
HAL Id: hal-00674440
https://hal.science/hal-00674440

Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Route Consistency Vehicle Routing: a Bi-Objective
Approach

Victor Pillac, Christelle Gueret, Andrés Medaglia

To cite this version:
Victor Pillac, Christelle Gueret, Andrés Medaglia. Route Consistency Vehicle Routing: a Bi-Objective
Approach. ROADEF 2012, Apr 2012, Angers, France. �hal-00674440�

https://hal.science/hal-00674440
https://hal.archives-ouvertes.fr


Route Stability in Dynamic Vehicle Routing: a Bi-Objective

Approach

Victor Pillac1,2, Christelle Guéret1, Andrés L. Medaglia2

1 LUNAM Université, École des Mines de Nantes, IRCCyN UMR 6597, Nantes, France
{vpillac,gueret}@mines-nantes.fr

2 Universidad de los Andes, Industrial Engineering Department, Bogotá, Colombia
amedagli@uniandes.edu.co

Mots-clés : recherche opérationnelle, optimisation, tournées de véhicules, tournées dy-
namiques, optimisation bi-objectif.

1 Introduction

Vehicle Routing Problems (VRPs) consider the operation of a fleet of vehicles that need to
service customer requests. The underlying problem consists in designing a set of routes that
visit all customers, optimizing one or multiple objectives.

Dynamic Vehicle Routing Problems (D-VRPs) are an extension of classical VRPs in which
the information available to the decision maker changes or is updated dynamically. The most
common source of dynamism studied in the literature is the apparition of new customer re-
quests, that need to be incorporated in the vehicles current routes. On top of this basic
definition, authors have studied many variants and have proposed different optimization ap-
proaches [3].

To the best of our knowledge, all studies on D-VRPs focus on the optimization of a single
criterion, such as the minimization of the total traveled distance, or the maximization of the
number of served customers. On the other hand, a growing number of studies consider multiple
objectives for static VRPs in an attempt to better model the reality of routing application, as
surveyed by Jozefowiez et al. [1].

Most studies on D-VRPs consider that routes can be designed online, which means that vehi-
cle drivers do not know their next destination until they finish serving their current customer.
Although this assumption is theoretically appealing, it may not be desirable in a practical
context in which drivers are used to know their routes from the beginning of the day.

In this work we propose an optimization algorithm able to optimize the minimization of
a cost function (the total traveled distance), and the minimization of the changes made in
the vehicles routes in a dynamic routing context, and we study the tradeoff between both
objectives.

2 Problem definition

We focus on the D-VRP with time windows (D-VRPTW), in which a limited fleet of identical
capacitated vehicles must deliver a unique product to a set of customers over a single day
horizon. Each customer has a geographic position and requires a known quantity of product,
and must be serviced within a given time frame. While a set of (static) customers is known
beforehand, new (dynamic) customers may appear during the day.

The problem is first to design an initial set of routes, visiting all the static customers. Then
each time a new customer appear, to decide whether it can be served or not, and eventually
reoptimize the vehicle routes to include it considering two objectives: the minimization of the
traveled distance, and the minimization of the number of changes made to the routes. We
assume that rejecting customers induce a penalty that can be interpreted as an outsourcing
cost.



We use the Levenshtein (or edit) distance to measure the number of changes made to the
routes after a reoptimization. Levenshtein distance between two routes is defined by the
minimum number of insertions, removals, or substitutions of customers that have to be applied
to transform the reference route into the new route. FIG. 1 illustrates a case in which the
distance between the reference and new route is 3: 1 substitution (SUB), 1 insertion (INS), and
1 removal (REM).

0

06

5

5

4

4

7

3

6

2

2

0

0

Reference Route 1

1New Route

Already executed

SUB 3,6 INS 7 REM 6

FIG. 1: Example of the Levenshtein distance between two routes.

