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CONTROLLABILITY OF 3D LOW REYNOLDS SWIMMERS

JÉRÔME LOHÉAC∗ AND ALEXANDRE MUNNIER∗†

Abstract. In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the flow
of which is governed by the stationary Stokes equations. This model is relevant for studying the locomotion of
microorganisms or micro robots for which the inertia effects can be neglected. Our first main contribution is to prove
that any such microswimmer has the ability to track, by performing a sequence of shape changes, any given trajectory
in the fluid. We show that, in addition, this can be done by means of arbitrarily small body deformations that can be
superimposed to any preassigned sequence of macro shape changes. Our second contribution is to prove that, when no
macro deformations are prescribed, tracking is generically possible by means of shape changes obtained as a suitable
combination of only four elementary deformations. Eventually, still considering finite dimensional deformations, we
state results about the existence of optimal swimming strategies for a wide class of cost functionals.

Key words. Locomotion, Biomechanics, Stokes fluid, Geometric control theory

AMS subject classifications. 74F10, 70S05, 76B03, 93B27

1. Introduction.

1.1. Context. Relevant models for the locomotion of microorganisms can be tracked back to
the work of Taylor [16], Lighthill [11, 10], and Childress [6]. Purcell explains in [12] that these
sort of animals are the order of a micron in size and they move around with a typical speed of 30
micron/sec. These data lead the flow regime to be characterized by a very small Reynolds number.
For such swimmers, inertia effects play no role and the motion is entirely determined by the friction
forces.

In this article, the swimmer is modeled as a self deforming-body. By changing its shape,
it set the surrounding fluid into motion and generates hydrodynamics forces used to propel and
steer itself. We are interested in investigating whether the microswimmer is able to control its
trajectory by means of appropriate shape deformations (as real microorganisms do). This question
has already be tackled in some specific cases. Let us mention [14] (the authors study the motion of
infinite cylinders with various cross sections and the swimming of spheres undergoing infinitesimal
shape variations) and [2] (in which the 1D controllability of a swimmer made of three spheres is
investigated).

Our contribution to this question is several folds. First, we give a definitive answer to the control
problem in the general case: the swimmer we consider has any shape at rest (obtained as the image
by a C1 diffeomorphism of the unit ball) and can undergo any kind of shape deformations (as long as
they can also be obtained as images of the unit ball by C1 diffeomorphisms). With these settings, we
prove that the dynamical system governing the swimmer’s motion in the fluid is controllable in the
following sense: for any prescribed trajectory (i.e. given positions and orientations of the swimmer at
every moment) there exists a sequence of shape changes that make him swim arbitrarily close to this
trajectory. A somewhat surprising additional result is that this can be done by means of arbitrarily
small shape changes which can be superimposed to any preassigned macro deformations (this is
called the ability of synchronized swimming in the sequel). Second, when no macro deformations
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are prescribed (this is called freestyle swimming in the paper), we prove that the ability of tracking
any trajectory is possible by means of shape changes obtained as an appropriate combination of
only four elementary deformations (satisfying some generic assumptions). Third, we state a result
about the existence of optimal swimming.

Notice that the paper follows the lines of [4] in which the authors study the controllability of a
swimmer in a perfect fluid.

1.2. Modeling.

Kinematics. We assume that the swimmer is the only immersed body in the fluid and that
the fluid-swimmer system fills the whole space, identified with R3. Two frames are required in the
modeling: The first one E := (E1,E2,E3) is fixed and Galilean and the second one e := (e1, e2, e3)
is attached to the swimming body. At any moment, there exist a rotation matrix R ∈ SO(3) and
a vector r ∈ R3 such that, if X := (X1, X2, X3)∗ and x := (x1, x2, x3)∗ are the coordinates of a
same vector in respectively E and e, then the equality X = Rx + r holds. The matrix R is meant
to give also the orientation of the swimmer. The rigid displacement of the swimmer, on a time
interval [0, T ] (T > 0), is thoroughly described by the functions t : [0, T ] 7→ R(t) ∈ SO(3) and
t : [0, T ] 7→ r(t) ∈ R3, which are the unknowns of our problem. Denoting their time derivatives
by Ṙ and ṙ, we can define the linear velocity v := (v1, v2, v3)∗ ∈ R3 and angular velocity vector

Ω := (Ω1,Ω2,Ω3)∗ ∈ R3 (both in e) by respectively v := R∗ṙ and Ω̂ := R∗Ṙ, where for every
vector u := (u1, u2, u3)∗ ∈ R3, û is the unique skew-symmetric matrix satisfying ûx := u × x for
every x ∈ R3.

Shape Changes. Unless otherwise indicated, from now on all of the quantities will be ex-
pressed in the body frame e. In our modeling, the domains occupied by the swimmer are images
of the closed unit ball B̄ by C1 diffeomorphisms, isotopic the identity, and tending to the identity
at infinity, i.e. having the form Id + ϑ where ϑ belongs to D1

0(R3) (the definitions of all of the
function spaces are collected in the appendix, Section A). With these settings, the shape changes
over a time interval [0, T ] can be simply prescribed by means of functions t ∈ [0, T ] 7→ ϑt ∈ D1

0(R3)
lying in W 1,1([0, T ], D1

0(R3)). Then, denoting Θt := Id + ϑt, the domain occupied by the swimmer
at every time t ≥ 0 is the closed, bounded, connected set B̄t := Θt(B̄) (keep in mind that we are
working in the frame e) and wt := ∂tΘ(Θ−1) is the swimmer’s Eulerian velocity of deformation.
We shall denote Σ := ∂B the unit ball’s boundary while Σt := Θt(Σ) will stand for the body-fluid
interface. The unit normal vector to Σt directed toward the interior of Bt is nt and the fluid fills
the exterior open set Ft := R3 \ B̄t.

The Flow. The flow is governed by the stationary Stokes equations. They read (in the body
frame e):

−µ∆u +∇p = 0, ∇ · u = 0 in Ft (t > 0),

where µ is the viscosity, u the Eulerian velocity of the fluid and p the pressure. These equations
have to be complemented with the no-slip boundary conditions: u = Ω × x + v + wt on Σt. The
linearity of these equations leads to introducing the elementary velocities and pressures (ui, pi)
(i = 1, . . . , 6) and (ud, pd), defined as the solutions to the Stokes equations with the boundary
conditions ui = ei × x (i = 1, 2, 3), ui = ei−3 (i = 4, 5, 6) and ud = wt on Σt. Then, the

velocity u and the pressure p can be decomposed as u =
∑3
i=1 Ωiui +

∑6
i=4 vi−3ui + ud and

p =
∑3
i=1 Ωipi +

∑6
i=4 vi−3pi + pd. Notice that the pairs (ui, pi) (i = 1, . . . , 6) and (ud, pd) are

well-defined in the weighted Sobolev spaces (W 1
0 (Ft))3 × L2(Ft) (see the Appendix, Section C).
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Fig. 1.1. Kinematics of the model: The Galilean frame E := (Ej)1≤j≤3 and the body frame e := (ej)1≤j≤3

with ej = REj (R ∈ SO(3)). Quantities are mostly expressed in the body frame. The domain of the body is B̄t at
the time t and Bt is the image of the unit ball B by a diffeomorphism Θt. The open set Ft := R3 \ B̄t is the domain
of the fluid. The position of the swimmer is given by the vector r (in E) and its orientation by R ∈ SO(3). The
vector v := R∗ṙ is the translational velocity (in e).

