To this aim, we focus on the weak and strong measures
of the fluctuation, Fs(ε) and Fw(g, ε). The key ingredient in our proofs is the general
variance estimate of [6, Lemma 1.3] (see Lemma 2.1 below), that we apply to uε(x) and
to

´

D uε(x)g(x)dx, and combine with optimal (and suboptimal) decay estimates for the
Green’s function and its gradient.

A further question of interest for practical purposes (in particular in the context of iden-
tification of diffusion coefficients in presence of noise, see for instance [14]) is the validity
of a central limit theorem for the random variable

´

D g(x)(uε(x) − 〈uε(x)〉)dx, which is
only known to hold in dimension one (see [1]). Estimate (1.7) is a first piece of answer in
dimension d ≥ 2. Yet this estimate is still too weak. In particular we expect the variance
of this quantity to be bounded by εd, so that a natural question, and next step, would
be to prove that the rescaled quantity ε−d/2

(´

D g(x)(uε(x)− 〈uε(x)〉)dx
)

converges in law
to a centered Gaussian random variable. With this in mind we provide a second result
for which the weak estimate is optimal for β/α close to 1 (and not only asymptotically
optimal). Before we state it, let us mention some earlier work on the subject.

In the case when the perturbation is in the zero-order term, that is for uε ∈ H1(Rd)
solution in R

d to
(1 + bε)uε −∇ ·A∇uε = f (1.8)

for some scalar noise bε, the problem has been solved for d ≥ 4 by Figari, Orlandi &
Papanicolaou in [3], and more recently for d ≤ 3 by Bal in [1]. In their works, they also
provide a precise description of the limit law, which we don’t do in this article.

In the case of interest here, i. e. when the noise is in the diffusion coefficient, let us
mention the very insightful contributions by Yurinskĭı for continuous elliptic equations,
and by Conlon & Naddaf for discrete elliptic equations. In [16, Theorem 3.1], Yurinskĭı
essentially proves the algebraic decay (with some small but positive exponent) of some
norm of the difference between uε and the first two terms of the expansion (1.3). In [2],
Conlon & Naddaf have addressed the problem under investigation here in the discrete
setting. They consider the discrete elliptic equation on εZd (see Subsection 2.2 for precise
notation)

uε −∇∗
ε · (Id +Bε)∇εuε = f

and have proved the following bounds on the corresponding version of Fs and Fw (see [2,
Theorems 1.2 & 1.3]): There exists 0 < γ ≤ 2 depending only on α, β, and d such that

Fs(ε) . εγ . (1.9)

In addition, for d = 2, γ can be chosen arbitrary close to 2 provided β/α is taken sufficiently
close to 1, whereas for d ≥ 3, γ = 2 for β/α close to 1. For the weak norm, they have
proved that there exists 0 < γ ≤ d depending only on α, β and d such that

Fw(ε, g) . εγ . (1.10)

In addition, γ can be taken arbitrarily close to d if β/α is taken sufficiently close to 1.
The proof by Conlon & Naddaf is rather intricate and makes use of some ideas by Papan-
icolaou & Varadhan in [15], an integrability result with respect to a Walsh decomposition
of the probability space L2(Ω) associated with the noise (obtained by singular integrals
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FLUCTUATION OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH NOISY COEFFICIENTS 5

arguments), and a suitable Fourier decomposition. In this paper, we shall slightly improve
Conlon & Naddaf’s results (see Theorem 2). In particular, when the problem is posed
on the whole space (that is εZd and not D ∩ εZd) and when A is constant, the Green’s
function is stationary. This property can be used to further benefit from the decay of
gradients of the Green’s function even when the diffusion coefficient is discrete (or simply
measurable in the continuum case). We shall indeed improve estimates (1.6) and (1.7)
the following way: In addition to the Hölder exponent 0 < γ ≤ 1, there exists a Meyers
exponent p > 2 (that is a higher integrability exponent, see [12]) depending only on the
ellipticity ratio β/α and on d (and which goes to infinity when the ratio tends to 1) such
that

Fs(ε) . ‖f‖2L2(Rd)



























d = 2 : ε2 max{| ln ε|, | ln ε|max{0,4−p}ε−(1−γ)max{0,4−p}},

d = 3 :











ε2 ε
p−3+

γ
1−γ for p < 3− γ

1−γ ,

ε2| ln ε| for p = 3− γ
1−γ ,

ε2 for p > 3− γ
1−γ ,

d > 3 : ε2,

(1.11)

Fw(ε, g) . ‖f‖2L2(Rd)‖g‖2L∞(Rd) ε
d−(1−γ) max{0,4−p}

{

d = 2 : | ln ε|max{0,4−p},
d > 2 : 1.

(1.12)

In particular, for d > 3 the scaling of Fs is optimal no matter what β/α, whereas for
d ≤ 3 the scaling of Fs is optimal for ellipticity ratios close to 1 (at least those such that
p ≥ 4), as well for Fw for all d ≥ 2. In addition, for d > 2, (1.11) & (1.12) provide upper
bounds which are independent of the ellipticity ratio (thus improving (1.9) and (1.10)).
Note that we also precisely identify the logarithmic correction for Fs in dimension d = 2.
In the continuum case on the whole space (that is R

d in place of D), (1.11) & (1.12)
improve estimates (1.6) & (1.7) in the case when A is constant (see discussion at the end
of Subsection 2.2). For ellipticity ratios β/α close to 1, (1.12) is optimal, which is a first

step towards the analysis of ε−d/2
(´

Rd g(x)(uε(x)− 〈uε(x)〉)dx
)

.

The article is organized as follows. In Section 2, we state the main results of this paper
— the estimates of Fs and Fw. We first address the problem on a bounded domain in the
continuum case (see in particular [6]). We then turn to the case of unbounded domains,
and detail the discrete case on εZd in the simplest possible setting, that is in the case of
a discrete elliptic equation with independent and identically distributed (i. i. d.) random
conductivities, as Conlon & Naddaf in [2], and Otto and the author in [7, 8]. Section 3 is
dedicated to the proofs of the results on a bounded domain, whereas Section 4 deals with
the discrete case on εZd.

Throughout the paper, we make use of the following notation:

• d ≥ 2 is the dimension;
• in the discrete case, for all ε > 0,

´

εZd dx denotes the sum over x ∈ Z
d times the

measure εd;
• 〈·〉 is the ensemble average, or equivalently the expectation in the underlying prob-
ability space;

• var [·] and cov [·; ·] are the variance and covariance associated with the ensemble
average, respectively;

5



6 A. GLORIA

• . and & stand for ≤ and ≥ up to a multiplicative constant which only depends on
the dimension d and the constants α, β (see Definition 2.3 below) if not otherwise
stated;

• when both . and & hold, we simply write ∼;
• we use ≫ instead of & when the multiplicative constant is (much) larger than 1;
• (e1, . . . , ed) denotes the canonical basis of Rd;
• | · | denotes the Euclidean norm in R

d, | · |∞ denotes the supremum norm in R
d.

2. Statement of the main results

2.1. The bounded domain case. We first introduce the notion of conductivity function.

Definition 2.1. We denote by Aαβ the set of measurable functions on R
d taking values in

the set of symmetric d× d-matrices with ellipticity constants β ≥ α > 0: For all A ∈ Aαβ,

almost every x ∈ R
d, and all ξ ∈ R

d,

ξ · A(x)ξ ≥ α|ξ|2, |A(x)ξ| ≤ β|ξ|.

We now turn to the definition of the statistics of the noise.

Definition 2.2. A random noise B ∈ Aαβ is said to be admissible if it is stationary

in the sense that for almost every y ∈ R
d, k ∈ N and (y0, . . . , yk) ∈ (Rd)k+1,

(

B(y0 +

·), . . . , B(yk + ·)
)

and
(

B(y0 + y + ·), . . . , B(yk + y + ·)
)

have the same statistics. It is of

finite correlation length if there exists CL ∈ R
+ such that for all x, y ∈ R

d, B(x) and B(y)
are independent for |x− y| ≥ CL.

Note that this “definition” of the correlation-length is not standard. The main result in
the continuum case is as follows.

Theorem 1. Let D be a bounded domain of Rd which satisfies a uniform exterior cone
condition. Let A be a conductivity function on D, and B be an admissible random noise
of finite correlation length such that A(x) +B(y) ∈ Aαβ for almost all x ∈ D, y ∈ R

d. Let
f ∈ L2(D), and for all ε > 0, let uε ∈ H1

0 (D) denote the unique weak solution to

−∇ · (A+Bε)∇uε = f, in D, (2.1)

where Bε(·) := B(·/ε).
Then, there exists a Hölder exponent 0 < γ ≤ 1 depending only on α, β, and d (and which
tends to 1 when β/α→ 1) such that for all g ∈ L∞(D), the fluctuation of uε is estimated
by:

ˆ

D
var [uε(x)] dx . ‖f‖22







d = 2 : ε2γ ,

d = 3 : ε1+min{1,2γ},
d > 3 : ε2,

(2.2)

var

[
ˆ

D
g(x)uε(x)dx

]

. ‖f‖22‖g‖2∞ εd−2(1−γ). (2.3)

6



FLUCTUATION OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH NOISY COEFFICIENTS 7

2.2. The unbounded domain case. In order to make the comparison to Conlon &
Naddaf’s result, we present the discrete case in detail. The notions of discrete conductivity
function and elliptic operator are as follow.

Definition 2.3. We say that a is a conductivity function if there exist 0 < α ≤ β < ∞
such that for every edge e = (x, y) (with x, y ∈ Z

d, |x− y| = 1), one has a(e) ∈ [α, β]. We
denote by Aαβ the set of such conductivity functions.