3 The proposed approach

The proposed approach, namely parallel Bi-objective Adaptive Large Neighborhood Search
(pBiALNS), is an extension of the Adaptive Large Neighborhood Search (ALNS) algorithm [4],
itself inspired by the Large Neighborhood Search (LNS) algorithm [6]. LNS works by succes-
sively destroying (removing customers) and repairing (inserting customers back) a current so-
lution, using destroy and repair operators. ALNS adds an adaptive layer that randomly selects
operators depending on their past performance. This allows an auto-fitting of the algorithm
to the problem at hand.

An adaptation of ALNS to a bi-objective problem was proposed by Schmid and Hartl [5], and
we extended it to take advantage of parallel computing architectures. In a nutshell, pBiALNS
maintains and optimizes a set of non-dominated and possibly infeasible solutions. ALG. 1
presents the outline of our implementation.

ALG. 1 Parallel Bi-objective Adaptive Large Neighborhood Search (pBiALNS) algorithm

Input: Π0 an initial solution, n the number of parallel iterations, T the number of parallel threads,
N the number of sequential iterations.

Output: The non-dominated solutions found by the algorithm.
1: Initialize the non-dominated solutions: Ω← {Π0}

2: for N iterations do

3: Select subset Ωt of T non-dominated solutions
4: parallel forall Π in Ωt do

5: In a separate thread, perform n ALNS iterations starting with Π
6: Report the non-dominated solutions to the main thread
7: end forall

8: Update the non-dominated solutions Ω

9: return The non-dominated solutions Ω

Note that pBiALNS allows infeasible solutions that do not visit all customers. Therefore,
we define a dominance relation that ensures that no feasible solution will be dominated by an
infeasible solution:

Definition 1 (Dominance) A solution Π dominates (denoted ≺) a solution Π′ if and only
if Π is as good as Π′ on both objectives, and strictly better on one objective, and either Π is
feasible or both Π and Π′ are infeasible.

4 Computational results

To assess the effect of parallelization we tested our algorithm on the static single objective
instances proposed by Solomon [7] on a quad-core desktop computer1. To this purpose we

1CPU: Intel i7 860 (4x2.8GHz), RAM: 6GB DDR3, Ubuntu 11.04 x64, Java 7, N.T.n = 25000 iterations



slightly modified pBiALNS and only considered a fixed size set of solutions for Ω, leading to
algorithm pALNS. As illustrated by FIG 2, increasing the number of threads has no significant
impact on the gap to the best known solutions which is of around 1%, but it allows a reduction
of running times by a factor 3.

Threads

G
ap

 (
%

)

0

1

2

3

4

5

6

7

●●●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●
●

●●

●●●

●

●

●

●

1 2 4 8

(a) Gap vs. number of threads

Threads

T
im

e 
(s

)

50

100

150

200 ●●●●●
●
●●

●
●
●
●

●●●●●

●

●●●
●●●●
●●

●

●●
●●●●●●●●
●●●
●●
●
●
●
●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●●●●
●●●●●●●●

●

1 2 4 8

(b) Gap vs. CPU Time

FIG. 2: Influence of the number of threads on CPU time and GAP.

We tested the pBiALNS algorithm on a subset of 72 D-VRPTW 100 customer instances
proposed by Lackner [2] and based on the Solomon [7] benchmark, in which a proportion δ of
the customers is revealed dynamically. Therefore, we perform a simulation in which we run
the pBiALNS algorithm for 5000 iterations each time a new request is released to produce a
solution that will be used until the next customer is revealed. The simulation starts with an
initial solution containing all the requests known initially, and leads to a final solution.

FIG. 3 represents the objective space explored by pBiALNS at a given time of the simulation
for one instance. The chart illustrates the variety of solutions to choose from at each decision,
ranging from the one best in terms of cost (upper left corner) to the one closest to the current
solution (lower right corner). Therefore we define a selection policy to select one solution
from the set of non-dominated: we select the solution (green diamond) that is closest to the
reference, allowing a deviation of at most γ from the best solution in terms of cost.