Dynamics. As already pointed out before, for microswimmers, the inertia effects are neglected
in the modeling. Newton’s laws reduce to

∫
Σt

T(u, p)nt×x dσ = 0 (balance of angular momentum)

and
∫

Σt
T(u, p)nt dσ = 0 (balance of linear momentum) where T(u, p) := 2µD(u)−pId is the stress

tensor of the fluid, with D(u) := (∇u+∇u∗)/2. The stress tensor is linear with respect to (u, p) so

it can be decomposed into T(u, p) =
∑3
i=1 ΩiT(ui, pi) +

∑6
i=4 vi−3T(ui, pi) +T(ud, pd). In order to

rewrite Newton’s laws in a short compact form, we introduce the 6× 6 matrix M(t) whose entries
are

Mij(t) :=

{∫
Σt

ei · (T(uj , pj)nt × x)dσ =
∫

Σt
(x× ei) · T(uj , pj)ntdσ (1 ≤ i ≤ 3, 1 ≤ j ≤ 6);∫

Σt
ei−3 · T(uj , pj)ntdσ (4 ≤ i ≤ 6, 1 ≤ j ≤ 6);

and N(t), the vector of R6 whose entries are

Ni(t) :=

{∫
Σt

ei · (T(ud, pd)nt × x)dσ =
∫

Σt
(x× ei) · T(ud, pd)ntdσ (1 ≤ i ≤ 3);∫

Σt
ei−3 · T(ud, pd)ntdσ (4 ≤ i ≤ 6).

With these settings, Newton’s laws take the convenient form M(t)(Ω,v)∗ + N(t) = 0. Upon an
integration by parts, the entries of the matrix M(t) can be rewritten as Mij(s) := 2µ

∫
Ft D(ui) :

D(uj)dx, whence we deduce that M(t) is symmetric and positive definite. We infer that the
swimming motion is governed by the equation:(

Ω
v

)
= −M(t)−1N(t), (0 ≤ t ≤ T ). (1.1a)

To determine the rigid motion in the fixed frame E, Equation (1.1a) has to be supplemented with
the ODE:

d

dt

(
R
r

)
=

(
R Ω̂
Rv

)
, (0 < t < T ), (1.1b)
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together with Cauchy data for R(0) and r(0). At this point, we can identify the control as being
the function t ∈ [0, T ] 7→ ϑt ∈ D1

0(R3). Notice that the dependence of the dynamics in the control
is strongly nonlinear. Indeed ϑt describes the shape of the body and hence also the domain of the
fluid in which are set the PDEs of the elementary velocity fields involved in the expressions of the
matrices M(t) and N(t).

Considering (1.1), we deduce as a first nice result:
Proposition 1.1. The dynamics of a microswimmer is independent of the viscosity of the

fluid. Or, in other words, the same shape changes produce the same rigid displacement, whatever
the viscosity of the fluid is.

Proof. Let (uj , pj) be an elementary solution (as defined in the modeling above) to the Stokes
equations corresponding to the viscosity µ > 0, then (uj , (µ̃/µ)pj) is the same elementary solution
corresponding to the viscosity µ̃ > 0. Since the Euler-Lagrange equation (1.1) depends only on the
Eulerian velocities uj , the proof is completed.

As a consequence of this Proposition we will set µ = 1 in the sequel.

Self-propelled constraints. For our model to be more realistic, the swimmer’s shape changes,
instead of being preassigned, should be resulting from the interactions between some internal forces
and the hydrodynamical forces exerted by the fluid on the body’s surface. To do so, the dynamics
(1.1) should be supplemented with a set of equations (for instance PDEs of elasticity) allowing
the shape changes to be computed from given internal forces. However, this would make the
problem of locomotion much more involved and is beyond the scope of this paper. For weighted
swimmers, this issue can be circumvented by adding constraints ensuring that the body’s center of
mass and moment of inertia are deformation invariant in the body frame. Unfortunately, massless
microswimmers have no center of mass and their moment of inertia is always zero.

To highlight the fact that constraints have still to be imposed to the shape changes for the
control problem to make sense, consider the following result:

Proposition 1.2. Let ϑ, ϑ† ∈ W 1,1([0, T ], D1
0(R3)) be two control functions such that Θ :=

Id + ϑ and Θ† := Id + ϑ† differ up to a rigid displacement on the unit sphere (more precisely,
for every t ∈ [0, T ], there exists (Q(t), s(t)) ∈ SO(3) × R3 such that (Q(0), s(0)) = (Id,0) and

Θ†t |Σ = Q(t)Θt|Σ + s(t)). Then, denoting by t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3) ×R3 a solution (if
any) to System (1.1) with Cauchy data (R0, r0) ∈ SO(3)×R3, we get that the function t ∈ [0, T ] 7→
(R†(t), r†(t)) := (R(t)Q(t)∗, r(t) − R(t)Q(t)∗s(t)) ∈ SO(3) × R3 is also a solution with the same

Cauchy data but control ϑ†. In particular R†(t)Θ†t + r†(t) = R(t)Θt + r(t) for all t ∈ [0, T ] (i.e. the
swimmer’s global motion is the same in both cases).

Proof. If we denote by ui(t) (i = 1, . . . , 6) (respectively u†i (t)) the elementary velocity fields ob-

tained with the control function ϑ (respectively ϑ†), it can be verified that ui(t, x) = Q(t)∗u†i (Q(t)x+
s(t)) for every t ∈ [0, T ], every x ∈ Ft and every i = 1, . . . , 6. We deduce that M(t) = Q(t)∗M†(t)Q(t)
where the elements of M(t) (respectively M†(t)) have been computed with the elementary velocity

fields ui(t) (respectively u†i (t)) and Q(t) ∈ SO(6) is the bloc diagonal matrix diag(Q(t), Q(t)). On

the other hand, denoting respectively by wt(x) = ∂tΘt(Θ
−1
t (x)) and w†t (x) = ∂tΘ

†
t (Θ

†−1
t (x)) the

boundary velocity of the swimmer in both cases, we get the relation: wt(x) + χ(t) × x + ζ(t) =