Definition 2.4. For all ε > 0, the elliptic operator Lε : L
2
loc(εZ

d) → L2
loc(εZ

d), u 7→ Lεu

associated with a conductivity function a ∈ Aαβ is defined for all x ∈ εZd by

(Lεu)(x) = −∇∗
ε ·Aε(x)∇εu(x) (2.4)

where

∇εu(x) := ε−1







u(x+ εe1)− u(x)
...
u(x+ εed)− u(x)






, ∇∗

εu(x) := ε−1







u(x)− u(x− εe1)
...
u(x)− u(x− εed)






,

and
Aε(x) = A(ε−1x) := diag [a(e1), . . . , a(ed)] ,

e1 = [ε−1x, ε−1x + e1], . . . , ed = [ε−1x, ε−1x + ed]. In what follows, we will abusively
denote by conductivity function both a and the associated A for ε = 1, and write as well
A ∈ Aαβ.

We now turn to the definition of the statistics of the conductivity function.

Definition 2.5. A conductivity function B ∈ Aαβ is said to be independent and identi-
cally distributed (i. i. d.) if the coefficients b(e) are i. i. d. random variables.

The main result on the estimate of the fluctuation of solutions to discrete elliptic equations
perturbed by an i. i. d. random noise is the following.

Theorem 2. Let a be a constant conductivity function, and b be an i. i. d. conductivity
function on Z

d such that A+B ∈ Aαβ. Let f ∈ C0(Rd)∩L2(Rd) and g ∈ C0
b (R

d)∩L2(Rd)

(that is, continuous, bounded, and square-integrable), and for all ε > 0, let uε ∈ L2(εZd)
denote the unique solution to

uε −∇∗
ε · (A+Bε)∇εuε = f, in εZd. (2.5)

Then there exist a Hölder exponent 0 < γ ≤ 1 and a Meyers exponent p > 2 depending
only on α, β and d (the latter goes to infinity when β/α → 1), such that the fluctuation of
uε is estimated by:

ˆ

εZd

var [uε(x)] dx . ‖f‖22



































d = 2 : max{ε2| ln ε|,
ε2−(1−γ)max{0,4−p}| ln ε|max{0,4−p}},

d = 3 :











ε2 ε
p−3+

γ
1−γ for p < 3− γ

1−γ ,

ε2| ln ε| for p = 3− γ
1−γ ,

ε2 for p > 3− γ
1−γ ,

d > 3 : ε2,

(2.6)

var

[
ˆ

εZd

g(x)uε(x)dx

]

. ‖f‖22‖g‖2∞
{

d = 2 : εd−(1−γ) max{0,4−p}| ln ε|max{0,4−p},

d > 2 : εd−(1−γ) max{0,4−p}.
(2.7)

7



8 A. GLORIA

The estimates of Theorem 2 are optimal when the ellipticity ratio is such that the associ-
ated Meyers exponent p is (for instance) larger than 4.

Theorem 2 improves the results of [2, Theorems 1.2 & 1.3] by Conlon & Naddaf. For the
strong measure (2.6) of the fluctuation, we precisely identify the logarithmic correction
for d = 2, provide with an upper bound independent of the ellipticity ratio for d = 3, and
prove an optimal estimate for d > 3. For the weak measure (2.7) of the fluctuation, the
optimal scaling is reached provided p is larger than 4 (whereas the optimal scaling is only
met asymptotically in [2, Theorem 1.3]), and for d > 2 the estimate gives a non-trivial
upper bound uniformly in the ellipticity ratio.

A corresponding result holds in the continuum case, and is stronger that Theorem 1 in
the case when the conductivity function A is a constant matrix.

Theorem 3. Let A be a symmetric matrix, and B be an admissible noise with finite
correlation-length and such that A + B ∈ Aαβ. Let f ∈ L2(Rd), and for all ε > 0, let

uε ∈ H1(Rd) denote the unique weak solution to

uε −∇ · (A+Bε)∇uε = f, in R
d,

where Bε(·) := B(·/ε).
Then there exist a Hölder exponent γ > 0 and a Meyers exponent p > 2 depending only
on α, β and d (and such that p → ∞ and γ → 1 when β/α → 1), such that for all
g ∈ L1(Rd) ∩ L∞(Rd) the fluctuation of uε is estimated by:

ˆ

Rd

var [uε(x)] dx . ‖f‖22



































d = 2 : max{ε2| ln ε|,
ε2−(1−γ) max{0,4−p}| ln ε|max{0,4−p}},

d = 3 :











ε2 ε
p−3+

γ
1−γ for p < 3− γ

1−γ ,

ε2| ln ε| for p = 3− γ
1−γ ,

ε2 for p > 3− γ
1−γ ,

d > 3 : ε2,

var

[
ˆ

Rd

g(x)uε(x)dx

]

. ‖f‖22‖g‖2∞
{

d = 2 : εd−(1−γ) max{0,4−p}| ln ε|max{0,4−p},

d > 2 : εd−(1−γ) max{0,4−p}.

The results of this theorem yield stronger bounds than Theorem 1. This is clear for the
weak measure of the fluctuation for all d ≥ 2 and for the strong norm for d = 2 and d > 3
since p > 2. For d = 3, this is clear for p ≥ 3 − γ

1−γ , whereas for p < 3 − γ
1−γ , the result

follows from the fact that γ 7→ p− 2+ γ
1−γ − 2γ is a non-negative function provided p > 2.

2.3. Structure of the proof in the continuum case on a bounded domain. We
begin with the strong norm of the variance. The starting point is the change of variables
x❀ x/ε to make the correlation length be of order 1:

ˆ

D
var [uε(x)] dx = εd

ˆ

D/ε
var [vε(x)] dx, (2.8)

where vε is the weak solution in H1
0 (D/ε) to

−∇ · C(x)∇vε(x) = ε2fε(x) (2.9)
8



FLUCTUATION OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH NOISY COEFFICIENTS 9

with C(x) := Aε(x) +B(x), and

Aε(x) = A(εx),

fε(x) = f(εx) (2.10)

and is given for all x ∈ D/ε by

vε(x) = uε(εx). (2.11)

Without loss of generality, we assume the correlation length CL to be less than 1/3, and
appeal to the following variance estimate of [6]:

Lemma 2.1 (variance estimate). Let B be random with values in Aαβ and the following
statistical property: The random field B has correlation length unity in the sense that
for any two sets U, V ⊂ R

d with dist(U, V ) ≥ 1/3, the restrictions B|U and B|V are
independent. Let X be a function on Aαβ — which we consider as a random variable —

with the following regularity property: X can be uniformly approximated by functions X̃
on Aαβ that depend on B only through the restriction B|Ũ for some compact set Ũ ⊂ R

d.

Then we have the following variance estimate

var [X] .

〈

ˆ

Rd

(

osc
B|Q(z)

X

)2

dz

〉

, (2.12)

where osc
B|Q(z)

X denotes the oscillation of X with respect to B restricted onto the cube Q(z)

of lateral size unity and center at z ∈ R
d. Note that for any set U ⊂ R

d, osc
B|U

X itself is

a random variable:
(

osc
B|U

X

)

(B) =

(

sup
B|U

X

)

(B)−
(

inf
B|U

X

)

(B)

= sup
{

X(B̃)|B̃ ∈ Aαβ, B̃|Rd\U = B|Rd\U

}

− inf
{

X(B̃)|B̃ ∈ Aαβ , B̃|Rd\U = B|Rd\U

}

. (2.13)

Since for all x ∈ D/ε, vε(x) only depends on the restriction of B onto D/ε, one may apply
Lemma 2.1 to vε(x), which yields

var [vε(x)] .

ˆ

Rd

〈

osc 2

B|Q(z)

vε(x)

〉

dz. (2.14)

We now estimate the susceptibility of vε(x) with respect to the coefficients B|Q(z) for some
z ∈ D/ε. To this aim we first define Green’s functions:

Definition 2.6 (Green’s function). Let d ≥ 2. The Green’s function G : Aαβ × D/ε ×
D/ε → R, (C, x, y) 7→ G(x, y;C) associated with the conductivity function C ∈ Aαβ is

defined for all y ∈ D/ε as the unique distributional solution in W 1,1
0 (D/ε) to

−∇x · C(x)∇xG(x, y;C) = δ(y − x). (2.15)
9
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In addition, there exists c > 0 depending only on α, β, and d, such that for all x, y ∈ D/ε

G(x, y;C) .







d = 2 : | ln(|x− y|)|,
d > 2 :

1

|x− y|d−2
,

(2.16)

and for all R . 1 and 0 < η < 1, x 7→ G(x, y) ∈W 1,d/(d−1+η)(QR(y)) uniformly in y ∈ D/ε
such that QR(y) ⊂ D/ε.
Note that G(x, y;C) = G(y, x;C) for all x, y ∈ D/ε, by symmetry of C.

Definition 2.6 essentially follows from [11, Theorem (5.1) & Section 7]. The susceptibility
estimate is as follows:

Lemma 2.2 (susceptibility estimate). Let A be a conductivity function on a bounded
domain D ⊂ R

d, and B be an admissible random noise of finite correlation length such
that A(x) +B(y) ∈ Aαβ for almost all x ∈ D, y ∈ R

d. Let f ∈ L2(D) and uε ∈ H1
0 (D) be

as in Theorem 1, G be as in Definition 2.6 with C = A+B, and fε and vε be as in (2.10)
& (2.11). For notational convenience, we extend fε, vε and ∇vε by zero on R

d \D/ε, as
well as G and ∇G on R

d × R
d \ (D/ε ×D/ε). Then for all |z − x| ≥ 1, we have

osc 2

B|Q(z)

vε(x) .

ˆ

Q(z)
|∇yG(x, y)|2dy

ˆ

Q(z)
|∇vε(y)|2dy, (2.17)

whereas for all |x− z| < 1 we have

osc 2

B|Q(z)

vε(x) .

ˆ

Q(z)
|∇vε(y)|2dy + ε4

ˆ

Q4(z)
fε(y)

2dy. (2.18)

To prove Lemma 2.2 we first assume that A+B is smooth, and then conclude by approx-
imation using the following lemma.

