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Abstract

The vehicle routing and scheduling problem has been studied with much interest within

the last four decades. In this paper, some of the existing literature dealing with routing

and scheduling problems with environmental issues is reviewed, and a description is provided

of the problems that have been investigated and how they are treated using combinatorial

optimization tools.
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1 Motivation

During the last few years, Operations Research (OR) has extended its scope to include environmen-
tal applications [13, 28, 94]. Because in Europe 73% of the oil is used for transportation purposes,
the need to design efficient plans for sustainable transportation is evident. Advances in the trans-
portation planning process and in the efficiency of transportation systems are key components of
the development of sustainable transportation.

The routing of vehicles represents an important component of many distribution and trans-
portation systems and has been intensively studied in the OR literature [102]. In this paper,
particular consideration is given to routing and scheduling models that relate to environmental
issues, we will denote this class of problems as Green Routing and Scheduling Problems (GRSP).
In [94], the authors discuss different problems that relate to sustainable logistics, they focus on re-
verse logistics, waste management, and vehicle routing and scheduling problems. Some variants of
routing and scheduling problems in connection with environmental considerations were described:
the arc routing problem, which is considered as a major component in waste management, and
the time-dependent vehicle routing problem which allows one to indirectly decrease gas emissions
involved by transportation activity by avoiding congested routes.

We present in this paper some general tools for transportation decision-making under assump-
tions related to economic, environmental and social considerations. An exhaustive review of sus-
tainable transportation problems and their treatment by OR tools is out of scope here given the
generality of this area of research. Most of the work in this domain is still very much in development
and some applications have only just started. The aim of this survey is to provide a clear pre-
sentation on how combinatorial optimization can contribute to sustainable transportation as well
as a comprehensive survey covering all known green routing and scheduling problems and their
variants. Therefore, we list some GRSPs that are studied in the literature [94] and identify some
other problems which can be added to this class, we describe some models and solution methods
that can be exploited for these problems, and we expose some multiobjective optimization methods
which are essential for solving these particular problems.
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1.1 Green routing and scheduling

Usually, routing and scheduling models are concerned with objectives of minimizing economic costs,
but due to growing concerns about public health, global warming and economic safety, it is neces-
sary to consider in the cost function the factor of environmental and social costs. The additional
environmental and social constraints and objectives that must be taken into consideration often
make the problem more difficult to both model and solve. We study in this paper the best known
routing and scheduling related problems arisen from sustainable transportation field:

• Routing of Hazardous Materials (RHM): The objective is the minimization of the risk on the
population and the environment caused by the transportation of hazardous materials. The
research area that investigates this problem is most advanced, while less research taking into
account explicitly environmental impacts is dedicated to the other problems cited bellow.

• Routing and Scheduling in Time-Dependent Environment (RS TDE): This class of problems
contributes indirectly to reduce vehicles gas emission. The main objective is the minimization
of a more realistic travel time by avoiding congested routes.

• Waste Collection Vehicle Routing Problem (WCVRP): This problem is a major component
of waste management.

• Multi-Modal Vehicle Routing problem (MMVRP): This problem permits to manage many
transportation modes and allows to perform priority-based routing for clean transportation
(as rail transport).

• Dial-a-Ride Problem (DARP): This problem contributes indirectly to decrease the global
taxis gas emission by promoting grouped transportation (grouped taxis) for decreasing the
transportation fleet size and routes congestion, particularly in large cities.

• Pick-up and Delivery Vehicle Routing Problem (PDVRP): Permits the integration of the
backward flow of waste in distribution systems for recycling for example.

• Energy Routing Problems (ERP): This problem is one of the least studied one in the context
of sustainable transportation. It permits to promote the use of electric vehicles by maximizing
the vehicle autonomy.

• Air Traffic Control (ATC): This problem can contribute to decrease the fuel consumption in
planes.

These problems are very different from their structure, their contribution to transportation
sustainability and their dedicated models and solution methods. Works on these problems are
often unbalanced, this generally depends on the problem characteristics, for example RHM includes
many aspects as risk definition and model, risk equity and uncertainty while the major aspect of
RS TDE is the travel time.

1.2 Limitations

A very large literature cover routing and scheduling problems presented in this survey, we do
no give mathematical models of the presented problems since they are already well defined in
the literature. However, an exception concerns energy routing problems for which no model is
given in the literature. For each problem, we describe its characteristics, how it contributes to
sustainable transportation, some models and resolution methods related to problems taking into
account environmental considerations only. For example, in pick-up and delivery vehicle routing
problem, the pick-up can concern materials or goods, we only interest to works in the literature
which consider the pick-up of waste for recycling for example.
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1.3 Structure of the survey

This paper is structured as follows. Section 2.1 describes the classical vehicle routing and scheduling
problem. In Section 1.1, we describe the problems cited above, why they can be considered as green
routing and scheduling problems, their particularity compared to the standard vehicle routing and
scheduling problem, some related models and solution methods. We address in Section ?? the
characteristics of green routing and scheduling problems and some classification schemes. Finally,
we conclude in Section 7.

2 A tour d’horizon of vehicle routing and scheduling models

2.1 Vehicle routing and scheduling problem

The Vehicle Routing Problem (VRP) can be stated as follows: Consider a fleet of K identical
vehicles of fixed capacity C available at a given depot to serve a set of costumers with fixed
demand. We are given an oriented graph G = (N,A), where N is the set of nodes including the
costumers and the depot, and A the set of arcs connecting the nodes. Each arc (i, j) is associated
with a cost cij and each costumer i ∈ N has a demand di. The goal is to find a set of minimum
cost vehicle routes that service every costumer such that:

• Each vehicle route originates and terminates at the depot.

• Each vehicle services one route and each costumer is visited by exactly one vehicle.

• The demand of each costumer is satisfied and the capacity of each vehicle is not exceeded.

The VRP is an important sub-problem in a wide range of distribution systems and a lot of effort
has been devoted to research on different variants of this problem. Indeed, in practice, additional
constraints or changes in the structure of the basic model are taken into account. We cite for
example the VRP with time windows which involves time window constraints restricting the times
at which a customer is available to receive a delivery, in the VRP with Pick-up and Delivery, each
vehicle must visits the pick-up location before the corresponding delivery location, in the VRP
with Backhauls customers can demand or return some commodities, in the multiple depot VRP the
company may have several depots from which it can serve its customers and in the open VRP each
vehicle is not required to return to the central depot after visiting the final customer (see [102] for
a description of these VRPs). Many other variants of the VRP exist, however we focus in this work
on vehicle routing and scheduling problems taking into account environmental considerations.

2.2 Toward a general classification

In this section we provide a classification of the models for some extensions of the VRP. Although
we do not want to provide a general nor a detailed classification of all VRP models, our classification
might inspire further research aiming at doing so.