Q(t)∗w†t (Q(t)x + s(t)) for all t ∈ [0, T ], where χ̂(t) := Q(t)∗Q̇(t) and ζ(t) := Q(t)∗ṡ(t). With
obvious notation, we deduce that N(t) + M(t)(χ(t), ζ(t))∗ = Q(t)∗N†(t). If we set now (Ω,v)∗ :=
−M(t)N(t) and (Ω†,v†)∗ := −M†(t)N†(t), we get the identity (Ω†,v†)∗ = Q(t)(Ω − χ,v − ζ)∗.
It suffices to integrate this relation, taking into account that (Q(0), s(0)) = (Id,0), to obtain the
conclusion of the Proposition and to complete the proof.
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If we apply this proposition with ϑ constant in time (the boundary of the swimmer is Θ(Σ)
at any time), we deduce that any shape change which reduces to a rigid deformation Q(t)x+ s(t)
on the swimmer’s boundary Θ(Σ) will produce a displacement (Q(t)∗,−Q(t)∗s(t)). But if we
compute the global motion of the swimmer, we obtain Q∗(t)(Q(t)Θ(x) + s(t))−Q(t)∗s(t) = Θ(x)
for every x ∈ Σ and every time t which means that the swimmer is actually motionless (the rigid
deformation of the swimmer’s boundary is counterbalanced by its rigid displacement). To prevent
this from happening, we add the following constraints to the deformations (inspired by the so-called
self-propelled constraints for weighted swimmers, see for instance [5]):∫

Σ

Θt(x) dσ = 0 (for all t ∈ [0, T ]) and

∫
Σ

∂tΘt(x)×Θt(x) dσ = 0 (for a.e. t ∈ [0, T ]). (1.2)

About the existence of such deformations, we have in particular:
Proposition 1.3. For every function ϑ in W 1,1([0, T ], D1

0(R3)) such that
∫

Σ
Θt=0(x) dσ =

0, there exists a function ϑ† in W 1,1([0, T ], D1
0(R3)) satisfying (1.2) and an unique absolutely

continuous rigid displacement t ∈ [0, T ] 7→ (Q(t), s(t)) ∈ SO(3)×R3 such that Q(0) = Id, s(0) = 0

and Θ†t |Σ = (Q(t)Θt + s(t))|Σ for every t ∈ [0, T ].
In other words, the proposition tells us that any function of W 1,1([0, T ], D1

0(R3)) satisfying the
first equality of (1.2) at t = 0, can be made allowable (in the sense that it satisfies (1.2)) when
composed with a suitable rigid displacement on the unit sphere.

Proof. Define s̄(t) := (1/4π)
∫

Σ
Θt dσ (an absolutely continuous function on [0, T ]) and Θ̄t :=

Θt − s̄(t) for every t ∈ [0, T ]. The matrix J(t) :=
∫

Σ
‖Θ̄t‖2R3Id − Θ̄t ⊗ Θ̄tdσ is always definite

positive since (J(t)x) · x =
∫

Σ
‖Θ̄t × x‖2R3dσ for all t ∈ [0, T ] and all x ∈ R3. We can then define

χ(t) := J(t)−1
∫

Σ
∂tΘ̄t × Θ̄t dσ as a function of L1([0, T ],R3). The absolutely continuous function

t ∈ [0, T ] 7→ Q(t) ∈ SO(3) is obtained by solving the ODE ∂tQ(t) = Q(t)χ̂(t) with Cauchy data
Q(0) = Id (we consider here a Carathéodory solution which is unique according to Grönwall’s
inequality). Then, we set s(t) := −Q(t)s̄(t) for all t ∈ [0, T ]. The function Θ̃t := Q(t)Θt + s(t)
is in W 1,1([0, T ], C1(R3)3), satisfies (1.2) but does not take its values in D1

0(R3) because Θ̃t(x) =
Q(t)x+ s(t) + o(1) 6= x as ‖x‖R3 → +∞. Let Ω and Ω′ be large balls such that

⋃
t∈[0,T ] Θ̃t(B̄) ⊂ Ω

and Ω̄ ⊂ Ω′ and consider a cut-off function ξ valued in [0, 1] and such that ξ = 1 in Ω and ξ = 0
in R3 \ Ω̄′. To complete the proof, define Θ† as the flow associated with the Cauchy problem
Ẋ(t, x) = ξ(x)∂tϑ̃t(x) + (1− ξ(x))∂tϑt(x), X(0, x) = Θt=0(x).

Definition 1.4. We denote by A the non-empty closed subset of W 1,1([0, T ], D1
0(R3)) con-

sisting of all of the functions verifying (1.2).

1.3. Main results. The first result ensures the well posedness of System (1.1) and the conti-
nuity of the input-output mapping:

Proposition 1.5. For any T > 0, any function ϑ ∈ W 1,1([0, T ], D1
0(R3)) (respectively of

class Cp, p = 1, . . . ,+∞, ω) and any initial data (R(0), r(0)) ∈ SO(3) ×R3, System (1.1) admits
a unique solution t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3) ×R3 (in the sense of Carathéodory) absolutely
continuous on [0, T ] (respectively of class Cp).

Let (ϑj)j≥1 ⊂ W 1,1([0, T ], D1
0(R3)) be a sequence of controls converging to a function ϑ̄. Let

a pair (R0, r0) ∈ SO(3) × R3 be given and denote by t ∈ [0, T ] 7→ (R̄(t), r̄(t)) ∈ SO(3) × R3 the
solution in AC([0, T ],SO(3)×R3) to System (1.1) with control ϑ̄ and Cauchy data (R0, r0). Then,
the unique solution (Rj , rj) to System (1.1) with control ϑj and Cauchy data (R0, r0) converges in
AC([0, T ],SO(3)×R3) to (R̄, r̄) as j → +∞.

We denote by M(3) the Banach space of the 3 × 3 matrices endowed with any matrix norm.
The main result of this article addresses the controllability of System (1.1):
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Theorem 1.6. (Synchronized Swimming) Assume that the following data are given: (i) A
function ϑ̄ ∈ A (the reference shape changes); (ii) A continuous function t ∈ [0, T ] 7→ (R̄(t), r̄(t)) ∈
SO(3) ×R3 (the reference trajectory to be followed). Then, for any ε > 0, there exists a function
t ∈ [0, T ] 7→ ϑt ∈ D1

0(R3) (the actual shape changes) in A, which can be chosen analytic, such that

ϑ0 = ϑ̄0, ϑT = ϑ̄T and supt∈[0,T ]

(
‖ϑ̄t − ϑt‖C1

0 (R3)3 + ‖R̄(t) − R(t)‖M(3) + ‖r̄(t) − r(t)‖R3

)
< ε

where the function t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3) × R3 is the unique solution to system (1.1)
with initial data (R(0), r(0)) = (R̄(0), r̄(0)) and control ϑ.

This theorem tells us that any 3D microswimmer undergoing approximately any prescribed
shape changes can approximately track by swimming any given trajectory. It may seem surprising
that the shape changes, which are supposed to be the control of our problem, can also be somehow
preassigned. Actually, the trick is that they can only be approximately prescribed. We are going
to show that arbitrarily small superimposed shape changes suffice for controlling the swimming
motion.