Lemma 2.3 (regularization). For all C ∈ Aαβ, fε ∈ L2(D/ε) and h > 0, let Ch be defined
for all x ∈ D/ε by

Ch(x) =

ˆ

D/ε
ρh(x− y)C(y)dy,

fhε (x) =

ˆ

D/ε
ρh(x− y)fε(y)dy,

where ρh(y) = h−dρ(y/h), and ρ is a smooth non-negative function on R
d of unit mass with

compact support containing the origin. Note that for all h > 0 there exists αh > 0 (which
goes to α as h vanishes) such that Ch ∈ Aαhβ ∩C∞(D/ε), and fhε ∈ C∞(D/ε). Denoting

by G and vε, and G
h and vhε the Green’s functions and solution to (2.9) associated with C

and Ch, and fε and fε,h, respectively, we have:

(a) For all y ∈ D/ε, Gh(·, y) converges to G(·, y) in L1(D/ε), and in Lq(D/ε \Br(y))
and H1(D/ε \Br(y)) for all 1 ≤ q <∞ and r > 0;

(b) The function vhε converges pointwise everywhere on D/ε and in H1(D/ε) to vε.

In view of Lemma 2.2 we shall need to estimate gradients of the Green’s function:

10
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Lemma 2.4. Let D satisfy a uniform exterior cone condition. Then there exists 0 < γ ≤ 1
depending only on α, β, and d such that for all G : Aαβ × D/ε × D/ε → R, (C, x, y) 7→
G(x, y;C), and all x, y ∈ D/ε with |y − x| ≫ 1 we have

ˆ

Q(x)∩D/ε
|∇x′G(x′, y;C)|dx′ .

{

d = 2 : | ln(|x−y|)|
|x−y|γ ,

d > 2 : 1
|x−y|d−2+γ .

(2.19)

Note that the symmetry assumption on the coefficients A and B is not necessary (at least
for d > 2) since [9, (1.9) Theorem] holds as well for non-symmetric coefficients.

The proof of the estimate of the strong norm of the variance then follows from the com-
bination of (2.14), (2.17), (2.18), and (2.19).

We now turn to the estimate of the weak norm of the variance, which we rewrite as

var

[
ˆ

D
uε(x)g(x)dx

]

= ε2dvar

[

ˆ

D/ε
vε(x)gε(x)dx

]

,

where gε(x) := g(εx) for all x ∈ D. Since B 7→
´

D uε(x)g(x)dx only depends on the
restriction of B onto D/ε, one may apply the variance estimate, so that

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d

〈

ˆ

Rd

osc 2

B|Q(z)

(

ˆ

D/ε
vε(x)gε(x)dx

)

dz

〉

.

Since gε does not depend on B, we may use the elementary inequality

osc
B|Q(z)

(

ˆ

D/ε
vε(x)gε(x)dx

)

≤
ˆ

D/ε
osc
B|Q(z)

(

vε(x)gε(x)
)

dx

≤
ˆ

D/ε

(

osc
B|Q(z)

vε(x)

)

|gε(x)|dx,

which turns the variance estimate into

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d
ˆ

Rd

〈

[
ˆ

D/ε

(

osc
B|Q(z)

vε(x)

)

|gε(x)|dx
]2
〉

dz. (2.20)

The weak estimate will follow from the combination of (2.20) with (2.17), (2.18), and
(2.19).

2.4. Structure of the proof in the discrete case on εZd. The proof of Theorem 2
slightly departs from the proof of Theorem 3. In the case of an unbounded domain (and a
constant matrix A) the associated Green’s function is stationary (see Definition 2.8 below),
so that

〈∇xG(x, y)〉 = 〈∇xG(x− y, 0)〉 = −〈∇yG(x− y, 0)〉 = −〈∇yG(x, y)〉 .
This allows to replace a derivative in one variable by a derivative in the other variable,
which — as we shall see in the proof — enables us to benefit from the better decay of
the gradient of the Green’s function when integrated on dyadic annuli (see Lemma 2.8).
Yet, in order to make this strategy work, the starting point is slightly different from the

11



12 A. GLORIA

previous subsection, and we first appeal to the following Green representation formula for
uε:

uε(εx) = ε2
ˆ

Zd

Gε2(x, y)f(εy)dy,

where the Green’s function Gε2 is defined as follows:

Definition 2.7 (discrete Green’s function). Let d ≥ 2. For all η > 0, the Green’s function
Gη : Aαβ ×Z

d ×Z
d → Z

d, (c, x, y) 7→ Gη(x, y; c) associated with the conductivity function

c ∈ Aαβ is defined for all y ∈ Z
d as the unique solution in L2

x(Z
d) to

ˆ

Zd

ηGη(x, y; a)v(x) dx +

ˆ

Zd

∇v(x) · C(x)∇xGη(x, y; a) dx = v(y), ∀v ∈ L2(Zd),

(2.21)
where C is as in (2.4) with c in place of a.

Definition 2.8. The conductivity matrix A + B is stationary in the sense that for all
k ∈ N, and all z, z1, . . . , zk ∈ Z

d, (A + B(· + z1), . . . , A + B(· + zk)) and (A + B(· + z +
z1), . . . , A+B(·+ z + zk)) have the same statistics, so that for all x, z ∈ Z

d,

〈A+B(x+ z)〉 = 〈A+B(x)〉 .
Any translation invariant function of A + B, such as the Green’s functions Gη of Def-
inition 2.7, is jointly stationary with A + B. In this case, stationarity implies that
Gη(· + z, · + z) has the same statistics as Gη(·, ·) for all z ∈ Z

d, so that in particular,

for all x, y, z ∈ Z
d,

〈Gη(x+ z, y + z)〉 = 〈Gη(x, y)〉 .
We may rewrite the strong norm of the fluctuation of uε in the form
ˆ

εZd

var [uε(x)] dx =

〈

εd
ˆ

Zd

(

ε2
ˆ

Zd

(Gε2(x, y)− 〈Gε2(x, y)〉)f(εy)dy
)2

dx

〉

= εd+4

ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)f(εy′)cov
[

Gε2(x, y);Gε2(x, y
′)
]

dydy′dx.

(2.22)

We thus need to control not a variance, but rather a covariance (of the Green’s function).
To this aim we recall the following stronger form of the spectral gap estimate, which is
the desired covariance estimate:

Lemma 2.5 (covariance estimate). [8, Lemma 3] Let a = {ai}i∈N be a sequence of i. i. d.
random variables with range [α, β]. Let X and Y be two Borel measurable functions of
a ∈ R

N (i. e. measurable w. r. t. the smallest σ-algebra on R
N for which all coordinate

functions R
N ∋ a 7→ ai ∈ R are Borel measurable, cf. [10, Definition 14.4]). Then we have

cov [X;Y ] ≤
∞
∑

i=1

〈

sup
ai

∣

∣

∣

∣

∂X

∂ai

∣

∣

∣

∣

2
〉1/2〈

sup
ai

∣

∣

∣

∣

∂Y

∂ai

∣

∣

∣

∣

2
〉1/2

var [a1] , (2.23)

where supai

∣

∣

∣

∂Z
∂ai

∣

∣

∣
denotes the supremum of the modulus of the i-th partial derivative

∂Z

∂ai
(a1, · · · , ai−1, ai, ai+1, · · · )

of Z with respect to the variable ai ∈ [α, β], for Z = X,Y .
12
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In order to apply Lemma 2.5 to the Green’s function, one needs to know that it satisfies
the required measurability assumption, which is the object of the following lemma proved
in [7].

Lemma 2.6. [7, Lemma 2.6] Let c ∈ Aαβ be an i. i. d. conductivity function, and let

Gη(·, ·; c) be the associated Green’s function for η > 0. Then for fixed x, y ∈ Z
d, Gη(x, y, ·)

is continuous w. r. t. the product topology of Aαβ (i. e. the smallest/coarsest topology on

R
E, where B denotes the set of edges, such that the coordinate functions RE ∋ c 7→ ce ∈ R

are continuous for all edges e ∈ B).
In particular, Gη(x, y; ·) is a Borel measurable function of c ∈ Aαβ, so that one may apply
Lemma 2.5 to Gη(x, y; ·) and nonlinear funtions thereof.

In order to exploit Lemma 2.5, we appeal to the estimate derived in [7] on the susceptibility
of the Green’s function with respect to the conductivity function:

Lemma 2.7. [7, Lemma 2.5] Let Gη : Aαβ × Z
d × Z

d → R, (c, x, y) 7→ Gη(x, y; c) be the
Green’s function associated with the conductivity function c for η > 0. For all e = [z, z+ei]
and for all x, y ∈ Z

d, it holds that

∂

∂c(e)
Gη(x, y; c) = −∇ziGη(x, z; c)∇ziGη(z, y; c). (2.24)

As a by-product we also have: For all x ∈ Z
d

sup
c(e)

|∇ziGη(z, x; c)| . |∇ziGη(z, x; c)| . (2.25)

Once we combine the covariance estimate of Gη with (2.22) and Lemma 2.7, it only remains
to estimate the integrals involving gradients of the Green’s function. As will be clear in the
proof, the exponents we obtain in the estimates for the strong and weak norms would be
optimal if we knew that ∇yGη(x, y) had the optimal decay (1+|x−y|)1−d exp(−c|x−y|√η)
for some c > 0. This estimate cannot hold pointwise uniformly with respect to the
ellipticity ratio. Yet, using Cacciopoli’s inequality, it survives for the square of the gradient
integrated on (dyadic) annuli. We will actually need more, and will use that the averaged
optimal decay also holds for a higher power than 2 — depending on the ellipticity ratio.
This is a consequence of the following Meyers estimate.