Our motivation for proposing such a classification is to provide a framework for describing and
studying green variants and extensions of the VRP. This will be helpful for our exposition and
might also be helpful for future works on (green) VRP, to distinguish between new applications
and new refinements of models.

The main motivation for this classification is to show that the model refinements that arose
related to some applications might often be useful in other contexts. Hence a customizable general
framework could be helpful in studying which refinements/extensions would be relevant in analyzing
a given practical context.

This classification is inspired form and resembles the celebrated α|β|γ-classification of machine
scheduling problems. This could be helpful in further attempts to provided a detailed, formal
classification of (green) VRP problems.
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2.2.1 Description of the demands

• Physical nature of demands Do we transport people, goods, hazardous materials, waste.

• Volumes necessary for the demands The objects to be transported require some space.

• On-line/off-line demands The demands can be known in advance or progressively introduced.

• Origins-destinations The demands can concern the delivery of products to certain costumers
(distribution systems), the transportation of products from an origin location to a destination
location (dangerous materials), or the pick-up of goods or people from a given location to
another one.

• Node/Arc demands Demands can be associated with nodes, arcs or both of them.

• Incompatibilities of demands Do some demands share the same vehicle ? if not, can they be
transported independently using the same vehicle ?

2.2.2 Description of the transport means:

• Transportation network(s) Do we have the possibility to ship over roads, rails, rivers and
seas, sky, or a combination of these ?

• Fleet(s): Are we dealing with a uniform fleet or several types of vehicles ? For each type of
vehicle, what are its intrinsic characteristics: Load capacity (volume, weight, type of shippable
products), maximum speed, energy consumption and autonomy, polluting emissions (per
kilometer or as a function of speed).

• Availabilities, fares and intrinsic congestion: For vehicles and arcs (paths) of the network,
what are the periods of availability, the prices, the durations ? Do these durations depend
on the dates at which we plan to

• Conflicts and logistical congestion: In case we are in charge of coordinating planes, security
norms forbid the routes to be too close to each other (in the time-space diagram). More
generally, when we are in charge of “large” (relatively to the network) fleets (of any transport
means), our decisions may impact the congestion of the network, hence deteriorating our own
performances.

2.2.3 Description of the objectives

Beyond classical economic indicators, transportation industry also needs to be evaluated on an
environmental basis. Some impacts should be evaluated on a worldwide basis, but some impacts
are mainly local, so that the evaluation should be performed on each ecosystem/human district.

• Classical/economical objectives: Total revenue, total distance, Number of serviced demands,
number of vehicles used, total operating costs etc.

• Climate/Worldwide and sustainability objectives: Total emissions of Green-House gazes, To-
tal use of each primary/renewable source of energy.

• Environmental(ecosystemic)/regional fairness and health objectives: Local emissions in pollu-
tants, impacts on human and animal populations, quality of air, water and soils, risks related
to accidents.
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3 Handling the variety of demands

As discussed on section 2.2.1, the characteristics of demand lead to a much different routing prob-
lems. Demands can concern a transportation request from a given location to another one (trans-
portation of persons, transportation of hazardous materials), where routes are defined as shortest
paths. When demands concern distribution requests where a set of costumers have to be serviced
by a vehicle, we deal with vehicle routing. Demands can also be defined as pick-up and delivery
system in which goods/people must first be picked up at a specific location and then be delivered
elsewhere.

Time windows are generally imposed to restrict the time of the start and end of service or to
restrict the time during which some road segments (arcs in the network) can be used, this last
restriction is generally observed in transportation of hazardous materials.

Classically, deterministic demands are considered in the literature. Demands are known in
advance and the routes are computed before the system starts to operate. In practice, demands
are mainly stochastic since new demands can arrive during the service time and the routes have to
be updated on-line (transportation of persons).

We present in the next sections how an adapted management of demands can lead to significants
environmental savings.

3.1 Dial-a-ride problem

The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules for n costumers
from their pickup point to their delivery point. The costumer requests the service by calling a
central unit and specifying the origin and destination points, the number of passengers and some
limitations in service time (the earliest departure time for example). The transport is supplied by
a fleet of m identical vehicles based at the same depot. The aim is to plan a set of minimum cost
vehicles routes capable of accommodating as many requests as possible, under a set of constraints.
The DARP can be static or dynamic. In the first case, the costumer asks for service in advance
and the vehicles are routed before the system starts to operate. In the second case, requests are
gradually revealed throughout the day and vehicle routes are adjusted in real-time to meet demand.

3.1.1 Environmental contribution

The main original target of the DARP is to offer the comfort and flexibility of private cars and taxis
at a lower cost. This problem is suited to service sparsely populated areas, to low demand periods
or to special classes of passengers with specific requirements (elderly, disabled). In addition, this
problem considers indirectly environmental savings, indeed in opposition to individual taxis, the
grouped ones can decrease the traffic density particularly in large cities.

3.1.2 Related works

The DARP is characterized by multiple objectives such as the maximization of the number of
costumers served, the minimization of the number of vehicles used and the maximization of the
level of service provided on average to the costumer (costumer waiting time, total time spent in
vehicles, difference between actual and desired drop-off times). The DARP can be formulated as
multiobjective mixed integer program. Exact algorithms for the single-vehicle DARP have been
developed in [30, 89]. Recently, a branch-and-cut algorithm has been proposed in [25]. Heuris-
tics and meta-heuristics are proposed for dealing with the dynamic problem with time-dependent
network [38]. For a recent overview of the DARP, see [26].

In [83], the authors propose a heuristic two-phase solution procedure for the dial-a-ride problem
with two objectives. The first phase consists of an iterated variable neighborhood search-based
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heuristic, generating approximate weighted sum solutions and the second phase is a path relinking
module, computing additional efficient solutions.

3.2 Pick-up and delivery vehicle routing problem

In the Pick-up and Delivery Vehicle Routing Problem (PDVRP), a set of routes has to be con-
structed in order to satisfy transportation requests. A fleet of vehicles is available in a central depot
to operate the routes and each vehicle has a given capacity. Each transportation request specifies
the size of the load to be transported, the locations where it is picked up and the locations where
it is delivered. Each load has to be transported by one vehicle from its set of origins to its set of
destinations without any transshipment at other locations. The DARP (Section 3.1) generalizes
the PDVRP [26], the main difference between these problems is the human perspective; the level
of service criteria is more important in the DARP.

3.2.1 Environmental contribution

As mentioned in section 3.3, more and more countries have devoted considerable investments to
waste reduction and material recycling. The existence of a backward flow of objects to be collected,
stored, disassembled and recycled makes unprofitable to manage separately the forward flow of
goods, from the producer to the consumer, and the backward flow of waste or used-up devices,
from the consumer to recycling or dumping facilities. In addition, when the reuse of products and
materials becomes cheaper than simply disposing them, both of the opposite flows concern the
producer, instead of being managed by independent subjects. When pick-ups concern waste, the
PDVRP can be considered as a green routing and scheduling problem. This model derive from
the development of reverse logistics, which consists of the efficient integration of the forward flow
of goods with the backward flow of waste [36]. In their survey [94] underline the importance of
reverse logistics in green Logistics, but the transportation aspect was not discussed.