When no macro shape changes are preassigned we have:
Theorem 1.7. (Freestyle Swimming) Assume that the following data are given: (i) A function

ϑ̄ ∈ D1
0(R3) such that

∫
Σ
Θ̄ dσ = 0 (the reference shape at rest) (ii) A continuous function t ∈

[0, T ] 7→ (R̄(t), r̄(t)) ∈ SO(3) × R3 (the reference trajectory). Then, for any ε > 0 there exists a
function ϑ ∈ D1

0(R3) (the actual shape at rest) such that (i)
∫

Σ
Θ dσ = 0 (ii) ‖ϑ̄ − ϑ‖D1

0(R3) <

ε and (iii) for almost any 4-uplet (V1, . . . ,V4) ∈ (C1
0 (R3)3)4 satisfying

∫
Σ

Vi dx = 0,
∫

Σ
Θ ×

Vi dσ = 0 and
∫

Σ
Vi × Vj dσ = 0 (i, j = 1, . . . , 4), there exists a function t ∈ [0, T ] 7→ s(t) :=

(s1(t), . . . , s4(t))∗ ∈ R4 (which can be chosen analytic) such that, using ϑt := ϑ +
∑4
i=1 si(t)Vi ∈

D1
0(R3) as control in the dynamics (1.1), we get supt∈[0,T ]

(
‖R̄(t)−R(t)‖M(3) +‖r̄(t)−r(t)‖R3

)
< ε

where the function t ∈ [0, T ] 7→ (R(t), r(t)) ∈ SO(3)×R3 is the unique solution to ODEs (1.1) with
initial data (R(0), r(0)) = (R̄(0), r̄(0)).

We claim in this Theorem that any 3D microswimmer (maybe up to an arbitrarily small mod-
ification of its initial shape) is able to swim by means of allowable deformations (i.e. satisfying the
constraints (1.2)) obtained as a suitable combination of almost any given four basic movements.

If we still seek the control function ϑt as a combination of a finite number of elementary
deformations, i.e. in the form

ϑt = ϑ+

n∑
i=1

si(t)Vi, (1.3)

where t ∈ [0, T ] 7→ s(t) := (s1(t), . . . , sn(t))∗ ∈ Rn is in L1([0, T ],Rn),
∫

Σ
Θ dx = 0 and (V1, . . . ,Vn) ∈

(C1
0 (R3)3)n is a fixed family of n vector fields satisfying

∫
Σ

Vi dx = 0,
∫

Σ
Θ × Vi dx = 0 and∫

Σ
Vi ×Vj dx = 0 (i, j = 1, . . . , n) we can state the following result:
Theorem 1.8. (Existence of an optimal control) Let f : SO(3)×R3×D1

0(R3)×(C1
0 (R3)3)→ R

be a continuous function, convex in the third variable and let K be a compact of Rn. Let (R0, r0, ϑ0)
and (R1, r1, ϑ1) be two elements of SO(3)×R3×D1

0(R3) such that there exists a control function ϑt
(i) having the form (1.3) with s(t) ∈ K for a.e. t ∈ [0, T ], (ii) satisfying ϑt=0 = ϑ0, ϑt=T = ϑ1 and
(iii) steering the dynamics (1.1) from (R0, r0) (at t = 0) to (R1, r1) (at t = T ). Then, among all
of the control functions satisfying (i-iii), there exists an optimal control ϑ?t realizing the minimum
of the cost ∫ T

0

f(R(t), r(t), ϑt, ∂tϑt) dt.
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The proofs of these results rely on the following leading ideas: First, we shall identify a set
of parameters necessary to thoroughly characterize a swimmer and its way of swimming (these
parameters are its shape and a finite number of basic movements, satisfying the constraints (1.2)).
Any set of such parameters will be termed a swimmer signature (denoted SS in short). Then, the
set of all of the SS will be shown to be an (infinite dimensional) analytic connected embedded
submanifold of a Banach space.

The second step of the reasoning will consist in proving that the swimmer’s ability to track
any given trajectory (while undergoing approximately any preassigned shape changes) is related to
the vanishing of some analytic functions depending on the SS. These functions are connected to
the determinant of some vector fields and their Lie brackets (we will invoke classical results of Geo-
metric Control Theory). Eventually, by direct calculation, we will prove that at least one swimmer
(corresponding to one particular SS) has this ability. An elementary property of analytic functions
will eventually allow us to conclude that almost any SS (or equivalently any microswimmer) has
this property.

Eventually, the existence of an optimal control in Theorem 1.8 is a straightforward consequence
of Filippov Theorem (see [1, Chap. 10])

1.4. Outline of the paper. The next Section is dedicated to the notion of swimmer signature
(definition and properties). In Section 3 we show that the matrix M(t) and the vector N(t) (in
(1.1a)) are analytic functions in the SS (swimmer signature, seen as a variable) and in Section 4
we will restate the control problem in order to fit with the general framework of Geometric Control
Theory. In the same Section, a particular case of swimmer will be shown to be controllable. In
Section 5 the proof of the main results will be carried out. Section 6 contains some words of
conclusion. Technical results and definitions are gathered in the appendix in order to make the
paper more readable.

2. Swimmer Signature. A swimmer signature is a set of parameters characterizing swimmers
whose deformations consist in a combination of a finite number of basic movements.

Definition 2.1. For any positive integer n, we denote C(n) the subset of D1
0(R3)×(C1

0 (R3)3)n

consisting of all of the pairs c := (ϑ,V) such that, denoting Θ := Id +ϑ and V := (V1, . . . ,Vn), the
following conditions hold (i) the set {Vi|Σ · ek, 1 ≤ i ≤ n, k = 1, 2, 3} is a free family in C1(Σ) (ii)
every pair (V,V′) of elements of {Θ,V1, . . . ,Vn} satisfies

∫
Σ

V dx = 0 and
∫

Σ
V ×V′ dx = 0.

We call swimmer signature (SS in short) any element c of C(n).
By definition, D1

0(R3) is open in C1
0 (R3)3 (see appendix, Section A). We deduce that for any

c ∈ C(n), the set {s := (s1, . . . , sn)∗ ∈ Rn : ϑ +
∑n
i=1 siVi ∈ D1

0(R3)} is open as well in Rn and
we denote S(c) its connected component containing s = 0.

Definition 2.2. For any positive integer n, we call swimmer full signature (SFS in short) any
pair c := (c, s) such that c ∈ C(n) and s ∈ S(c). We denote CF (n) the set of all of these pairs.