Lemma 2.8 (higher integrability of gradients). Let a ∈ Aαβ be a conductivity function,
and Gη be its associated Green’s function. Then, for d ≥ 2, there exist p > 2 and c > 0
depending only on α, β, and d such that for all η > 0, p ≥ q ≥ 2, k > 0 and R≫ 1,

ˆ

R<|z|≤2R
|∇zGη(z, 0)|qdz . Rd(R1−d)q exp(−cqR√η). (2.26)

Lemma 2.8 is direct consequence of [7, Lemma 2.9], and [5, Lemma 2]. For technical
reasons, at some places we will have no choice but estimate ∇Gη(x, y) pointwise. To this
aim we use the following Hölder estimate.

Lemma 2.9 (pointwise decay estimate for ∇Gη). Let a ∈ Aαβ, and Gη be the associated
Green’s function. For all d > 2, there exist 0 < γ ≤ 1 and c > 0 depending on α, β, such
that for all x, y ∈ Z

d,

|∇xGη(x, y)|, |∇yGη(x, y)| .
1

1 + |x− y|d−2+γ
exp(−c|x− y|√η). (2.27)

13
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For d = 2, there is a logarithmic correction:

|∇xGη(x, y)|, |∇yGη(x, y)| . min

{

1,
1

1 + |x− y|γ | ln(
√
η(1 + |x− y|))| exp(−c|x− y|√η)

}

.

(2.28)

Compared to Lemma 2.2, Lemma 2.7 does not distinguish between the diagonal case
(|x − z| . 1) and the off-diagonal case (|x − z| ≫ 1). This comes from the fact that the
gradient of the Green’s function is not singular in the discrete case.

Let us now turn to the weak norm of the fluctuation. The starting point is now

var

[
ˆ

εZd

g(x)uε(x)dx

]

= ε4ε2d
ˆ

Zd

ˆ

Zd

ˆ

Zd

ˆ

Zd

gε(x)gε(x
′)fε(y)fε(y

′)

cov
[

Gε2(x, y);Gε2(x
′, y′)

]

dydy′dxdx′,

where we have set fε(x) := f(εx) and gε(x) := g(εx) for all x ∈ Z
d. In view of this

quantity and of Lemma 2.7, it is not suprising that we shall need to estimate convolutions
of the gradient of the Green’s function with itself. As shown below, the estimates remain
optimal (with respect to the Green’s function of the Laplace operator):

Lemma 2.10 (convolution estimates). [7, Lemma 2.10] Let hη : Zd → R be such that for
all R≫ 1 and η > 0,

for d = 2 :

ˆ

R<|z|≤2R
h2η(z)dz . min{1, (√ηR)−1}2, (2.29)

for d > 2 :

ˆ

R<|z|≤2R
h2η(z)dz . R2−d, (2.30)

and for R ∼ 1

for d ≥ 2 :

ˆ

|z|≤R
h2η(z)dz . 1. (2.31)

Then for R≫ 1

for d = 2 :

ˆ

|x|≤R

ˆ

Zd

hη(z)hη(z − x) dz dx . R2 max{1,− ln(
√
ηR)}, (2.32)

for d > 2 :

ˆ

|x|≤R

ˆ

Zd

hη(z)hη(z − x) dz dx . R2. (2.33)

The proof of Theorem 2 is much more technical than the proof of Theorem 1. Theorem 3
can be proved using the same chain of arguments. However, the auxiliary lemmas need
to be modified. These adaptations can be found in [6], and we do not reproduce them
here. The only result we need here and didn’t prove in [6] is the corresponding covariance
estimate. We provide a statement and proof of the covariance estimate in the appendix.

3. Proofs of Theorem 1 and of some auxiliary lemmas

3.1. Proof of Theorem 1. We divide the proof into two steps, begin with the strong
norm of the variance in the first step, and turn to the weak norm in the second step.

Step 1. Proof of (2.2).
14
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We recall that the change of variable x❀ x/ε yields
ˆ

D
var [uε(x)] dx = εd

ˆ

D/ε
var [vε(x)] dx, (3.1)

where vε is the weak solution in H1
0 (D/ε) to

−∇ · (Aε(x) +B(x))∇vε(x) = ε2fε(x) (3.2)

with

Aε(x) = A(εx),

fε(x) = f(εx)

and is given by vε(x) = uε(εx) for all x ∈ D/ε. Combined with the fact that vε only
depends on the restriction of B on D/ε, Lemma 2.1 yields our starting point (2.14):

var [vε(x)] .

ˆ

Rd

〈

osc 2

B|Q(z)

vε(x)

〉

dz.

We then appeal to the susceptibility estimate of Lemma 2.2, and recall that we extend fε,
vε and ∇vε, and G and ∇G by zero on R

d \D/ε, and R
d×R

d \ (D/ε×D/ε), respectively.
This turns (2.14) into

var [vε(x)] .

ˆ

|z−x|≥1

〈

ˆ

Q(z)
|∇yG(x, y)|2dy

ˆ

Q(z)
|∇vε(y)|2dy

〉

dz

+

ˆ

|z−x|<1

ˆ

Q4(z)
(|∇vε(y)|2 + ε4fε(y)

2)dydz.

Using the pointwise bound (2.19) on ∇G in Lemma 2.4, and integrating on x ∈ R
d, we

may rewrite this inequality as

ˆ

Rd

var [vε(x)] .

ˆ

Rd

ˆ

Rd

h2γ(z − x)

〈

ˆ

Q(z)
|∇vε(y)|2dy

〉

dzdx+ ε4
ˆ

Rd

fε(x)
2dx

with

hγ(x) =







1 if x ∈ 2D/ε, |x| < 1,
1

|x|d−2+γ if x ∈ 2D/ε, |x| ≥ 1,

0 if x /∈ 2D/ε.

Using Fubini’s theorem, this yields

ˆ

Rd

var [vε(x)] dx .

ˆ

Rd

h2γ(x)dx

ˆ

Rd

〈

ˆ

Q(z)
|∇vε(y)|2dy

〉

dz + ε4
ˆ

Rd

fε(x)
2dx

=

ˆ

Rd

h2γ(x)dx

〈
ˆ

Rd

|∇vε(z)|2dz
〉

+ ε4
ˆ

Rd

fε(x)
2dx. (3.3)

By definition, the first factor of the first term of the r. h. s. is estimated by

ˆ

Rd

h2γ(x)dx .







d = 2 : ε−2+2γ ,

d = 3 : εmin{0,2γ−1},
d > 3 : 1.
15
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For the second factor we appeal to equation (3.2) in the form of the a priori estimate
ˆ

D/ε
|∇vε(x)|2dx . ε2

ˆ

D/ε
fε(x)vε(x)dx.

We perform the change of variables x❀ εx, so that it turns into
ˆ

D/ε
fε(x)vε(x)dx = ε−d

ˆ

D
f(x)uε(x)dx . ε−d‖f‖L2(D)‖uε‖L2(D).

Using (2.1) and Poincaré’s inequality on D, we then obtain
ˆ

D/ε
|∇vε(x)|2dx . ε2−d‖f‖2L2(D). (3.4)

Likewise, the second term of the r. h. s. of (3.3) is controlled by
ˆ

D/ε
fε(x)

2dx . ε−d‖f‖2L2(D). (3.5)

Hence,
ˆ

Rd

var [vε(x)] dx .







d = 2 : ε−2+2γ ,

d = 3 : ε2−d+min{0,2γ−1},
d > 3 : ε2−d,

which, combined with (3.1), implies (2.2).

Step 2. Proof of (2.3).
Let g ∈ L∞(D). The starting point is estimate (2.20):

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d
ˆ

Rd

〈

[
ˆ

D/ε

(

osc
B|Q(z)

vε(x)

)

|gε(x)|dx
]2
〉

dz.

Recall that vε, fε, and gε are extended by 0 on R
d \D/ε. By the oscillation estimates of

Lemma 2.2 and by Lemma 2.4,

ˆ

Rd

(

osc
B|Q(z)

vε(x)

)

|gε(x)|dx

.

ˆ

Rd

[

(

ˆ

Q4(z)
|∇vε(y)|2dy

)1/2

+

(

ε4
ˆ

Q4(z)
f(y)2dy

)1/2
]

hγ(z − x)|gε(x)|dx,

where

hγ(x) =







1 if x ∈ 2D/ε, |x| < 1,
1

|x|d−2+γ if x ∈ 2D/ε, |x| ≥ 1,

0 if x /∈ 2D/ε.

Hence, expanding the square and using Young’s inequality yield

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d
ˆ

Rd

ˆ

Rd

ˆ

Rd

〈

ˆ

Q4(z)
|∇vε(y)|2dy + ε4

ˆ

Q4(z)
f(y)2dy

〉

× hγ(z − x)hγ(z − x′)|gε(x)||gε(x′)|dxdx′dz,
16
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By Fubini’s theorem, this turns into

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d‖g‖2L∞

(
ˆ

Rd

hγ(x)dx

)2〈ˆ

Rd

|∇vε(z)|2dz + ε4
ˆ

Rd

fε(z)
2dz

〉

.

Using then the a priori estimate (3.4), (3.5), and the definition of hγ , we end up with

var

[
ˆ

D
uε(x)g(x)dx

]

. ε2d‖g‖2L∞(ε−2+γ)2ε2−d‖f‖2L2(D).

This yields (2.3) and concludes the proof of the theorem.

3.2. Proof of Lemma 2.4. For d > 2, Lemma 2.4 is a consequence of [9, (1.9) Theorem].
Since we did not find a suitable reference for d = 2, we give the general argument, which is
a simple combination of the pointwise estimates of Definition 2.6, Cacciopoli’s inequality,
and the deep Hölder regularity result of the De Giorgi-Nash-Moser theory in the form of
[4, Theorem 8.27].