3.2.2 Related works

A comprehensive survey on the PDVRP can be found in [84] where different variants of the problem,
models and resolution methods are presented. As our knowledge, no work in the literature treat
real world pick-up and delivery problem in the context of recuperation of waste for recycling. Some
applications of this problem can be (1) The door-to-door delivery of mineral water bottles and the
simultaneous collection of empty bottles, (2) The laundry service for hotels (collecting dirty clothes
and delivering clean clothes), and (3) Medical waste.

It is important to attach more interest to real problems for evaluate economical and environ-
mental savings induced by these systems. The study of economical impacts of the integration
of waste collection with products distribution can encourage industrials to recuperate the unused
waste of their products and permits to the reduction of amounts of waste treated by municipalities
and environmental saves.

3.3 Waste collection vehicle routing problem

Waste Collection Vehicle Routing Problem (WCVRP) can be classified as variation of the VRP
but with additional constraints. The major difference between WCVRP and the classical VRP are
landfills constraints. When a vehicle is full, it needs to go to the closest available disposal facility.
Each vehicle can make multiple disposal trips per day. Three categories of waste are considered in
the literature: commercial waste (involves servicing customers such as restaurants and small office
buildings), residential waste (involves servicing private homes) and roll-on-roll-off waste (commonly
used for construction site waste), these three categories bring about three different waste collection
strategies. While works on the VRP consider the major objective of minimizing the travel cost,

6



this problem also considers route compactness (a solution in which many routes cross over each
other is less compact than one in which no routes overlap) and work balancing among vehicles.

3.3.1 Environmental contribution

In recent years waste management has become an area of concern for municipalities worldwide due
to population growth, environmental concerns and the progressive increase in waste management
cost. Waste collection is one of its main components. Note here that authors in [94] have discussed
the importance attached to waste management and collection in terms of the “green logistics”
agenda.

3.3.2 Related works

The particularity of residential routes compared to commercial and roll-on-roll-off ones is the
mandatory adherence to driving on one side of the street. Unlike drivers on commercial or roll-
on-roll-off routes, those on residential routes are permitted to serve only customers on the right
side of the street. Very few exceptions are granted for alleys and one-way streets. Commercial and
roll-on-roll-off waste collection differ principally from the size of the container.

Routing problems in waste collection applications cannot typically be modeled with a unique
routing model. As commercial and roll-on-roll-off waste routing consists of point-to-point collec-
tions, it can be modeled by node routing (VRP) models. Commercial waste routing problem can
be characterized as a VRP with time windows (VRPTW) (Section 2.1) since commercial waste
collection stops may have time windows. A special VRP variant known as rollon-rolloff vehicle
routing problem was dedicated to roll-on-roll-off waste. However, residential routes require arc
routing models, where costumers are located on the arcs. The periodic vehicle routing problem
is also studied in the context of waste collection when collection operations are periodic on the
time horizon. As these problems are computationally very hard, and can not be solved by optimal
(exact) methods in practice, heuristics are used in this purpose.

Vehicle routing problem with time windows: The majority of papers in the literature
are case study papers, focusing on results obtained when algorithms are applied to real-world data
[80, 93, 104]. Only a few of these papers report computational experience with publicly available
waste collection test instances [57]. More references are given in these cited papers.

The periodic vehicle routing problem: This problem has a horizon T , and there is a fre-
quency for each customer stating how often within this T period this customer must be visited. A
solution to the problem consists of T sets of routes that jointly satisfy the demand constraints and
the frequency constraints [6].

The capacitated arc routing problem: In this problem [32], a fleet of vehicles, all of them
located at a central depot and with a known capacity, must serve a set of streets network, with
minimum total cost such that the load assigned to each vehicle does not exceed its capacity.

The rollon-rolloff vehicle routing problem: In this problem, tractors move large trailers
between locations and a disposal facility. The trailers are so large that the tractor can only
transport one trailer at a time [8, 14, 29].

Waste collection real-life problems have almost been studied in a off-line context, where it is
assumed that all data about the problem are known in advance. However, this is not necessarily
the case when some information might not be readily available when the vehicles start their routes.
When new information is available as the routes are executed, the problem becomes dynamic, this
problem have not attracted yet the attention of waste collection research community.
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4 Handling congestion

Most traffic networks, particularly road and air, face high utilization levels and congestion. As
a result, the traffic conditions and its resulting variability can not be ignored in order to carry
out a good quality route optimization. When taking into account congestion in the road context,
RS TDE problems can be considered as major components for dealing with urban transportation
problems associated with negative environmental impacts such as air pollution and noise. The
problem of congestion in the airspace also cause a major concern given the forecast growth in
aviation over the next decade. Air traffic delays due to congestion are a source of unnecessary
cost for airline companies and passengers. Delays also have an environmental cost. Because of
congestion, aircraft are often forced to fly far from the cruise altitude and/or the cruise speed for
which they are designed, this results in unnecessary fuel burn and gas emissions.

4.1 Routing and scheduling in a time-dependent environment

The main difference between this class of problems and the classical VRP is the definition of
travel time. When in classical VRP, the travel time is a function of the distance, in RS TDE
problems, the travel time is variable and depends on many factors among which are weather
conditions, congestion and the time of the day. We describe in this section three VRPs dealing
with more realistic considerations of the travel time, the Time-dependent Vehicle Routing Problem
(TDVRP), the Dynamic Vehicle Routing Problem (DVRP) and the Real-Time Vehicle Routing
Problem (RTVRP). These problems are important not just because the consideration of the travel
time variations affects considerably the objective values, but also because the best solutions known
for non time-dependent problem are in general infeasible when applied in time-dependent world.

4.1.1 Time-dependent vehicle routing problem

When the VRP assumes that the costs or travel times are a scalar transformation of distance, the
TDVRP is more adapted to real applications by taking into account variations of the travel time
resulting from periodic cycles in the average traffic volumes. It is considered in this problem that
the principal variation in travel time results from the time-of-day variation, the travel time between
two points i and j is a function of the time of the day at the origin point i. A variety of models
for the TDVRP are considered in the literature. We present briefly a classification of these models
[50]:

1. Basic Models (BM): Time-dependency is integrated in the model using simple rules like mul-
tiplier factors associated with different periods of the day. Unfortunately, these assumptions
are weak approximations of the real-world conditions where travel times are subject to more
subtle variations over time.

2. Models based on Discrete Travel time and Cost Functions (MDTCF): In this kind of for-
mulations, the horizon of interest is discretized into small time intervals. The travel time
and cost functions for each link are assumed to be step functions of the starting time at
the origin node. However, the assumption that travel times vary in discrete jumps is just
an approximation of real-world conditions since travel times change continuously over time.
Many of these models are dedicated to time-dependent shortest path problem [19] and time-
dependent traveling salesman problem [72]. In [58], the authors consider the problem of
path planning in networks including multiple time dependent costs on the links and use the
dynamic programming algorithm principle.