Restatement of the problem in terms of swimmer signature (SS) and swimmer full
signature (SFS). Pick a SS, c = (ϑ,V) ∈ C(n) with V := (V1, . . . ,Vn) (for some integer n).
Denote Θ := Id + ϑ and for all s ∈ S(c), Θs := Id + ϑ +

∑n
i=1 siVi (c := (c, s) ∈ C(n) is hence a

SFS). The body of the swimmer occupies the domain B̄ := Θ(B̄) at rest and B̄c := Θs(B̄) (for any
s ∈ S(c)) when swimming. Notice that within this construction, the shape changes on a time interval
[0, T ] (T > 0) are merely given through an absolutely continuous function t : [0, T ] 7→ s(t) ∈ S(c).
If t ∈ [0, T ] 7→ ṡ(t) ∈ Rn stands for its time derivative in L1([0, T ],Rn), the Lagrangian velocity at
a point x of B̄ is

∑n
i=1 ṡi(t)Vi(x) while the Eulerian velocity at a point x ∈ B̄c is

∑n
i=1 ṡi(t)w

i
s(x)
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with wi
s(x) := Vi(Θ

−1
s (x)). Due to assumption (ii) of Definition 2.1, the constraints (1.2) are

automatically satisfied.
The elementary fluid velocities and elementary pressure functions corresponding to the rigid

motions depend only on the SFS. Therefore, they will be denoted in the sequel ui(c) and pi(c) to
emphasize this dependence. The same remark holds for the matrix M(t) whose notation is turned
into M(c). The elementary velocity and pressure (ud, pd) connected to the shape changes can be
decomposed into ud =

∑n
i=1 ṡiwi(c) and pd =

∑n
i=1 ṡiπi(c) respectively. In this sum, each pair

(wi(c), πi(c)) solves the Stokes equations in Fc := R3 \ B̄c with boundary conditions wi(c) = wi
s

on Σc := ∂Bc.
Introducing the matrix N(c), whose elements are

Nij(c) :=

{∫
Σc

(x× ei) · T(wj(c), πj(c))ndσ (1 ≤ i ≤ 3, 1 ≤ j ≤ n);∫
Σc

ei−3 · T(wj(c), πj(c))ndσ (1 ≤ i ≤ 6, 1 ≤ j ≤ n);

(recall that the viscosity µ can be chosen equal to 1), the dynamics (1.1a) can now be rewritten in
the form: (

Ω
v

)
= −M(c)−1N(c)ṡ, (0 < t < T ). (2.1)

Let us focus on the properties of C(n) and CF (n).
Theorem 2.3. For any positive integer n, the set C(n) is an analytic connected embedded

submanifold of C1
0 (R3)3 × (C1

0 (R3)3)n of codimension N := 3(n+ 2)(n+ 1)/2.
The definition and the main properties of Banach space valued analytic functions are summa-

rized in the article [17].
Proof. For any c := (ϑ,V) ∈ C1

0 (R3)3×(C1
0 (R3)3)n, denote V0 := Id+ϑ and V := (V1, . . . ,Vn).

Then, define for k = 0, 1, . . . , n, the functions Λk : C1
0 (R3)3×(C1

0 (R3)3)n → R3(n+1−k) by Λk(c) :=( ∫
Σ

Vk dx,
∫

Σ
Vk ×Vk+1 dx, . . . ,

∫
Σ

Vk ×Vn dx
)∗

. Every function Λk is analytic and so is Λ :=

(Λ0, . . . ,Λn)∗ : C1
0 (R3)3 × (C1

0 (R3)3)n → RN (N := 3(n + 2)(n + 1)/2). In order to prove that
∂cΛ(c) (the differential of Λ at the point c) is onto for any c ∈ C(n), assume that there exist
(n+ 2)(n+ 1)/2 vectors αji ∈ R3 (0 ≤ i ≤ j ≤ n) such that:

n∑
i=0

αi · 〈∂cΛ(c), ch〉 = 0, ∀ ch ∈ C1
0 (R3)3 × (C1

0 (R3))3, (2.2)

where αi := (αii,α
i+1
i , . . . ,αni )∗ ∈ R3(n+1−i) (j = 0, . . . , n) and ch := (ϑh,Vh) ∈ C1

0 (R3)3 ×
(C1

0 (R3)3)n with Vh
0 := Id + ϑh and Vh := (Vh

1 , . . . ,V
h
n). Reorganizing the terms in (2.2), we

obtain that:

n∑
k=0

∫
Σ

Vh
k ·
[ k−1∑
j=0

αkj ×Vj + αkk −
n∑

j=k+1

αjk ×Vj

]
dx = 0.

Since this identity has to be satisfied for any (ϑh,Vh) ∈ C1
0 (R3)3 × (C1

0 (R3))3, we deduce that, for
every k = 0, . . . , n:

k−1∑
j=0

αkj ×Vj |Σ + αkk −
n∑

j=k+1

αjk ×Vj |Σ = 0. (2.3)
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Integrating this equality over Σ, we get that αkk = 0 (k = 0, . . . , n). Taking into account Hypothesis

(ii) of Definition 2.1, the identity (2.3) with k = 0 leads to αj0 = 0 for every j = 1, . . . , n. There are
no more terms involving V0 in the other equations and invoking again Hypothesis (ii) we eventually
get αji = 0 for 1 ≤ i < j ≤ n. So, equality (2.2) entails that αi = 0 for all i = 0, . . . , n and the
mapping ∂cΛ(c) is indeed onto for all c ∈ C(n).

The linear space X = Ker ∂cΛ(c) is closed since Λ is analytic. Let Y be an algebraic supplement
of X in C1

0 (R3)3× (C1
0 (R3)3)n, and denote by PY the linear projection onto Y along X. A crucial

observation is that the linear space Y is isomorphic to RN and hence it is finite dimensional and
closed in C1

0 (R3)3 × (C1
0 (R3)3)n. Define the analytic mapping f : X × Y → RN by f(x, y) =

Λ(c + x + y). The mapping ∂yf(0, 0) = ∂cΛ(c) ◦ PY being onto, the implicit function theorem
(analytic version in Banach spaces, see [17]) asserts that there exist an open neighborhood O1 of 0
in X, an open neighborhood O2 of 0 in Y , and an analytic mapping g : O1 → Y such that g(0) = 0
and, for every (x, y) in O1 ×O2, the two following assertions are equivalent: (i) f(x, y) = 0 (or, in
other words, c+ x+ y belongs to C(n)), and (ii) y = g(x). The analytic mapping g provides a local
parameterization of C(n) in a neighborhood of c.