Let x ∈ D/ε. On the one hand, by the De Giorgi-Nash-Moser Hölder continuity result,
for all z ∈ D/ε with |x− z|∞ > 1, since y 7→ G(y, z) satisfies

−∇ · A(y)∇yG(y, z) = 0

on Q|z−x|/2(x) ∩D/ε and G(·, z) = 0 on ∂D/ε, there exists 0 < γ < 1 depending only on
α, β, and d such that

osc
y ∈ Q2(x) ∩D/ε

G(y, z) . |z − x|−γ sup
Q|z−x|/2(x)∩D/ε

G(·, z)

(see [4, Theorem 8.27] with “ν = 0” and “σ = 0”). Combined with the pointwise decay
estimates on G from Definition 2.6 this yields

osc
y ∈ Q2(x) ∩D/ε

G(y, z) . |z − x|2−d−γ

{

d = 2 : | ln(|z − x|)|,
d > 2 : 1.

(3.6)

On the other hand, we appeal to Cacciopoli’s inequality. We let η : Rd → [0, 1] be a
smooth function such that η(y) = 1 for all y ∈ Q(x), η = 0 for all y ∈ R

d \ Q2(x), and
such that |∇η| . 1. We need to distinguish between points close to the boundary and
points far from the boundary. We first treat the former, and consider x ∈ D/ε such that
d∞(x, ∂D/ε) < 1 (where d∞ denotes the supremum distance in R

d). We test the defining
equation for G(·, z) with test-function y 7→ η2(y)G(y, z), which belongs to H1

0 (D/ε) since
G(·, y) vanishes on ∂D/ε and η vanishes on a neighborhood of the singularity y = z). This
yields the Cacciopoli’s estimate

ˆ

Q(x)∩D/∩D/ε
|∇yG(y, z)|2dy .

ˆ

Q2(x)∩D/ε
G(y, z)2.

Noting that Q2(x)∩D/ε 6= Ø, that G(·, z) > 0 on D/ε, and that G(·, z) = 0 on ∂D/ε, we
have infQ2(x)∩D/εG(·, z) = 0 so that this estimate turns into

ˆ

Q(x)∩D/ε
|∇yG(y, z)|2dy .

(

osc
y ∈ Q2(x) ∩D/ε

G(y, z)

)2

. (3.7)

The desired estimate (2.19) follows from (3.6) and (3.7) for x ∈ D/ε such that d∞(x, ∂D/ε) <
1.

17
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For points far from the boundary, namely for x ∈ D/ε such that d∞(x, ∂D/ε) ≥ 1 we
have Q2(x) ⊂ D/ε so that η is supported in D/ε. We then test the defining equation for
G(·, z) with test-function y 7→ η2(y)(G(y, z) −K) ∈ H1

0 (D/ε) for some K ∈ R to be fixed
later (note that this function vanishes on a neighborhood of the singularity y = z). This
yields the Cacciopoli’s estimate

ˆ

Q(x)
|∇yG(y, z)|2dy .

ˆ

Q2(x)
(G(y, z) −K)2.

Choosing K = infQ2(x)G(·, z), this turns into
ˆ

Q(x)
|∇yG(y, z)|2dy .

(

osc
y ∈ Q2(x)

G(y, z)

)2

. (3.8)

The desired estimate (2.19) follows from (3.6) and (3.8) for x ∈ D/ε such that d∞(x, ∂D/ε) ≥
1.

3.3. Proof of Lemma 2.2. We split the proof into two steps and treat the cases |z−x| > 1
and |z − x| ≤ 1 separately. For notational convenience we replace the oscillation with

respect to B by the oscillation with respect to C. Let z ∈ D/ε, and C and C̃ be two
conductivity functions on D/ε which coincide on D/ε \ Q(z). We denote by vε, ṽε ∈
H1

0 (D/ε) the solutions to (2.9) with conductivity matrices C and C̃, respectively.

Step 1. Proof of (2.17)
By definition ṽε − vε satisfies the equation

−∇ · C̃∇(ṽε − vε) = ∇ · (C̃ − C)∇vε. (3.9)

Provided that f and C are smooth, ∇vε ∈ L∞(D/ε) and the function ṽε − vε satisfies the
Green representation formula

(ṽε − vε)(x) =

ˆ

D/ε
∇G̃(x, y) · (C̃(y)− C(y))∇vε(y)dy,

where G̃ denotes the Green’s function associated with C̃ on D/ε (with homogeneous

Dirichlet boundary conditions). Since C̃ and C coincide on D/ε \Q(z) this yields for all
x ∈ D/ε with |x− z| > 1

|ṽε(x)− vε(x)| .
(

ˆ

Q(z)
|∇G̃(x, y)|2dy

)1/2(
ˆ

Q(z)
|∇vε(y)|2dy

)1/2

. (3.10)

We need to take the supremum in C|Q(z) and C̃|Q(z). By [6, Lemma 2.9], we have for
|x− z| ≥ 1

sup
C̃|Q(z)

ˆ

Q(z)
|∇G̃(x, y)|2dy .

ˆ

Q(z)
|∇G(x, y)|2dy. (3.11)

It remains to treat the second factor of the r. h. s. of (3.10). To this aim, we note that
(3.9) yields the a priori estimate

ˆ

D/ε
|∇ṽε(y)−∇vε(y)|2dy .

ˆ

Q(z)
|∇vε(y)|2dy.

18
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Hence, by the triangle inequality
(

ˆ

Q(z)
|∇ṽε(y)|2dy

)1/2

.

(

ˆ

Q(z)
|∇vε(y)|2dy

)1/2

,

so that

sup
C|Q(z)

ˆ

Q(z)
|∇vε(y)|2dy .

ˆ

Q(z)
|∇vε(y)|2dy. (3.12)

The combination of (3.10), (3.11), and (3.12) proves the desired estimate (2.17) for C
and f smooth. We conclude by regularization using Lemma 2.3 for general conductivity
function C and r. h. s. f .

Step 2. Proof of (2.18).
We consider x, z ∈ D/ε such that |x−z| ≤ 1, which corresponds to a diagonal estimate. To
this aim we introduce two additional functions: v0ε , ṽ

0
ε ∈ H1

0 (D/ε) defined on Q4(z)∩D/ε
as the unique weak solutions in H1

0 (Q4(z) ∩D/ε) to

−∇ · C∇v0ε = ε2fε,

−∇ · C̃∇ṽ0ε = ε2fε,

and extended by zero to D/ε \Q4(z). We then split v0ε into two parts v0,1ε + v0,2ε , defined
on Q4(z) ∩D/ε as the unique weak solutions in H1

0 (Q4(z) ∩D/ε) to

−∇ · C̃∇v0,1ε = ε2fε −∇ · (C̃ − C)∇vε,
−∇ · C̃∇v0,2ε = −∇ · (C̃ − C)∇(v0ε − vε),

and extended by zero to D/ε \Q4(z). We finally set

ψ1 = (vε − v0,1ε )− (ṽε − ṽ0ε),

ψ2 = v0ε − ṽ0ε ,

ψ3 = −v0,2ε ,

so that

vε − ṽε = ψ1 + ψ2 + ψ3. (3.13)

We treat each term separately.

We begin with the first term, and denote by G̃ and G̃0 the Green’s functions associated with
C̃ and homogeneous Dirichlet boundary conditions on D/ε and Q4(z)∩D/ε, respectively.
Assuming that C and f are smooth so that ∇vε ∈ L∞(D/ε), from the equations

−∇ · C̃∇vε = ε2fε −∇ · (C̃ −C)∇vε, in D/ε,

−∇ · C̃∇v0,1ε = ε2fε −∇ · (C̃ −C)∇vε, in Q4(z) ∩D/ε,
−∇ · C̃∇ṽε = ε2fε, in D/ε,

−∇ · C̃∇ṽ0ε = ε2fε, in Q4(z) ∩D/ε,
we learn that ψ1 satisfies the Green representation formula

ψ1(x) =

ˆ

Q4(x)∩D/ε
∇y(G̃(x, y)− G̃0(x, y)) · (C̃(y)− C(y))∇vε(y)dy.

19
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Hence, since C̃ = C on D/ε \Q(z),

|ψ1(x)| .
(

ˆ

Q(x)∩D/ε
|∇y(G̃(x, y)− G̃0(x, y))|2dy

)1/2(
ˆ

Q(x)∩D/ε
|∇vε(y)|2dy

)1/2

.

We need to take the supremum in C̃|Q(z) and C|Q(z). For the second factor of the r. h. s.

we appeal to (3.12) in Step 1. For the first factor, we use that G̃(·, x) − G̃0(·, x) satisfies
the equation

−∇y · C̃(y)∇y(G̃(y, x)− G̃0(y, x)) = 0 in Q4(z) ∩D/ε,

so that Cacciopoli’s inequality yields
ˆ

Q(z)∩D/ε
|∇y(G̃(y, x)− G̃0(y, x))|2dy .

ˆ

Q2(z)
(G̃(y, x)− G̃0(y, x))2dy, (3.14)

whereas the maximum principle yields
ˆ

Q4(z)∩D/ε
(G̃(y, x)− G̃0(y, x))2dy . sup

∂(Q4(z)∩D/ε)
G(·, x)2. (3.15)

Since |x− z| ≤ 1, the combination of (3.14) and (3.15) with the pointwise decay (2.16) in

Definition 2.6 and the symmetry of G̃ and G̃0 shows that
ˆ

Q(z)∩D/ε
|∇y(G̃(x, y)− G̃0(x, y))|2dy . 1,

from which we conclude that for C and f smooth,

sup
C|Q(z),C̃|Q(z)

|ψ1(x)| .
(

ˆ

Q(x)∩D/ε
|∇vε(y)|2dy

)1/2

. (3.16)

We turn to the second term ψ2. Provided f is smooth, for all x ∈ Q4(z), ψ2 satisfies the
Green representation formula

ψ2(x) = ε2
ˆ

Q4(z)
(G0(x, y)− G̃0(x, y))fε(y)dy.

Combined with Cauchy-Schwarz’ inequality, the maximum principle in the form of (3.15)
then yields

|ψ2(x)| . ε2

(

ˆ

Q4(z)
fε(y)

2dy

)1/2

, (3.17)

whose r. h. s. is independent of C and C̃.