3. Models based on Continuous Travel time and Cost Functions (MCTCF): Continuous travel
time functions seem to be more appropriate to model real-world conditions. Unfortunately,
the models obtained are difficult to solve without simplifying assumptions, so these models
consider again an approximation of the real travel time variations.
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4. Queueing Models (QM): Here, the traffic congestion component is based on queueing theory.
This allows one to capture the stochastic behavior of travel times by generating an analytical
expression for the expected travel times [107].

Works in this field show experimentally that the total travel times can be improved signifi-
cantly by explicitly taking into account congestion during the optimization. Very few comparative
framework on different models and solution methods are found. We show on Table 1 some works
on the TDVRP.

Table 1: Some works on the time-dependent vehicle routing problem

References Models Models characteristics Solution methods
Brown, Ellis, Graves and
Ronen (1987) [17]

BM A solution where travel time fluctuations
are ignored is first produced. Then,
the loads for each truck are resequenced
“manually” to take into account various
factors such as traffic congestion during
rush hours, road and weather conditions.

A collection of integer programming
methods.

Malandraki and Daskin
(1992) [72]

MDTCF The problem is formulated as a mixed in-
teger programming problem.

Nearest-neighbour (greedy) heuristic is
proposed, as well as a branch-and-cut al-
gorithm for solving small problems with
10-25 nodes.

Hill and Benton (1992)
[46]

MDTCF The model was based on time-dependent
travel speed.

Experimentations based on a small exam-
ple with a single vehicle and five locations
are given.

Ichoua, Gendreau and
Potvin (2003) [50]

MDTCF The model was based on time-dependent
travel speed.

A taboo search heuristic is proposed
and experimentations are performed on
Solomon’s 100-costumers problems.

Woensel, Kerbache,
Peremans and Vandaele
(2007) [107]

QM - Both the static and the dynamic TDVRP
were solved using ant colony optimiza-
tion.

Hashimoto, Yagiura and
Ibaraki (2008) [45]

MDTCF Travelling time and cost functions values
are time-dependent.

A local search algorithm.

Donati, Montemanni,
Casagrande, Rizzoli and
Gambardella (2008) [31]

MDTCF The model was based on time-dependent
travel speed.

A multi-Ant Colony System.

4.1.2 Dynamic vehicle routing problem

The DVRP is the dynamic counterpart of the VRP, where information relevant to the planning
of the routes can change after the initial routes have been constructed. This class of problems
have arisen thanks to recent advances in communication and information technologies that allow
information to be obtained and processed in real time.

Traditionally, the DVRP is solved in one of two ways: when problem parameters become
(customers, speed, travel time) known throughout the run, oblivious online algorithms are used.
Alternatively, when all parameters are available but with uncertainties in their properties, stochas-
tic optimization is used, which build the routing plan a priori, and then modifies it when changes
in parameters properties occur. Most research in this area has focused on dynamic routing and
scheduling that considers the variation in customer demands. However, there has been limited
research on routing and scheduling with congestion and travel times variation. We present below
some models for the DVRP proposed in the litterature:

1. Models based on Simulations (MS): A vehicle routing and scheduling plan is obtained by
revisiting the vehicle routing and scheduling plan computed on the previous day by using
real-time information of present link travel times, whenever a vehicle arrives at a customer.
This real-time information is provided by dynamic traffic simulation based on the current
conditions of the day [98].

2. Queueing Models (QM): To capture travel times, these models introduce a traffic congestion
component based on queueing theory. A major advantage of using these queueing models
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is that the real-life physical characteristics of the road network can be mapped immediately
into the parameters of the queueing model. Moreover, the inherent stochasticity of travel
times can explicitly be taken into account via the analytical queueing models [108].

3. Stochastic Models (SM): The travel times are subjected to stochastic variations [87].

Due to the complexity of this problem, heuristic methods are often used to obtain good solutions,
tabu search algorithms were used to solve QM [108], genetic algorithms to solve MS [98] and local
search heuristics to solve SM [87]. A discussion of the DVRP solution methods can be found in
[88].

4.1.3 The real-time vehicle routing problem

A new generation of VRP are proposed in the literature for vehicle routing in more realistic settings.
The RTVRP considers more accurate information about the travel times compared to the DVRP
by considering real-time variations in travel times [82, 114]. Dynamic vehicle routing models imply
that a vehicle en route must first reach its current destination and only after that can it be diverted
from its route. However, an unpredicted congestion or other traffic impediment can be encountered
on the way to its immediate destination. Using mobile technology, vehicle routing can be modeled
in more realistic settings:

• Allows locating vehicles in real time.

• Enables the online communication between the drivers and the dispatching center.

• Capable to capture varying traffic conditions in real time and in the short run predict with
high accuracy the travel time between a pair of nodes.

All these factors allow to send new instructions to drivers at any time, regardless of their
location and status. These modeling approaches enable a better approximation of the real-world
conditions.

4.1.4 Synthesis

It was established that the highest emissions of carbon dioxide occur in congested, slow moving
traffic. RS TDE models can contribute indirectly to decrease fuel consumption and gas emissions
[94]. In reality, the links have different combinations of congestion levels, and delays associated with
road furniture such as traffic lights and roundabouts, and road topography and geometry such as
inclines. This causes speed variations (resulting from acceleration and deceleration) and therefore
produces different times over links with the same road category and distance. In addition, these
speed variations would lead to fuel consumption and therefore gas emissions variations. Therefore,
there is a need to calculate vehicle routes which minimize gas emissions, not just to calculate routes
minimizing by time or distance.

4.2 Air traffic control

Air traffic management consists of two important components: the traffic planning and the traffic
control. Traffic planning deals with the balance between demand and the available capacity and
traffic control has to guide aircraft safely to their destinations.

An aircraft conflict occurs when the distance between two or more aircrafts falls below a given
threshold. In this case, a minimum separation is required. Aircraft conflict detection and resolution
has been widely studied in the literature [61]. In [85], the authors propose an integer programming
model that minimizes the maximum deviation in the changes made, by assuming that aircraft can
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perform either a speed change or a heading change. Authors in [24] studied the traffic control prob-
lem by maintaining separation while considering associated fuel costs with any heading deviation
or speed changes. Safety requirements are considered as hard constraints that must be maintained.
The objective function focuses on minimizing fuel costs, and hence the resulting environmental
impact. In [10], the authors address the problem of determining how to reroute aircrafts in the
air traffic control system when faced with dynamically changing weather conditions. The overall
objective of this problem is the minimization of delay costs.