In order to prove that C(n) is path-connected, consider two elements c† := (ϑ†,V†) and

c‡ := (ϑ‡,V‡) of C(n) and denote Θ† := Id + ϑ†, V† := (V†1, . . . ,V
†
n) and Θ‡ := Id + ϑ‡,

V‡ := (V‡1, . . . ,V
‡
n). According to Definition A.2, D1

0(R3) is open and connected. This entails
that it is always possible to find a continuous, piecewise linear path t : [0, 1] 7→ ϑ̄t ∈ D1

0(R3)
such that ϑ̄t=0 = ϑ† and ϑ̄t=1 = ϑ‡. We introduce 0 = t0 < t1 < . . . < tk = 1, a subdivision
of the interval [0, 1] such that t 7→ ϑ̄t is linear on every subinterval [tj , tj+1] (j = 0, . . . , k − 1)
and we denote Θ̄t := Id + ϑ̄t, ϑ̄

j := ϑ̄t=tj , Θ̄
j := Id + ϑ̄j (j = 0, . . . , k). Since C1

0 (R3)3 is an
infinite dimensional Banach space, it is always possible to find by induction W1,W2, . . . ,Wn in
C1

0 (R3)3 such that (i) both families {W1|Σ · ek, . . . ,Wn|Σ · ek,V†1|Σ · ek, . . . ,V†n|Σ · ek, k = 1, 2, 3}
and {W1|Σ · ek, . . . ,Wn|Σ · ek,V‡1|Σ · ek, . . . ,V‡n|Σ · ek, k = 1, 2, 3} are free in C1

0 (R3) and (ii)
for any pair of elements V, V′, both picked in the same family,

∫
Σ

Vdx = 0,
∫

Σ
Θ̄j × Vdx = 0

(for all j = 1, . . . , k) and
∫

Σ
V × V′dx = 0. Define the function t ∈ [0, 1] 7→ Vi

t ∈ C1
0 (R3)3 by

Vi
t := (1−2t)V†i +2tWi if 0 ≤ t ≤ 1/2 and Vi

t := (2−2t)Wi+(2t−1)V‡ if 1/2 < t ≤ 1 and denote
Vt := (V1

t , . . . ,V
n
t ) ∈ (C1

0 (R3)3)n. Eventually, a continuous function linking c† to c‡ is given by
t ∈ [0, 1] 7→ ct ∈ C(n) with ct := (ϑ†,V3t/2) if 0 ≤ t ≤ 1/3, ct := (ϑ3t−1,V1/2) if 1/3 < t ≤ 2/3 and

ct := (ϑ‡,V3t/2−1/2) if 2/3 < t ≤ 1.
We omit the proof of the following corollary, similar to that of the theorem above:
Corollary 2.4. For any positive integer n, the set CF (n) is an analytic connected embedded

submanifold of C1
0 (R3)3 × (C1

0 (R3)3)n ×Rn of codimension N := 3(n+ 2)(n+ 1)/2.
We denote by Π the projection of C(n) onto D1

0(R3) defined by Π(c) = ϑ for all c := (ϑ,V) ∈
C(n). The proof of the following corollary is a straightforward consequence of arguments already
used in the proof of Theorem 2.3:

Corollary 2.5. For any positive integer n and for any ϑ ∈ Π(C(n)), the section Π−1({ϑ})
is an embedded connected analytic submanifold of {ϑ} × (C1

0 (R3)3)n (identified with (C1
0 (R3)3)n)

of codimension 3n(n+ 3)/2.

3. Sensitivity Analysis of the Matrices M(c) and N(c). For any positive integers k and
l, we denote M(k, l) the vector space of the matrices of size k × l (or simply M(k) when l = k).

Theorem 3.1. For any positive integer n, the mappings c ∈ CF (n) 7→ M(c) ∈ M(6) and
c ∈ CF (n) 7→ N(c) ∈ M(6, n) are analytic.

Let us begin with a preliminary lemma of which the statement requires introducing some
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material. Thus, we denote F := R3\B̄ (remember that B is the unit ball, Σ := ∂B and n is the unit
normal to Σ directed toward the interior of B). For all ξ ∈ D1

0(R3), we set Ξ := Id+ξ, Bξ := Ξ(B),
Fξ := Ξ(F ) and Σξ := Ξ(Σ). We denote q := (ξ,W), with W := (W1,W2) ⊂ (C1

0 (R3)3)2, the
elements of Q := D1

0(R3) × (C1
0 (R3)3)2 and wi

ξ := Wi(Ξ−1) (i = 1, 2). Finally, for every q ∈ Q,
we define:

Φ(q) :=

∫
Fξ
D(u1

q) : D(u2
q) dx, (3.1)

where, for every i = 1, 2, there exists a function piq ∈ L2(Fξ) such that the pair (uiq, p
i
q) ∈

(W 1
0 (Fξ))3 × L2(Fξ) solves the Stokes system:

−∆uiq +∇piq = 0 in Fξ, (3.2a)

∇ · uiq = 0 in Fξ, (3.2b)

uiq = wi
ξ on Σξ. (3.2c)

The first equation has to be understood in the weak sense, namely:∫
Fξ
∇uiq : ∇v dx−

∫
Σξ

piq(∇ · v) dx = 0, ∀v ∈ (
◦
W 1

0 (Fξ))3. (3.3)

Recall that the function spaces are defined in the Appendix, Section A.
Lemma 3.2. The mapping q ∈ Q 7→ Φ(q) ∈ R is analytic.
Proof. We pull back equality (3.3) onto the domain F using the diffeomorphism Ξ. We get:∫

F

∇Ui
qAξ : ∇V dx−

∫
F

P iqBξ : ∇V dx = 0, ∀V ∈ (
◦
W 1

0 (F ))3, (3.4a)

where Ui
q := uiq ◦ Ξ, P iq := piq ◦ Ξ, Jξ := det(∇Ξ), Aξ := (∇Ξ∗∇Ξ)−1Jξ and Bξ := (∇Ξ∗)−1Jξ.

Likewise, (3.2b-3.2c) can be turned into:

Bξ : ∇Ui
q = 0, in F, (3.4b)

Ui
q = Wi on Σ. (3.4c)

We now claim that the mapping ξ ∈ D1
0(R3) 7→ Aξ − Id ∈ E0

0(R3,M(3)) is analytic. Indeed, the
mappings ξ ∈ D1

0(R3) 7→ ∇Ξ∗∇Ξ − Id ∈ E0
0(R3,M(3)), A ∈ E0

0(R3,M(3)) 7→ (Id + A)−1 − Id ∈
E0

0(R3,M(3)) and ξ ∈ D1
0(R3) 7→ Jξ − 1 ∈ C0

0 (R3) are analytic. Then, for i = 1, 2, we define the
analytic functions Γ i : Q× (W 1

0 (F ))3 × L2(F )→ (W−1
0 (F ))3 × L2(F )× (H1/2(Σ))3 by:

Γ i(q,U, P ) :=

〈Aξ,U, ·〉 − 〈Bξ, P, ·〉Bξ : ∇U
γΣ(U−Wi)

 ,

where γΣ : (W 1(F ))3 → (H1/2(Σ))3 is the trace operator and

〈Aξ,U,V〉 :=

∫
F
∇UAξ : ∇V dx, (U ∈ (W 1(F ))3, V ∈ (W 1

0 (F ))3),

〈Bξ, P,V〉 :=

∫
F
PBξ : ∇V dx, (P ∈ L2(F ), V ∈ (W 1

0 (F ))3).
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We wish now to apply the implicit function theorem (analytic version in Banach spaces, as stated
in [17]) to the analytic function Γ i. Observe however that we are only interested in the regularity
result. Indeed, according to Proposition C.2, we already know that for all i = 1, 2 and all q ∈ Q,
there exists a unique pair (U iq, P

i
q) ∈ (W 1

0 (F ))3 × L2(F ) such that Γ i(q,Ui
q, P

i
q) = 0. For every

q ∈ Q, the partial derivative ∂(U,P )Γ
i(q, U iq, P

i
q) can be readily computed. Indeed, we have:

〈∂(U,P )Γ
i(q, U iq, P

i
q), (χ, π)〉 =

〈Aξ,χ, ·〉 − 〈Bξ, π, ·〉Bξ : ∇χ
γΣ(χ)

 , ∀ (χ, π) ∈ (W 1
0 (F ))3 × L2(Σ). (3.5)

Let (f , η,g) be any element of (W−1
0 (F ))3×L2(F )×(H1/2(F ))3. The equation 〈∂(U,P )Γ

i(q, (U iq, P
i
q), (χ, π)〉 =

(f , η,g), is equivalent to:∫
F

∇χAξ : ∇V dx−
∫
F

π Bξ : ∇V dx = 〈f ,V〉
(W−1

0 (F ))3×(
◦
W 1

0 (F ))3
, ∀V ∈ (

◦
W 1

0 (F ))3,

Bξ : ∇χ = η, in F,

χ = g on Σ.