We turn to the third and last term ψ3. We rewrite the equation for ψ3 as

−∇ · C̃∇
(

ψ3 − vε + v0ε +

 

Q4(z)∩D/ε
vε

)

= 0 in Q4(z) ∩D/ε.
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From [4, Theorem 8.25] we have the boundedness estimate

sup
Q2(z)∩D/ε

∣

∣

∣

∣

∣

ψ3 − vε + v0ε +

 

Q4(z)∩D/ε
vε

∣

∣

∣

∣

∣

. ‖ψ3‖L2(Q4(z)∩D/ε) + ‖v0ε‖L2(Q4(z)∩D/ε) +

∥

∥

∥

∥

∥

vε −
 

Q4(z)∩D/ε
vε

∥

∥

∥

∥

∥

L2(Q4(z)∩D/ε)

.

By Poincaré’s inequality, this turns into

sup
Q2(z)∩D/ε

∣

∣

∣

∣

∣

ψ3 − vε + v0ε +

 

Q4(z)∩D/ε
vε

∣

∣

∣

∣

∣

. ‖∇ψ3‖L2(Q4(z)∩D/ε) + ‖∇v0ε‖L2(Q4(z)∩D/ε) + ‖∇vε‖L2(Q4(z)∩D/ε) .

From the defining equation for v0,2ε , we have the a priori estimate

‖∇ψ3‖L2(Q4(z)∩D/ε) . ‖∇v0ε‖L2(Q4(z)∩D/ε) + ‖∇vε‖L2(Q4(z)∩D/ε).

Likewise, from the defining equation for v0ε combined with Poincaré’s inequality we deduce
the a priori estimate

‖∇v0ε‖L2(Q4(z)∩D/ε) . ε2‖fε‖L2(Q4(z)∩D/ε).

Hence the boundedness estimate takes the form

sup
Q2(z)∩D/ε

|ψ3| . sup
Q2(z)∩D/ε

∣

∣

∣

∣

∣

vε − v0ε −
 

Q4(z)∩D/ε
vε

∣

∣

∣

∣

∣

+

(

ˆ

Q4(z)∩D/ε
|∇vε(y)|2dy

)1/2

+ ε2

(

ˆ

Q4(z)∩D/ε
fε(y)

2dy

)1/2

. (3.18)

Noting that

−∇ · C∇
(

vε − v0ε −
 

Q4(z)∩D/ε
vε

)

= 0 in Q4(z) ∩D/ε,

we may proceed as above, appeal to [4, Theorem 8.25], and deduce that

sup
Q2(z)∩D/ε

∣

∣

∣

∣

∣

vε − v0ε −
 

Q4(z)∩D/ε
vε

∣

∣

∣

∣

∣

.

(

ˆ

Q4(z)∩D/ε
|∇vε(y)|2dy

)1/2

+ ε2

(

ˆ

Q4(z)∩D/ε
fε(y)

2dy

)1/2

,

so that (3.18) turns into

sup
Q2(z)∩D/ε

|ψ3| .

(

ˆ

Q4(z)∩D/ε
|∇vε(y)|2dy

)1/2

+ ε2

(

ˆ

Q4(z)∩D/ε
fε(y)

2dy

)1/2

. (3.19)
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From the combination of (3.13) with (3.16), (3.17), and (3.19), we deduce that for f
smooth,

sup
Q2(z)∩D/ε

|vε − ṽε| .
(

ˆ

Q4(z)∩D/ε
|∇vε(y)|2dy

)1/2

+ ε2

(

ˆ

Q4(z)∩D/ε
fε(y)

2dy

)1/2

.

The desired estimate (2.18) then follows for f smooth from taking the supremum in
C|Q4(z)∩D/ε using (3.12), and extends to general f using Lemma 2.3.

3.4. Proof of Lemma 2.3. The proof of Property (a) is the same as in [6, Lemma 2.7],
and we only prove Property (b).

The function vhε − vε ∈ H1
0 (D/ε) is solution to

−∇ · Ch∇(vhε − vε) = (fhε − fε)−∇ · (Ch −C)∇vε.
Multiplying by vhε − vε and integrating by parts yield the a priori estimate

ˆ

D/ε
|∇(vhε − vε)|2 .

ˆ

D/ε
|fhε − fε||vhε − vε|+

ˆ

D/ε
|Ch −C||∇vε||∇(vhε − vε)|.

By Cauchy-Schwarz’, Poincaré’s and Young’s inequalities, this turns into
ˆ

D/ε
|∇(vhε − vε)|2 .

ˆ

D/ε
|fhε − fε|2 +

ˆ

D/ε
|Ch − C|2|∇vε|2.

We conclude by the dominated convergence theorem that

lim
h→0

ˆ

D/ε
|∇(vhε − vε)|2 = 0,

so that by Poincaré’s inequality, vhε converges to vε in H1(D/ε). By the De Giorgi-Nash-
Moser Hölder regularity theory, this implies that vhε converges to vε pointwise everywhere
on D/ε.

4. Proof of Theorem 2 and of Lemma 2.9

4.1. Proof of Theorem 2. We divide the proof into two steps, and first address the
strong estimate of the fluctuation.

Step 1. Proof of (2.6).
The starting point is the Green representation formula

uε(εx) = ε2
ˆ

Zd

Gε2(x, y)f(εy)dy, (4.1)

from which we deduce
ˆ

εZd

var [uε(x)] dx = εd+4

ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)f(εy′)cov
[

Gε2(x, y);Gε2(x, y
′)
]

dydy′dx.

(4.2)

From Lemmas 2.6 and 2.5, we learn that for all x, y, y′ ∈ Z
d, the covariance in the integrand

of (4.2) is estimated by

cov
[

Gε2(x, y);Gε2(x, y
′)
]

.
∑

e

〈

sup
b(e)

∣

∣

∣

∣

∂Gε2(x, y)

∂b(e)

∣

∣

∣

∣

2
〉1/2〈

sup
b(e)

∣

∣

∣

∣

∂Gε2(x, y
′)

∂b(e)

∣

∣

∣

∣

2
〉1/2

, (4.3)
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where the sum runs over the edges of Zd. We then appeal to Lemma 2.7 to turn (4.3) into

cov
[

Gε2(x, y);Gε2(x, y
′)
]

.

ˆ

Zd

〈

|∇zGε2(x, z)|2|∇zGε2(z, y)|2
〉1/2

×
〈

|∇zGε2(x, z)|2|∇zGε2(z, y
′)|2
〉1/2

dz.

Without loss of generality, we assume that the Meyers’ exponent of Lemma 2.8 satisfies
2 < p ≤ 4. We use Hölder’s inequality in probability on both terms, with exponents
(p/(p − 2), p/2). This yields

cov
[

Gε2(x, y);Gε2(x, y
′)
]

.

ˆ

Zd

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

〈|∇zGε2(z, y)|p〉1/p

×
〈

|∇zGε2(z, y
′)|p
〉1/p

dz. (4.4)

We now insert (4.4) into (4.2), and obtain
ˆ

εZd

var [uε(x)] dx . εd+4

ˆ

Zd

ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)f(εy′)
〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

×〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′dx.

Using Fubini’s theorem, we rewrite this inequality as
ˆ

εZd

var [uε(x)] dx . εd+4

ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)f(εy′) 〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

×
(
ˆ

Zd

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx

)

dzdydy′. (4.5)

We first estimate the last term of the r. h. s. of (4.5). By stationarity,
〈

|∇zGε2(x, z)|2p/(p−2)
〉

=
〈

|∇zGε2(0, z − x)|2p/(p−2)
〉

.

Denoting by R ≫ 1 a radius such that the higher integrability of Lemma 2.8 holds, we
decompose the integral over Z

d as the integral over the ball {|x| ≤ R} and the integrals
over dyadic annuli {2iR < |x| ≤ 2i+1R} for i ∈ N. For the integral over the ball {|x| ≤ R}
we appeal to the pointwise estimate of Lemma 2.9 to get

ˆ

|x−z|≤R

〈

|∇zGε2(0, z − x)|2p/(p−2)
〉(p−2)/p

dx . 1. (4.6)

For the integral over the dyadic annuli, we shall estimate a p-th power of the gradient
of the Green’s function using the (optimal) higher integrability of Lemma 2.8, and the
remaining part by the (suboptimal) pointwise estimate of Lemma 2.9. In particular, from
the elementary identity 2p/(p− 2) = p+ p(4− p)/(p− 2) and Lemma 2.9, we get for d > 2
ˆ

2iR<|x−z|≤2i+1R

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx

=

ˆ

2iR<|x−z|≤2i+1R

〈

|∇zGε2(x, z)|p(4−p)/(p−2)|∇zGε2(x, z)|p
〉(p−2)/p

dx

.

ˆ

2iR<|x−z|≤2i+1R

(

1

1 + |x− z|d+γ−2
exp(−cε|x− z|)

)4−p

〈|∇zGε2(x, z)|p〉(p−2)/p dx.
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Combined with Hölder’s inequality with exponents (p/2, p/(p−2)) and the estimate (2.26)
of Lemma 2.8 for d > 2, this turns into

ˆ

2iR<|x−z|≤2i+1R

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx

. (2i)(2−d−γ)(4−p)(2i)2d/p exp(−cε2i)
〈

ˆ

2iR≤|x−z|<2i+1R
|∇zGε2(x, z)|pdx

〉(p−2)/p

(2.26)

. (2i)(2−d−γ)(4−p)(2i)2d/p exp(−cε2i)(2i)(d+(1−d)p)(p−2)/p

= (2i)2−d+(4−p)(1−γ) exp(−cε2i). (4.7)

For d = 2, there is an additional logarithmic correction:

ˆ

2iR<|x−z|≤2i+1R

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx

.

ˆ

2iR<|x−z|≤2i+1R

∣

∣

∣

∣

ln

(

ε−1

1 + |x− z|

)∣

∣

∣

∣

4−p

×
(

1

1 + |x− z|γ exp(−cε|x− z|)
)4−p

〈|∇zGε2(x, z)|p〉(p−2)/p dx

. | ln ε|4−p

ˆ

2iR≤|x−z|<2i+1R

(

1

1 + |x− z|γ exp(−cε|x − z|)
)4−p

×〈|∇zGε2(x, z)|p〉(p−2)/p dx.