The multiobjective aspect of the problem was considered in [101] where a multi-objective ge-
netic algorithm has been designed to solve the model. Three objectives have been considered: the
minimization of the sum of the flights which exceeds the capacities of all the sectors, the mini-
mization of the sum of the maximum flights which exceeds the capacities of all the sectors and
the minimization of the total delay time including the ground delay time and air delay time. In
[110] the authors take into account the weather-related flight delays and investigate the problem of
generating optimal weather avoidance routes under hazardous weather conditions. The proposed
model minimizes the fuel usage, weather conditions, customer comfort and traffic density and is
solved using a hybrid ant colony optimization method with a multi-agent approach.

5 Toward cleaner transportation means

Clean transportation means are generally considered as those which include public transportation,
railway freight, and cycles. They can be defined as modes using sustainable energy sources such
as renewable energy. Nuclear energy for electric drive systems is often referred to as sustainable,
but this is controversial politically due to concerns about peak uranium, radioactive waste disposal
and the risks of disaster due to accident, terrorism, or natural disaster as the case on March 2011
at Japan.

5.1 Routing of electric vehicles

Electric vehicles are generally considered as the cleanest transportation option, due to their zero lo-
cal green house gas emissions and noise, particularly in large cities. The succeeding of a transition
from a conventional gasoline based transportation system towards a sustainable way of trans-
portation, depends on a quite number of critical factors. The substitution of conventional vehicles
through electric and/or hybrid vehicles involves economical, environmental and social aspects. The
purpose of EVM is to encourage the transition to EV use and to expedite the establishment of
a convenient, cost-effective, EV infrastructure that such a transition necessitates. Whereas the
development of EV through battery autonomy grow extensively, very little research is dedicated to
EV routing, recharge stations localization, vehicles redistribution and energy management. These
major aspects represent challenging optimization problems.

5.2 Multi-modal routing problem

This problem is defined as follows: given a set of origin-destination transport requests, one must
optimally route these requests in a multi-modal network including a heterogeneous set of trans-
portation services. These services are generally classified by according to two main characteristics:
the departure time and the cost function. By the departure time characteristic, we can differen-
tiate between timetable services (rail and short sea shipping) and time-flexible services (trucks).
The cost (and duration) of routes depends on the departure time, the transportation mode, the
distance and the waiting time in transshipment nodes. These constraints make the problem even
more difficult.
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5.2.1 Environmental contribution

Negative impacts caused by the transportation activities such as gas emission and noise can be
reduced by using cleaner and silent alternative transportation modes. Multi-modal transporta-
tion strategies are studied in the operations research literature through the multi-modal routing
problem.

5.2.2 Related works

In [20], the authors consider a multiobjective multimodal multicommodity flow problem with time
windows and piecewise linear concave cost functions. Based on Lagrangian relaxation technique,
the problem is broken into a set of smaller and easier subproblems and the subgradient optimization
procedure is applied to solve the Lagrangian multipliers problem. Authors in [77] proposed an
origin-destination integer multi-commodity flow formulation with non-convex piecewise linear costs
and use column generation based heuristic that provides both lower bounds and good quality
feasible solutions. The author in [76] deals with two objectives: the cost and the risk and develops
a chance-constrained goal programming method to solve the problem.

Multi-modal transportation models need to define the optimization methods from the view of
economic and environmental performances. When we are interested in multi-modal transportation,
it is essential to make an adapted choice of transportation modes in such a way that the environ-
mental impacts of the transportation system are minimized. In [15], the authors underlined the
importance of choosing the transportation modes but little work is known on the calculation of
transportation cost, taking environmental impacts into account. In [5], the transportation mode is
considered within the framework of a green supply chain, the environmental impacts of the means
of transport are integrated into the model as a cost aspect.

In multi-modal transportation, specific characteristics must be taken into account for each
transportation mode. For example, the impact of variation in travel time on rail transport links
and road transport links is very different, as rail transport mode is not subject to congestion.
For determining efficiently the transportation mode for minimizing the environmental impacts, it
is important to consider stochastic travel time. The multi-modal transportation network can be
assumed in this case to be mixed, where the travel time on some arcs is stochastic.

6 Multi-objective assessment of sustainability and quality

6.1 Environmental impacts of transportation

Transport activities have resulted in growing levels of motorization and congestion. As a result,
the transportation sector is becoming increasingly linked to environmental problems. With a tech-
nology relying heavily on the combustion of hydrocarbons, notably with the internal combustion
engine, the impacts of transportation over environmental systems has increased with motorization.
This has reached a point where transportation activities are a dominant factor behind the emission
of most pollutants and thus their impacts on the environment.

Knowing how transport activities impact on the amount of CO2 and local pollutant emissions
is an important step in the evaluation of system sustainability, but it is not always the final goal
since the nature and the intensity of impacts on the population and the environment on local and
global scale and on short and long time horizons are also key questions. Therefor, there is an urgent
need of approaches and methodologies to determine the relationships between transport and the
environment. Environmental transportation impacts, can fall within three categories:

• Direct impacts: The immediate consequence of transport activities on the environment
where the cause and effect relationship is generally clear and well understood.

12



• Indirect impacts: Include changes in land use and impacts on environmental resources such
as habitat fragmentation on species viability over time or climate change. Indirect effects
may have greater consequences than direct effects, but are not generally well understood.

• Cumulative impacts: Cumulative impacts take into account the varied effects of direct
and indirect impacts on an ecosystem, which are often unpredicted.

Environmental impact assessments of transport is very complex and have to aggregate properly
the whole range of impact varieties (residential households, surface water, flora and fauna, etc) and
their relative importance by bringing together leading experts and practitioners on transport, air
quality, climate change and related issues. The main environmental dimensions of transportation
include [81]:

• Causes. Represent factors that influence transport activities such as land use, demographics
and economics. These mesures do not provide a great deal of information for estimating the
environmental consequences of transportation, but they help to expalin the reasons why
certain impacts may be increasing or decreasing.

• Activities. Involve a wide array of factors expressing the usage of transportation infrastruc-
tures and all the related services. Activities are related to infrastructure (The environmental
impacts of the construction and maintenance of transport infrastructure), vehicle manufacture
(The resources and energy consumed in the manufacturing process have an environmental
impact), vehicle travel (Environmental impacts the outcome of regular transport vehicle use,
which varies by mode), vehicle maintenance (The consumption and disposal of parts during
maintenance can have environmental impacts) and vehicle disposal (Once the useful life of
a vehicle is over, its disposal may have some environmental impacts). Activities often have
direct environmental consequences and the level of environmental damage associated with a
specific activity varies bu location and over time.

• Outputs. Several factors are to be considered. The first outcome of transportation activities
are gaz emissions. According to the geographical characteristics of the area where emissions
are occurring (e.g. wind patterns) ambient levels are created. Once these levels are correlated
with population proximity, a level of exposure to harmful pollutants can be calculated.

• Results. They include all the health, environmental and welfare effects of the exposure to
emissions from transportation activities and they are very difficult to measure.