According to Proposition C.2, there exists a unique solution (χ, π) ∈ (W 1
0 (F ))3 × L2(F ) such that

‖χ‖(W 1
0 (F ))3 + ‖π‖L2(F ) ≤ Cξ

[
‖f‖(W−1

0 )3 + ‖η‖L2(F ) + ‖g‖(H1/2(Σ))3
]

where the constant Cξ > 0

depends on ξ only. We infer that for every q ∈ Q, ∂(U,P )Γ
i(q, U iq, P

i
q) is a continuous isomorphism

from (W 1
0 (F ))3 × L2(F ) onto (W−1

0 (F ))3 × L2(F ) × (H1/2(Σ))3. The implicit function theorem
applies and asserts that the mappings q ∈ Q 7→ (Ui

q, P
i
q) ∈ (W 1

0 (F ))3 × L2(F ) (i = 1, 2) are
analytic.

To conclude the proof, it remains only to observe that the function Φ(q) introduced in (3.1)
can be rewritten, upon a change of variables as

Φ(q) =
1

4

∫
F

(∇U1
q∇Ξ−1 + (∇U1

q∇Ξ−1)∗) : (∇U2
q∇Ξ−1 + (∇U2

q∇Ξ−1)∗)Jξ dx,

which is analytic as a composition of analytic functions.
We can now give the proof of Theorem 3.1.
Proof. For any c := (c, s) ∈ CF (n), where c := (ϑ,V), we apply the lemma with ξ := ϑ +∑n

i=1 siVi and W1,W2 ∈ {ei × Ξ, ei, i = 1, 2, 3} to get that the mapping c ∈ CF (n) 7→ M(c) ∈
M(6) is analytic. To prove the analyticity of the elements of N(c), we apply the lemma again with
ξ := ϑ+

∑n
i=1 siVi, W1 ∈ {ei ×Ξ, ei, i = 1, 2, 3} and W2 ∈ {V1, . . . ,Vn}.

4. Control Problem.

4.1. Controllable swimmer signature. Let us fix c ∈ C(n) (for some positive integer n)
and recall that S(c) is the connected open subspace of Rn such that (c, s) ∈ CF (n). Introducing
(f1, . . . , fn) an ordered orthonormal basis of Rn, we can seek the function t ∈ [0, T ] 7→ s(t) ∈ S(c)
as the solution of the ODE ṡ(t) =

∑n
i=1 λi(t)fi where the functions λi : t ∈ [0, T ] 7→ λi(t) ∈ R are

the new controls, and rewrite once more the dynamics (2.1) as:Ω
v
ṡ

 =

n∑
i=1

λi(t)

(
−M(c, s)−1N(c, s)fi

fi

)
, (0 < t < T ). (4.1)

11



It is worth remarking that in this form, s is no more the control but a state variable and c ∈ C(n)
is a parameter of the dynamics. Considering (4.1), we are quite naturally led to introduce, for

all c ∈ CF (n), the vector fields Xi(c) := −M(c)−1N(c)fi ∈ R6, Yi(c) := (X̂1
i (c),X2

i (c), fi)
∗ ∈

TIdSO(3)×R3×Rn (we have used here the notation Xi := (X1
i ,X

2
i )
∗ ∈ R3×R3) and Zic(R, s) :=

RRYi(c) ∈ TRSO(3)×R3×Rn where RR := diag(R,R, Id) ∈ SO(6 +n) is a bloc diagonal matrix.
The dynamics (4.1) and the ODE (1.1b) can be gathered into a unique differential system:

d

dt

Rr
s

 =

n∑
i=1

λi(t)Z
i
c(R, s), (0 < t < T ). (4.2)

For every i = 1, . . . , n, the function (R, r, s) ∈ SO(3)×R3×S(c) 7→ Zic(R, s) ∈ TRSO(3)×R3×Rn

can be seen as an analytic vector field (constant in r) on the analytic connected manifold M(c) :=
SO(3)×R3 ×S(c). We denote ζ any element (R, r, s) ∈M(c) and we define Z(c) as the family of
vector fields (Zic)1≤i≤n on M(c).

Lemma 4.1. Let c be a SS fixed in C(n) (n a positive integer). If there exists ζ ∈ M(c) such
that dim LieζZ(c) = 6 + n, then the orbit of Z(c) through any ζ ∈ M(c) is equal to the whole
manifold M(c).

Proof. Rashevsky Chow Theorem (see [1]) applies: If LieζZ(c) = TζM(c) for all ζ ∈ M(c)
(or more precisely, for all (R, s) ∈ SO(3) × S(c) since Zic does not depend on r) then the orbit of
Z(c) through any point of M(c) is equal to the whole manifold. Let us compute the Lie bracket
[Zic(R, s), Zjc(R, s)] for 1 ≤ i, j ≤ n and (R, s) ∈ SO(3)× S(c). We get:

[Zic(R, s), Zjc(R, s)] = RR

 ̂(X1
i ×X1

j )(c)

(X1
i ×X2

j −X1
j ×X2

i )(c)
0

+RR

 ̂(∂siX
1
j − ∂sjX1

i )(c)

(∂siX
2
j − ∂sjX2

i )(c)
0

 . (4.3)

By induction, we can similarly prove that the Lie brackets of any order at any point ζ ∈ M(c)
have the same general form, namely the matrix RR multiplied by an element of T(Id,0,s)M(c). We
deduce that the dimension of the Lie algebra at any point of M(c) depends only on s. According
to the Orbit Theorem (see [1]), the dimension of the Lie algebra is constant along any orbit. But
according to the particular form of the vector fields Zic (whose last n components form a basis of
Rn), the projection of any orbit on S(c) turns out to be the whole set S(c) (or, in other words,
for any s ∈ S(c) and for any orbit, there is a point of the orbit for which the last component is s).
Assume now that dim Lieζ∗Z(c) = 6 + n at some particular point ζ∗ := (R∗, r∗, s∗) ∈M(c). Then,
according to the Orbit Theorem, for any s ∈ S(c), there exists at least one point (Rs, rs, s) ∈M(c)
such that dim Lie(Rs,rs,s)Z(c) = 6 +n. But since the dimension of the Lie algebra does not depend
on the variables R and r, we conclude that dim LieζZ(c) = 6 + n for all ζ ∈M(c).