0% 1% 2% 3% 4%

0

10

20

30

40

50

60

70

Selected Solution

Pareto

pBiALNS solutions

Gap

E
d

it
 d

is
ta

n
c
e

°=1.5%

FIG. 3: Objective space for instance R101

TAB. 1 presents (a) the average edit distance between the final solution and the initial
solution, (b) and the gap between the cost of the final solution and the cost of a solution
evaluated a-posteriori, for different values of γ and degrees of dynamism (δ). Running times
are of 11 seconds on average at each decision. As expected the distance is negatively correlated
to γ, and is minimal for γ =∞. In this case we always choose the solution which is the closest
to the reference solution, in other words we insert new requests at their best position, which
leads to a distance equal to the number of inserted requests. It is important to note that the
quality of the routing, measured by the gap to the static solution, is positively correlated to γ.
This confirms the intuition that poor routing decisions tend to add up over time and can lead
to great deviations at the end of the day. Our results also indicate that, for problems with low



degree of dynamism, it can be worth sacrificing quality of solution to gain in route stability (see
for instance δ = 10, γ = 5%). However, this statement no longer holds for instances with higher
degrees of dynamism where numerous changes are necessary to insert all requests. In this case
it is better to focus on optimizing the routing, as it does not lead to excessive instability in
routes.

(a) Distance to initial solution

γ

δ 0% 1% 2% 5% ∞

10 30.5 20.6 16.0 13.5 10.0

50 74.5 72.5 69.5 65.7 50.0

90 96.6 96.4 96.3 96.2 90.0

(b) Gap to a-posteriori solution

γ

δ 0% 1% 2% 5% ∞

10 1.95% 2.32% 2.53% 2.55% 12.66%

50 6.04% 6.48% 7.36% 10.52% 44.18%

90 11.32% 11.64% 14.77% 20.08% 91.98%

TAB. 1: Preliminary computational results (each figure is an average value over 24 instances)

5 Conclusions

In this study, we proposed a fast optimization approach for a bi-objective and dynamic vehicle
routing problem (namely pBiALNS). We showed that the parallelization of the algorithm brings
factor 3 speedups on a regular desktop machine, allowing its use in a dynamic context where
routing decisions have to be made in limited time.

In addition we investigated the tradeoff between the stability of routes and the quality of
routing. We showed that the objectives are contradictory in nature. This suggests that real-
world applications should not ignore the practical implications of designing vehicle routes in
an online fashion, as it induces numerous changes in the driver’s schedule, but also that naive
approaches ultimately result in very poor routing.

Acknowledgements Financial support for this work was provided by the CPER (Contrat
de Projet Etat Region) Vallée du Libre (France); and the Centro de Estudios Interdisciplinarios
Básicos y Aplicados en Complejidad (CEIBA, Colombia). This support is gratefully acknowl-
edged.

References

[1] Jozefowiez, N., Semet, F., and Talbi, E.-G. (2008). Multi-objective vehicle routing prob-
lems. European Journal of Operational Research, 189(2):293 – 309.

[2] Lackner, A. (2004). Dynamische Tourenplanung mit ausgewählten Metaheuristiken, vol-
ume 47 of Göttinger Wirtschaftsinformatik. Cuvillier.

[3] Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011). A review of dynamic
vehicle routing problems. Technical report, CIRRELT. CIRRELT-2011-62.

[4] Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Com-
puters & Operations Research, 34(8):2403–2435.

[5] Schmid, V. and Hartl, R. F. (2011). Large neighborhood search for solving the Bi-Objective
Capacitated m-Ring-Star Problem. In Di Gaspero, L., Schaerf, A., and Stützle, T., editors,
Proceedings of the 9th Metaheuristics Conference (MIC 2011), pages 700–703. Università
degli Studi di Udine.

[6] Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming – CP98, volume
1520 of Lecture Notes in Computer Science, pages 417–431. Springer Berlin / Heidelberg.

[7] Solomon, M. M. (1987). Algorithms for the vehicle-routing and scheduling problems with
time window constraints. Operations Research, 35(2):254–265.