The relationships between transport and the environment are also complicated by the dif-
ferent dimensions of impacts. Transport activities contribute at different geographical scales to
environmental problems, ranging from local (noise and gaz emissions) to global (climate change).
Currently, there is still a lack of coherent, consistent and applicable methodologies for assessing
such impacts from transport interventions. In addition, there are limitations on available and
consistent data to evaluate climate and air pollution impacts of transport and related investments.

6.1.1 Local impacts

Local concentrations of atmospheric pollutants in urban areas are an increasing problem for many
countries. Poor air quality causes premature mortality and respiratory diseases particularly in
large metropolitan regions. Behind atmospheric pollutants, other local impacts result from trans-
portation activity:

• Noise nuisances are a serious problem, particularly of road transport in densely populated ar-
eas. Noise associated with shipping has the potential to cause disturbance to marine animals.
In aviation, standards and policy positions regarding aircraft noise have long existed and the
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issue of aircraft noise has been a driving issue in the location and operational parameters of
airports.

• The development of roads and highways is associated with a number of major environmental
issues such as those associated with loss of land resources through construction of infrastruc-
ture.

• Wildlife habitat loss: Transportation activities create a barrier to wildlife movement causing
the reduction of biological diversity, and the increasing threat of extinction [4]. As our
knowlage there no work dealing with the impacts of transportation traffic in terms of gas
emission on wildlife corridor.

Few quantitative impact assessment of transport policies have been published and there is a
lack of a common methodology for such assessments. In [95], the authors evaluate the usability of
existing health impact assessments methodology to quantify health effects of transport policies at
the local level using two simulated transport interventions. The first is based on the speed limit
reduction and the second on the traffic re-allocation with an aim of improving the neighboring
populations quality of life. Due to the lack of data on population health, the effects of these
interventions however appeared low (5%). In [49], the author proposes an economic model for
quantifying health impacts of public policies, particularly in transport, in terms of dollar value.
For more details on quantitative health impact assessment of transport policies, see [109].

6.1.2 Global impacts

Global pollution is also an increasing problem. Adapting to climate change is an evolutionary pro-
cess which requires adoption of longer planning horizons, risk management, and adaptive responses
for making transportation activity more sustainable. The strategic examination of national, re-
gional, and local networks is an important step toward understanding the global risks posed by
transportation activities.

Air pollution is the most important source of environmental externalities for transportation.
Although the nature of air pollutants is clearly identified, the scale and scope on how they influence
the biosphere are subject to much controversy. Air pollution costs are probably the most extensive
of all environmental externalities of transportation. As all externalities, costs are very difficult
to evaluate because several consequences are not understood and a monetary value cannot be
effectively attributed. In general, the costs of air pollution associated with transportation can be
grouped within economic, social and environmental costs.

6.1.3 Evaluation of transportation usage impacts

Total costs incurred by transportation activities, notably environmental damage, are generally
not fully assumed by the users. The lack of consideration of the real costs of transportation
could explain several environmental problems. For instance, external costs account on average for
more than 30% of the estimated automobile costs. If environmental costs are not included in this
appraisal, the mobility cost is partially assumed by the users (e.g. fuel, licensing, insurance, etc.).
However, environmental impacts is a cost mostly assumed by the society. Therefore, there is an
urgent need of approaches and methodologies to determine the relationship between emissions, air
quality and health impacts as well as their monetary quantification.

At European level, it has been recognized that strategic environmental assessment should be
developed as an integral part of the decision-making process for policies, plans and programs
[33, 86]. In the case of transportation, evaluation of the environmental impacts begins with an
identification of possible impacts on various aspects of the natural and social environment. The
difficulties in arriving at a generalized framework for environmental evaluation arise at two levels.
On the one hand, such framework should be easy to be understood and to employ by decision
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makers, while meeting a series of efficiency criteria, such as generality, independence, reliability,
reasonable data needs, etc. On the other hand the evaluation framework should be realistic and
coherent, able to deal with challenging issues, such as uncertainty, real-time, network effects and
modal changes.

6.2 Routing problem for hazardous materials

The transportation of hazardous materials (hazmat from here on) has received much interest in
recent years, this results from the increase in public awareness of the dangers of hazmats and the
enormous amount of hazmats being transported. The main target of this problem is to select routes
from a given origin s to a given destination t such that the risk for the surrounding population and
the environment is minimized, without producing excessive economic costs. The study of hazmat
transportation problems can be classified in four main subjects: risk analysis [34], routing and
scheduling [67], facility location [67], and treatment and disposal of waste [78], we focus in this
section on routing and scheduling.

6.2.1 Environmental contribution

This problem is naturally a GRSP, since it contributes to minimizing the risks of release accidents
on the population and the environment in hazmat transportation activities.

6.2.2 Related works

The difference between hazmat transportation and other transportation problems is mainly the
risk. The risk makes this problem more complicated by its assessment, the related data collection
and the solution of the induced formulations.

Problem characteristics

We address in the following two major particularities of RHM problem: risk assessment and risk
equity:

(a) Risk assessment: Although the fact that the major target of RHM is the minimization
of the risk, there is no universally accepted definition of risk (for a survey on risk assessment, see
[35]). The risk caused by hazmat transportation depends on many factors, the most important of
which are: the risk categories (explosion, toxicity, radioactivity, etc), the transportation mode, the
affected agents (population, territorial infrastructures and natural elements), the meteorological
conditions and the temporal factor. It is pointed out in [67] that the evaluation of risk in hazmat
transportation generally consists of the evaluation of the probability of an undesirable event, the
exposure level of the population and the environment, and the degree of the consequences (e.g.,
deaths, injured people, damages). In practice, these probabilities are difficult to obtain due to the
lack of data and generally, the analysis is reduced to consider the risk as the expected damage or
the population exposure.

As the risk is a part of the objective function, it is quantified with a path evaluation function
[35]. This function is not additive since the probability of a release accident on a link depends on
the probability of a release accident on the traveled links of the path. This important property
leads to non-linear integer formulations which can not optimized using a classical shortest path
algorithm. Generally approximations are needed by considering additive functions (Usually con-
sidering independent release accident probabilities on links) for obtaining tractable models.

(b) Risk equity: When many vehicles have to be routed between the same origin-destination
nodes, these vehicles are routed on the same path, hence the risk associated to regions surrounding
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this path could be high. In this case, one may wish distribute the risk in an equitable way over
the population and the environment. The computation of routes with a fairly distributed risk
consists in generating dissimilar origin-destination paths, i.e paths which relatively don’t impact
the same zones. Solution approaches ca be classified in tow sets, resolution-equity-based methods
and model-equity-based methods. In resolution-equity-based methods, equity constraints are taken
into account in the resolution process. These methods are based on a dissimilarity index which
permits to indicate when two paths are considered as dissimilar. We present on Table 2 some of
these methods.