For d = 2, (4.7) is thus replaced by

ˆ

2iR<|x−z|≤2i+1R

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx . | ln ε|4−p(2i)(4−p)(1−γ) exp(−cε2i).

(4.8)
The combination of (4.7), (4.8), and (4.6) with the dyadic decomposition of space then
yields

ˆ

Zd

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/p

dx

.



























d = 2 : max{| ln ε|, (ε−(1−γ)| ln ε|)max{0,4−p}},

d = 3 :











ε
p−3+

γ
1−γ for p < 3− γ

1−γ ,

| ln ε| for p = 3− γ
1−γ ,

1 for p > 3− γ
1−γ ,

d > 3 : 1.

(4.9)
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We now turn to the estimate of the triple integral in (4.5). By stationarity and symmetry
of y and y′,

ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)f(εy′) 〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′

≤
ˆ

Zd

ˆ

Zd

ˆ

Zd

f(εy)2 〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′

=

ˆ

Zd

f(εy)2
ˆ

Zd

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′ − y)|p

〉1/p
dzdy′dy

. ε−d‖f‖22
ˆ

Zd

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′. (4.10)

We then decompose the space into {|y′| ≥ ε−1} — for which we use the exponential decay
—, and {|y′| < ε−1} — for which we appeal to the convolution estimate of Lemma 2.10.
We begin with the first term. Either

|y′| ≥ ε−1 and |z| ≤ |z − y′| =⇒ |z − y′| ≥ ε−1/2 and z ∈ Z
d,

or

|y′| ≥ ε−1 and |z| > |z − y′| =⇒ |z| ≥ ε−1/2 and z − y′ ∈ Z
d,

so that by symmetry of the roles of z and z − y′ (which follows from the stationarity of
the Green’s function), we have

ˆ

|y′|≥ε−1

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′

≤ 2

ˆ

|y′|≥ε−1

ˆ

|z|≤|z−y′|
〈|∇zGε2(z, 0)|p〉1/p

〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′

.

ˆ

z∈Zd

ˆ

|z−y′|≥ε−1/2
〈|∇zGε2(z, 0)|p〉1/p

〈

|∇zGε2(z, y
′)|p
〉1/p

dy′dz.

From the stationarity of ∇Gε2 and a dydadic decomposition of space combined with the
decay estimate of Lemma 2.8 and the uniform bound |∇Gε2 | . 1 of Lemma 2.9, we learn

that this integral behaves as if 〈|∇zGε2(z, 0)|p〉1/p decayed pointwise as exp(−cε|z|)
1+|z|d−1 , so that

ˆ

|y′|≥ε−1

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′

.

(
ˆ

z∈Zd

exp(−cε|z|)
1 + |z|d−1

dz

)

(

ˆ

|z′|≥ε−1/2

exp(−cε|z′|)
1 + |z′|d−1

dz′

)

.

(
ˆ ∞

t=0
exp(−cεt)dt

)(
ˆ ∞

t=ε−1

exp(−cεt)dt
)

. 1 + ε−2. (4.11)

We now turn to the integral over {|y′| < ε−1}. Setting h(z) := 〈|∇zGε2(z, 0)|p〉1/p and
using the stationarity of ∇Gε2 , we are in position to apply the convolution estimate of
Lemma 2.10 with η = ε2 and R = ε−1, which yields

ˆ

|y′|<ε−1

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′ . 1 + ε−2. (4.12)
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From (4.11) & (4.12), we deduce
ˆ

Zd

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′ . 1 + ε−2. (4.13)

Combined with (4.5), (4.9), and (4.10), this shows (2.6), as desired.

Step 2. Proof of (2.7).
The starting point is once more the Green representation formula (4.1), from which we
learn that

var

[
ˆ

εZd

g(x)uε(x)dx

]

= ε4ε2d
ˆ

Zd

ˆ

Zd

ˆ

Zd

ˆ

Zd

gε(x)gε(x
′)fε(y)fε(y

′)

cov
[

Gε2(x, y);Gε2(x
′, y′)

]

dydy′dxdx′,

where we have set fε(x) := f(εx) and gε(x) := g(εx) for all x ∈ Z
d. We then appeal to the

covariance estimate of Lemma 2.5 and to the estimate of the susceptibility of the Green’s
function in Lemma 2.7 to turn this into

var

[
ˆ

εZd

g(x)uε(x)dx

]

. ε4ε2d
ˆ

Zd

ˆ

Zd

ˆ

Zd

ˆ

Zd

|gε(x)gε(x′)fε(y)fε(y′)|

×
〈
ˆ

Zd

|∇zGε2(x, z)||∇zGε2(z, y)||∇zGε2(x
′, z)||∇zGε2(z, y

′)|dz
〉

dydy′dxdx′.

(4.14)

We then let 2 < p ≤ 4 be the minimum of 4 and of the Meyers exponent of Lemma 2.8.
Hölder’s inequality in probability with exponents (2p/(p − 2), p, 2p/(p − 2), p) yields

var

[
ˆ

εZd

g(x)uε(x)dx

]

. ε4ε2d
ˆ

Zd

ˆ

Zd

ˆ

Zd

[
ˆ

Zd

ˆ

Zd

|gε(x)gε(x′)|
〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/(2p)

×
〈

|∇zGε2(x
′, z)|2p/(p−2)

〉(p−2)/(2p)
dxdx′

]

×|fε(y)fε(y′)| 〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′. (4.15)

We first deal with the term into brackets. By stationarity and Cauchy-Schwarz’ inequality,
for all z ∈ Z

d,
ˆ

Zd

ˆ

Zd

|gε(x)gε(x′)|
〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/(2p) 〈

|∇zGε2(x
′, z)|2p/(p−2)

〉(p−2)/(2p)
dxdx′

≤ ‖g‖2∞
ˆ

Zd

ˆ

Zd

〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/(2p) 〈

|∇zGε2(x
′, z)|2p/(p−2)

〉(p−2)/(2p)
dxdx′

= ‖g‖2∞
(
ˆ

Zd

〈

|∇xGε2(0, x)|2p/(p−2)
〉(p−2)/(2p)

dx

)2

.
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Proceeding as for the proof of (4.9), we then deduce

ˆ

Zd

ˆ

Zd

|gε(x)gε(x′)|
〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/(2p)

×
〈

|∇zGε2(x
′, z)|2p/(p−2)

〉(p−2)/(2p)
dxdx′

. ‖g‖2∞
{

d = 2 : ε−2−(1−γ) max{0,4−p}| ln ε|max{0,4−p},

d > 2 : ε−2−(1−γ) max{0,4−p}.
(4.16)

Let us quickly give the argument for d > 2. Without loss of generality we assume that
p ≤ 4. Bounding gε by its supremum, we are left with

ˆ

Zd

ˆ

Zd

|gε(x)gε(x′)|
〈

|∇zGε2(x, z)|2p/(p−2)
〉(p−2)/(2p)

×
〈

|∇zGε2(x
′, z)|2p/(p−2)

〉(p−2)/(2p)
dxdx′

. ‖g‖2∞
(
ˆ

Zd

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dz

)2

A dyadic decomposition of Zd then yields

ˆ

Zd

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dz ≤
ˆ

|z|≤R

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dz

+
∞
∑

i=1

ˆ

2i<|z|≤2i+1R

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dz.

The first term of the r. h. s. is of order 1 by Lemma 2.9. Proceeding as for (4.9), we first
use Lemma 2.9, so that the integrals on dyadic annuli are estimated by

ˆ

2i<|z|≤2i+1R

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dz

.

ˆ

2i<|z|≤2i+1R

(

1

1 + |z|d+γ−2
exp(−cε|z|)

)(4−p)/2

〈|∇zGε20, z)|p〉(p−2)/(2p) dz.

Combined with Hölder’s inequality with exponents (2p/(p+2), 2p/(p−2)) and the estimate
(2.26) of Lemma 2.8, this turns into
ˆ

2iR<|z|≤2i+1R

〈

|∇zGε2(0, z)|2p/(p−2)
〉(p−2)/(2p)

dx

. (2i)(2−d−γ)(4−p)/2+d(p+2)/(2p) exp(−cε2i)
〈

ˆ

2iR≤|z|<2i+1R
|∇zGε2(0, z)|pdx

〉(p−2)/(2p)

(2.26)

. (2i)(2−d−γ)(4−p)/2+d(p+2)/(2p) exp(−cε2i)(2i)(d+(1−d)p)(p−2)/(2p)

= (2i)
1
2
(2+(1−γ)(4−p)) exp(−cε2i).

Summing over i yields (4.16) for d > 2, whereas the adaptation for d = 2 is treated as for
(4.9).
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We now treat the remaining term in (4.15): by symmetry of y and y′, and by stationarity
ˆ

Zd

ˆ

Zd

|fε(y)fε(y′)|
ˆ

Zd

〈|∇zGε2(z, y)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′

≤
ˆ

Zd

|fε(y)|2dy
[
ˆ

Zd

ˆ

Zd

〈|∇zGε2(z, 0)|p〉1/p
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdy′
]

.

For the term into brackets, we use the estimate (4.13), so that
ˆ

Zd

ˆ

Zd

|fε(y)fε(y′)|
ˆ

Zd

〈|∇zGε2(z, y)|p〉1/p

×
〈

|∇zGε2(z, y
′)|p
〉1/p

dzdydy′ . ε−d−2‖f‖22. (4.17)

The weak estimate (2.7) now follows from the combination of (4.15), (4.16), and (4.17).

4.2. Proof of Lemma 2.9. The diagonal estimate (that is for |x− y| . 1) follows from
[7, Corollary 2.3]. The rest of the proof is similar to the proof of Lemma 2.4. It relies on
a Harnack inequality for positive solutions of discrete elliptic equations on Z

d combined
with the pointwise decay of the Green’s function itself. W. l. o. g. we assume η ≫ 1.