Table 2: Resolution-equity-based methods

Method Principle dissimilarity index
Iterative Penalty
Method [51]

Compute iteratively a shortest path and penalize its arcs
by increasing their weights for discouraging the selection
of the same arc set in the generated paths set in the next
iteration.

Gateway shortest-
paths method [69]

Generate dissimilar paths by forcing at each time a new
path to go through a different node (called the gateway
node).

The absolute difference between
areas under the paths (areas be-
tween paths and the abscissa
axis).

Minimax method
[60]

Select k origin-destination shortest-paths and select
among them iteratively a subset of Dissimilar Paths (DP)
by means of an index that determines the inclusion or not
of candidate paths in DP.

The length of common parts be-
tween the paths.

p-dispersion method
[3]

Generate an initial set U of paths and determining a max-
imal dissimilar subset S, i.e., the one with the maximum
minimum dissimilarity among its paths.

The length of common parts or
the common impact zones be-
tween the paths.

Model-equity-based methods consists of taking into account equity constraints in the model
formulation. In [40, 41], the authors propose an equity shortest path model that minimizes the
total risk of travel, while the difference between the risks imposed on any two arbitrary zones does
not exceed a given threshold ǫ. In [18] was proposed a multi-commodity flow model for routing of
hazmat, where each commodity is considered as one hazmat type. The objective function is formu-
lated as the sum of the economical cost and the cost related to the consequences of an incident for
each material. To deal with risk equity, the costs are defined as functions of the flow traversing the
arcs, this imposes an increase of the arc’s cost and risk when the number of vehicles transporting
a given material increases on the arc.

Routing and scheduling

Transportation of hazardous materials is a complex and seemingly intractable problem, principally
because of the inherent trade-offs between social, environmental, ecological, and economic factors.
This problem is multiobjective in nature, since risk minimization accompanies the cost minimiza-
tion in the objective function. In addition, other pertinent objectives can be considered as the
travel time for minimizing the exposure of the driver to risk. Therefore, a set of alternative (Pareto
optimal) solutions have to be computed (see section 6.3). Solution methods for hazmat routing
can be classified in two categories:

Local hazmat routing: Consists of a one origin-destination hazmat routing and aims at se-
lecting routes between a given origin-destination nodes for a given hazmat, transport mode and
vehicle type. We present in Table 3 some works on local routing.

Global hazmat routing: A substantial work in the literature focuses on the selection of
a single commodity routes between only one origin-destination pair. In practice, a better suited
model is global routing, where different hazmats have to be shipped simultaneously among different
origin-destination pairs. In [116], a multiobjective routing model that considers equity constraints
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Table 3: Local hazmat routing

Author Objective Method
Shobrys (1981) [96] Min. ton-miles traveled Weighting method

Min. population exposure-tons
Robbins (1981) [91] Min. the total length of shipment Weighting method

Min. the size of the population brought
into contact with the shipment

Current, ReVelle and Cohon Min. the population affected Weighting method
(1988) [27] around the path

Min. the length of the path
Abkowitz and Cheng Min. ton-miles travelled Weighting method
(1988) [1] Min. population exposure-tons
Turnquist (1993) [105] Min. of incident rates related to Stochastic dominance

the release of hazardous material
Min. of the population exposed to the risk
Min. of the route length

Karkazis and Boffey (1995) [113] Min. expected damage effects Branch-and-bound
I. Giannikos (1998) [39] Min. Operating cost Goal Programming,

Min. Total perceived risk Penalty Functions
Min. Maximum individual perceived risk
Min. Maximum individual disutility

Zografos and Androutsopoulos Min. Total travel time Objectives aggregation,
(2004) [115] Min. Total transportation risk Insertion heuristic

is proposed. The model considers the following criteria: the general risk, the risk of special popu-
lation, the travel time, the property damage, and the risk equity which is imposed using capacity
constraints on the network links. The obtained model is equivalent to the capacitated assignment
problem and a goal programming method is used to solve it. A pertinent model for global rout-
ing was proposed in [18] and described in section 6.2-(b), unfortunately the multicommodity flow
model is mono-objective in nature. As our knowledge, the multiobjective aspect of this model is
not yet studied for the considered problem.

6.3 Resolution methods

The GVRSP was defined in Section 1.1 as a classical VRP with additional environmental and
social objectives and constraints, this radically changes the problem structure, so different and
generally dedicated solution methods are developed. As a consequence, we envision a new era in
which optimization systems will not only allocate resources for optimizing economical costs: they
will react and adapt to external events efficiently under environmental constraints and objectives.
The GVRSP can be defined as the computation of a set of origin-destination paths optimizing a
set of objectives F by satisfying a set of constraints C. We summarize in Table 4 some general
characteristics of the presented variants of the GVRSP.

Due to the conflicting nature of the criteria in sustainable transportation problems (economic,
environmental and social), multiobjective optimization represents a major component. The partic-
ularity of these problems is that a unique feasible solution optimizing all the criteria does not exist.
To obtain the optimal solutions, one just needs to consider Pareto optimal solutions. We can find
in the literature two classes of multiobjective optimization methods, based on the problem elements
type: deterministic methods are the most studied in the literature and consider that all problem
elements are deterministic and stochastic methods consider that some elements of the problem are
uncertain, these elements are modeled using random variables.

The unpredictable nature of transportation leads to many stochastic elements in the problem
like the travel time, speed, traffic congestion, weather conditions, the amount of population present
near a route and the effects of an accident. Deterministic methods use approximations of these
elements and forecasts and sometimes lead to infeasible schedules and poor decisions. Recent
research [106] shown the benefits of adaptability for vehicle routing and scheduling, exploiting
stochastic information to produce better solutions.
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Table 4: Some variants of the Green Vehicle Routing and Scheduling Problem

Problem F C Network characteristics Models and optimization methods
MultiObjective SingleObjective

RHM Min. risk (1) Origin-destination paths Static network Weighting method [1, 27, 91, 96, 115] Shortest path algorithms [3, 51, 60, 69]
Min. travel time (2) Risk equity Stochastic dynamic Stochastic dominance [105] Lagrangian relaxation [40]
Max. risk equity (3) Vehicle capacity network Branch-and-bound [113] Multi-commodity flow model [18]
Min. travel cost Goal Programming [39] Bilevel flow model [12]

Insertion heuristic [115]

TDVRP Min. travel time (1) Origin-destination paths The travel time or the Dynamic programming [58] Nearest-neighbour heuristic &
Min. travel cost (2) Each costumer must be travel speed on links branch-and-cut algorithm [72]

serviced by one vehicle is a function of Taboo search heuristic [50]
(3) Vehicle capacity the time-of-day Ant colony optimization [31, 107]

Local search algorithm [45]

DVRP Min. travel time (1) Origin-destination paths The travel time on Ant colony optimization [54] Tabu search algorithms [108]
Min. travel cost (2) Each costumer must be links are stochastic Hybrid dynamic programming Genetic algorithms [98]
Min. vehicle number serviced by one vehicle varying over the time - ant colony optimisation [22] Local search heuristics [87]