A discrete version of Cacciopoli’s estimate (see for instance [7, Proof of Lemma 2.8]) yields
for all |z − y| ≫ 1 and all k ∈ R:

ˆ

BR(z)
|∇xGη(x, y)|2dx .

ˆ

B2R(z)
(Gη(x, y)− k)2dx,

and therefore

|∇xGη(z, y)| . osc
x ∈ B2R(z)

Gη(x, y) (4.18)

by choosing k = infx∈B2R(z)Gη(x, y) and using the discrete L2 − L∞ estimate. We then
appeal to a discrete version of the Hölder regularity of [4, Theorem 8.22], which follows
for instance from [13]: There exists 0 < γ < 1 depending only on α, β and d such that for
all r > d,

osc
x ∈ B2R(z)

Gη(x, y) . (|z − y|−γ + η|z − y|d/r) sup
x∈B|z−y|/2(z)

Gη(x, y), (4.19)

where the multiplicative constant depends on r next to α, β, and d. For |z − y| ≤ η−1,
(4.19) turns into

osc
x ∈ B2R(z)

Gη(z, y) . |z−y|2−d−γ







d = 2 : ln
(

(1 + |z − y|)√η
)

exp
(

− c|z − y|√η
)

,

d > 2 : exp
(

− c|z − y|√η
)

,

(4.20)
choosing r = d

1−γ and using in addition the pointwise estimates of [5, Lemma 2]. For

|z − y| > η, choosing r = d+ 1 and using that

exp
(

− ct
√
η
)

. t2η exp
(

− c

2
t
√
η
)

,

(4.19) also turns into (4.20) (possibly with a smaller c > 0). The claim of the lemma
follows from the combination of (4.18) and (4.20), and the bound |∇Gη | . 1 from [7,
Corollary 2.3].
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Appendix A. Covariance estimate in the continuum case

A.1. Statement.

Lemma A.1 (covariance estimate). Let A be random with values in Aαβ with the following
statistical property: The random field A has correlation length unity in the sense that
for any two sets U, V ⊂ R

d with dist(U, V ) ≥ 1/3, the restrictions A|U and A|V are
independent.
Let X and Y be functions on Aαβ — which we consider as a random variable — with

the following regularity property: X and Y can be uniformly approximated by functions X̃
and Ỹ on Aαβ that depend on A only through the restriction A|Ũ for some compact set

Ũ ⊂ R
d.

Then we have the following covariance estimate

cov [X;Y ] ≤
ˆ

Rd

〈

osc 2

A|Q(z)

X

〉1/2〈

osc 2

A|Q(z)

Y

〉1/2

dz, (A.1)

where for Z = X,Y , osc
A|Q(z)

Z denotes the oscillation of Z with respect to A restricted onto

the cube Q(z) of lateral size unity and center at z ∈ R
d. Note that for some set U ⊂ R

d,
osc
A|U

Z itself is a random variable:

(

osc
A|U

Z

)

(A) =

(

sup
A|U

Z

)

(A)−
(

inf
A|U

Z

)

(A)

= sup
{

Z(Ã)|Ã ∈ Aαβ, Ã|Rd−U = A|Rd−U

}

− inf
{

Z(Ã)|Ã ∈ Aαβ, Ã|Rd−U = A|Rd−U

}

. (A.2)

A.2. Proof. We decompose the proof of the covariance estimate into four steps.

Step 1. Preliminaries.
We shall establish the following somewhat stronger version of (A.1): For any lateral cube
size h > 0 we have

cov [X;Y ] ≤ h−d

ˆ

Rd

〈

osc 2

A|B1/3(Qh(z))

X

〉1/2〈

osc 2

A|B1/3(Qh(z))

Y

〉1/2

dz, (A.3)

where B1/3(U) denotes the 1/3-neighborhood of a set U ⊂ R
d, that is B1/3(U) = {x ∈

R
d|dist(x,U) ≤ 1/3}. Note that by averaging over translations in Qh(0), (A.3) can be

derived from its discrete version

cov [X;Y ] ≤
∑

n∈N

〈

osc 2

A|B1/3(Qn)

X

〉1/2〈

osc 2

A|B1/3(Qn)

Y

〉1/2

, (A.4)

where {Qn}n∈N is a partitioning of R
d into cubes of lateral size h (in some arbitrary

enumeration). In fact, we will prove (A.4) for any countable covering {Qn}n∈N of Rd by
open sets.

Step 2. Reformulation of the assumption on the statistics of A.
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To ease notation, we introduce the following language and abbreviations for a random
variable Z (i. e. a function of A ∈ Aαβ) and a set U ⊂ R

d:

• we say Z depends only on U if Z depends on A only via A|U ,

• we say Z does not depend on U if Z depends only on R
d − U ,

• supU Z, infU Z, and osc
U
Z denote the the supremum, the infimum, and the oscilla-

tion, respectively, of Z with respect to A|U in the sense of (A.2) — note that they
do not depend on U ,

• 〈Z|U〉 denotes the expectation of Z conditioned on the values of A|U — note that
it depends only on U .

With this notation, we can reformulate the assumption on the statistics of A as follows:
For any two sets V,W ⊂ R

d with dist(V,W ) ≥ 1/3 and any random variable Z we have
the implication

Z depends only onW

=⇒ ∀ U ⊂ R
d : 〈Z|U〉 does not depend on V. (A.5)

We note that this implies for any two sets U, V ⊂ R
d:

osc
V

〈Z|U〉 ≤ 〈 osc
B1(V )

Z |U〉 (A.6)

— it is this inequality that is at the heart of (A.4). Indeed, by definition of the oscillation
and by replacing Z with −Z, it suffices to show

sup
V

〈Z|U〉 ≤ 〈 sup
B1(V )

Z|U〉. (A.7)

Inequality (A.7) can derived from (A.5) as follows: Clearly, the random variable supB1/3(V )X

depends only on the setW := R
d−B1(V ) so that by (A.5) the random variable

〈

supB1/3(V ) Z|U
〉

does not depend on V . Therefore (A.7) follows from the obvious inequality 〈Z|U〉 ≤
〈

supB1/3(V ) Z|U
〉

.

Step 3. Lu-Yau martingale method.
Based on the (arbitrary) enumeration of the countable covering {Qn}n∈N of Rd by open
sets, we introduce the sequences {Xn}n∈N and {Yn}n∈N of random variables

Xn := 〈X|Q1 ∪ · · · ∪Qn〉 , Yn := 〈Y |Q1 ∪ · · · ∪Qn〉 , (A.8)

with the convention that X0 := 〈X〉 and Y0 := 〈Y 〉. By our regularity assumption on X
and Y , we may assume that X and Y only depend on A via A|U0

for some possibly large
but compact set U0. Since U0 is covered by finitely many of the {Qn}n∈N, there exists
a possible large but finite N ∈ N such that XN = X and YN = Y . This yields for the
covariance

cov [X,Y ; ] = 〈XY 〉 − 〈X〉 〈Y 〉 = 〈XNYN 〉 − 〈X0Y0〉 .
Hence, in order to establish (A.4), it suffices to show for arbitrary n ∈ N:

〈XnYn〉 − 〈Xn−1Yn−1〉 ≤
〈

osc 2

B1/3(Qn)
X

〉1/2〈

osc 2

B1/3(Qn)
Y

〉1/2

. (A.9)

Step 4. Derivation of (A.9) from (A.6).
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We actually establish the more detailed estimate

〈XnYn|Q1 ∪ · · · ∪Qn−1〉 − 〈Xn−1Yn−1|Q1 ∪ · · · ∪Qn−1〉

≤
〈

osc 2

B1/3(Qn)
X
∣

∣

∣
Q1 ∪ · · · ∪Qn−1

〉1/2〈

osc 2

B1/3(Qn)
Y
∣

∣

∣
Q1 ∪ · · · ∪Qn−1

〉1/2

.(A.10)

We note that by definition (A.8) of {Xn}n∈N and {Yn}n∈N:
〈Xn−1Yn−1|Q1 ∪ · · · ∪Qn−1〉 = Xn−1Yn−1

= 〈Xn|Q1 ∪ · · · ∪Qn−1〉 〈Yn|Q1 ∪ · · · ∪Qn−1〉 ,
so that the left hand side of (A.10) can be written as a covariance:

cov [Xn;Yn|Q1 ∪ · · · ∪Qn−1]

≤
〈

osc 2

B1/3(Qn)
X
∣

∣

∣
Q1 ∪ · · · ∪Qn−1

〉1/2〈

osc 2

B1/3(Qn)
Y
∣

∣

∣
Q1 ∪ · · · ∪Qn−1

〉1/2

.

By Jensen’s inequality on its right hand side, the latter inequality follows from the following
for Z = X,Y :

|Zn − 〈Zn|Q1 ∪ · · · ∪Qn−1〉| ≤
〈

osc
B1/3(Qn)

Z
∣

∣

∣
Q1 ∪ · · · ∪Qn

〉

.

By replacing Z by −Z, it is enough to show

Zn − 〈Zn|Q1 ∪ · · · ∪Qn−1〉 ≤
〈

osc
B1/3(Qn)

Z
∣

∣

∣
Q1 ∪ · · · ∪Qn

〉

. (A.11)

After these reformulations, it is easy to see that (A.11) follows from (A.6):

Zn − 〈Zn|Q1 ∪ · · · ∪Qn−1〉

≤ sup
Qn

Zn −
〈

inf
Qn

Zn|Q1 ∪ · · · ∪Qn−1

〉

= sup
Qn

Zn − inf
Qn

Zn

(A.8)
= osc

Qn

〈Z|Q1 ∪ · · · ∪Qn〉

(A.6)

≤
〈

osc
B1/3(Qn)

Z |Q1 ∪ · · · ∪Qn

〉

.
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