(3) Vehicle capacity

RTVRP Min. travel time (1) Origin-destination paths The travel time on Genetic algorithm [82]
(2) Each costumer must be links are real
serviced by one vehicle time travel time
(3) Vehicle capacity

CARP Min. travel time (1) Origin-destination paths Static network Genetic algorithm [62] Tabu search algorithm [43, 47]
Min. makespan (2) Each link must be Memetic algorithm [73] Genetic and memetic algorithms [64]
Min. travel cost serviced by one vehicle Epsilon-constraint method [42] Guided local search algorithm [11]

(3) Vehicle capacity Ant colony optimization [63]

MMVRP Min. travel time (1) Origin-destination paths Static multi-modal Chance-constrained Double-sweep method [16]
Max. cleaner (2) Vehicle capacity network goal programming [76] Column generation [77]
transport mean Subgradient optimization [20]
Min. travel cost

DARP Max. costumers served (1) Origin-destination paths Static network Variable neighborhood-based heuristic [83] Dynamic programming [30, 89]
Min. vehicles number (2) A new costumer is accepted or Dynamic network Branch-and-cut algorithm [25]
Max. level of service rejected (3) Vehicle capacity

(4) Pairing and ride time

PDVRP Min. travel cost (1) Origin-destination paths Static network Insertion based algorithm [71] Genetic algorithm [55]
Min. travel time (2) Capacity constraints
Min. vehicles number (3) Precedence constraints

ERP Min. energy used (1) Origin-destination paths The energy consumpt- Shortest-path algorithm [7]
(2) The battery cannot be ion/recuperation is
discharged below zero evaluted on each link
(3) Battery energy capacity

ATC Min. delays (1) Origin-destination paths Multi-dimentional network Genetic algorithm [101] Mixed-integer linear program-
Min. fuel costs (2) Separation constraints Hybrid ant colony optimization optimization software [85]
Min. Max. deviation (3) Bounds on travel time with a multi-agent approach [110] Lagrangian relaxation-heuristics [10]

and distances of the new routes
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Generally, the uncertainty can be in the presence or absence of the customers, in the quantity
of the their orders, and in the travel and service times. Routing and scheduling when demands are
stochastic have been extensively studied when less attention is given to the case of stochastic travel
time or stochastic speed. Especially with respect to travel times, variability is generally reduced to
be nearly constant within time periods in a day. Such a characterization of travel times leads to the
TDVRP variant (section 4.1.1). The stochastic version of multiobjective routing and scheduling
is more studied in the context of transportation of hazardous materials [21, 66, 75, 105, 112],
and essentially for the computation of shortest path problems. Very scarce work in the literature
interest on the stochastic version of multiobjective vehicle routing and scheduling problem [56, 65].

As we can observe in table 4, heuristic and metaheuristic methods are the most used for solving
multiobjective problems, we observe also that multiobjective problems are less studied than sin-
gle objective problems (as our knowledge, no work in the literature leads with the multiobjective
RTVRP and the multiobjective ERP). Evolutionary algorithms are one of the most popular meth-
ods for solving multiobjective routing problems [52, 53, 99], these methods have been hybridized
with local searches, heuristics, and/or exact methods for the problem resolution [53, 99]. Other
optimization methods were proposed in the literature for the resolution of multiobjective problems,
based on genetic algorithms, lexicographic strategies, ant colony mechanisms, or specific heuristics
[52], but a very limited works deal with the stochastic version of the problem.

7 Conclusion

This paper aims at specifying the contribution of Combinatorial Optimization (CO) to environmen-
tal transportation. To this purpose a framework for identifying relevant related problems treated
in the CO field is proposed, some of the literature has been reviewed and discussed with respect
to both models and optimization aspects. It can be observed that during the last few years, CO
for transportation problems has extended its scope to include environmental applications.

It can be deduced that relationship between CO and environmental transportation is interactive
in the sense that from the complexity of the issues examined stems the need to develop and adapt
specific methodological tools. We synthesize in this section the material we have reviewed for the
green routing and scheduling by summarizing some fundamental characteristics of this class of
problems.

A recent research area. Green routing is a relatively recent problem since the consideration of
environmental impacts in the models is a new issue. Several small research communities in this
field work on their own problems, this causes a lack of common problem definitions, hypothesis,
definitions and concepts. Decision-making in environmental transportation can be complex and
seemingly intractable, principally because of the inherent trade-offs between socio-political, envi-
ronmental, ecological, and economic factors. A balance has to be found between the complexity of
the real world operation and the level at which the model is developed and also takes into account
model accuracy and computational efficiency.

Evaluation of environmental impacts. Negative environmental impacts due to the transporta-
tion activity are multiple, we cite for example the land use for transport infrastructure, solid and
hazardous waste and noise. The integration of the environmental costs of transportation is faced
to many difficulties and is rarely quoted in the literature:

• Fuel consumption and emissions are complex to estimate and are a function of several vari-
ables such as the type of vehicle, the speed, the acceleration rates and the meteorological
conditions.

• Direct and indirect pollution have to be taken into account simultaneously for a good esti-
mation of impacts. Direct pollution arises from the vehicles use (fuel) and indirect pollution
arises from the energy generation such as electricity for example.
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• Pollution generated by transportation activity, once thought of as a purely local issue, now
is recognized as a complex problem that is also subject to regional and global influences.

These aspects of the problem have received very little interest in OR community, even if these
are probably the most important issues surrounding transportation in the next century.

Multi-criteria approaches. The green vehicle routing problem is a typical multiobjective prob-
lem. When we deal with multiple routes (which is the case in practice), multiobjective shortest
path problems are of limited efficiency, because we relax the interaction between vehicles (whereas
it uses the same network). More adapted models are global routing where a fleet of vehicles (identi-
cal or heterogeneous) have to be routed through the network. With environmental issues assuming
greater importance, it is desirable to consider global multiobjective methods with uncertain and
time-varying criterion such as travel time and speed.

Uncertainty. Many authors recognized the uncertain nature of some characteristics in trans-
portation area (the number of incidents on a road and the travel time for example), these char-
acteristics can be modeled by means of random variables whose distributions may vary over time.
However, variable distributions are hard to determine in many cases due to the scarcity of data.
The exact probabilistic expressions are usually too complicated, which results in the use of ap-
proximations for optimization. Hence, expertise is needed for understanding well probabilistic
modeling to capture the important aspects of the activity, in addition, competence is also needed
on optimization techniques to decide which approximations are necessary and which tools to use.
Due to uncertainty, the path attribute values may not be simply additive across arcs in the path,
causing the criterion to be non-order-preserving. This prevents the use of traditional dynamic
programming techniques in the solution method. To deal with this, methods have to be developed
that work with non-order-preserving criterion.
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