Definition 4.2. We say that c, a SS in C(n) (for some integer n) is controllable if there exists
ζ ∈M(c) such that dim LieζZ(c) = 6 + n.

It is obvious that for a SS to be controllable, the integer n has to be larger or equal to 2. The
following result is quite classical (a proof can be found in [5]):

Proposition 4.3. Let c ∈ C(n) (for some integer n) be controllable (with the usual notation
c := (ϑ,V), V := (V1, . . . ,Vn) and ϑs := ϑ +

∑n
i=1 siVi for every s ∈ S(c)). Then for any given

continuous function t ∈ [0, T ] 7→ (R̄(t), r̄(t), s̄(t)) ∈ SO(3) × R3 × S(c) and for any ε > 0, there
exist n C1 functions λi : [0, T ]→ R (i = 1, . . . , n) such that:

1. supt∈[0,T ]

(
‖R̄(t)−R(t)‖M(3) + ‖r̄(t)− r(t)‖R3 + ‖ϑs̄(t) − ϑs(t)‖C1

0 (R3)3

)
< ε;
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2. R(T ) = R̄(T ), r(T ) = r̄(T ) and s(T ) = s̄(T );

where t ∈ [0, T ] 7→ (R(t), r(t), s(t)) ∈ M(c) is the unique solution to the ODE (4.2) with Cauchy
data R(0) = R̄(0) ∈ SO(3), r(0) = r̄(0) ∈ R3, s(0) = s̄(0) ∈ S(c).

Let us mention some other quite elementary properties that will be used later on:

Proposition 4.4.

1. If c := (ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SS with V := (V1, . . . ,Vn) ∈ (C1
0 (R3)3)n

then any c+ := (ϑ,V+) ∈ C(n + 1) such that V+ := (V1, . . . ,Vn,Vn+1) ∈ (C1
0 (R3)3)n+1

(for some Vn+1 ∈ Cm0 (R3)3) is a controllable SS as well.
2. If c := (ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SS, then for any ϑ? ∈ {ϑ +

∑n
i=1 siVi, s ∈

S(c)} the element c? := (ϑ?,V) belongs to C(n) and is a controllable SS as well.
3. If c := (ϑ,V) ∈ C(n) (n ≥ 2) is a controllable SS, then all of the controllable SS in the

section Π−1({ϑ}) form an open dense subset of Π−1({ϑ}) (for the induced topology).
4. If there exists a SS in C(n) for some n ≥ 2 then, for any k ≥ n, all of the controllable SS

in C(k) form an open dense subset of C(k) (for the induced topology).

Proof. The two first assertions are obvious so let us address directly the third point. Denote
Ek (k positive integer) the set of all of the vectors fields on M(c) obtained as Lie brackets of order
lower or equal to k from elements of Z(c). Then, consider the determinants of all of the different
families of 6 + n elements of Ek as analytic functions in the variable V (the other variables ϑ and
s = 0 being fixed). Since c is controllable, there exist at least one k and one family of 6+n elements
in Ek whose determinant is nonzero. According to Corollary 2.5 and basic properties of analytic
functions (see [17]), the determinant can vanish only in a closed subset with empty interior of the
section Π−1({ϑ}) (for the induced topology). The proof of the last point is similar.

4.2. Building a controllable swimmer signature. In this subsection, we are interested in
computing the Lie brackets of first order [Zic(R, s), Zjc(R, s)] at (R, s) = (Id, 0), for a particular SS
c := (Id,V) ∈ C(4) (so the shape of the swimmer at rest is the unit ball). We make use of the usual
notation V := (V1, . . . ,V4) (to be specified latter on), s = (s1, . . . , s4) ∈ S(c) and c := (c, s).

To carry out the aforementioned task, we introduce the classical spherical coordinates (%, α, β)
such that, for all x := (x1, x2, x3)∗ ∈ R3, x 6= 0, we have x1 = % cos(α) sin(β), x2 = % sin(α) sin(β)
and x3 = % cos(β). At each point (%, α, β) we define the related local frame (e%, eα, eβ). For any
n ≥ 1, we call rigid spherical harmonics of degree −(n+ 1) any function having the form:

(%, α, β) 7→ %−(n+1)
n∑

m=−n
γmYn,m(cosβ, α), (4.4)

where γ−n, . . . , γn ∈ R and Yn,m are the classical spherical harmonics of degree n ∈ N and order
m ∈ {−n, . . . , n}.

According to Lamb, [9] (one can also see the book of Happel and Brenner, [8, ch. 3.2, p.
62]), the solution (u, p) of the Stokes equations around an immersed body of any shape can be
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decomposed as follows (in the body frame):

u =

+∞∑
n=1

(
∇× (χ−(n+1)%e%) +∇φ−(n+1) −

n− 2

2n(2n− 1)
%2∇p−(n+1)

+
n+ 1

n(2n− 1)
p−(n+1)%e%

)
, (4.5a)

p =

+∞∑
n=1

p−(n+1), (4.5b)

where p−(n+1), χ−(n+1) and φ−(n+1) are rigid spherical harmonics of degree −(n+ 1).
The functions p−(n+1), χ−(n+1) and φ−(n+1) (or more precisely the coefficients γk, k ∈ {−n, . . . , n}

arising in (4.4)) have to be determined in order to satisfy the boundary conditions on the surface
on the body. This can be done following a method given in [3] to which we refer for further details.

The main interest of writing the solution of the Stokes equations in the form (4.5) is that the
entries of the matrix M(c) and N(c) can be easily determined.

Lemma 4.5. Let S be any smooth open bounded domain of R3 and denote F := R3 \ S. Let
(u, p) ∈ (W 1

0 (F))3×L2(F) be a solution to the Stokes equations given by (4.5) satisfying, for some
n0 ∈ N, χ−(n+1) = φ−(n+1) = p−(n+1) = 0 for all n > n0.

For i = 1, . . . , 6, let (ui, pi) ∈ (W 1
0 (F))3 × L2(F) be the solution to the Stokes equations

corresponding to the boundary condition ui(x) = x×ei if i ∈ {1, 2, 3} and ui(x) = ei−3 if i ∈ {4, 5, 6}
on ∂S. Then we have,

2

(∫
F
D(u) : D(ui) dx

)
i=1,...,6

=

(
−8π∇(%3χ−2)
−4π∇(%3p−2)

)
. (4.6)

Proof. Let ũi be the rigid vector field defined by ũi(x) = x×ei if i ∈ {1, 2, 3} and ũi(x) = ei−3

if i ∈ {4, 5, 6}. Since u and ui are smooth, we have 2
∫
F D(u) : D(ui) dx =

∫
∂S T(u, p)ui · n dσ =∫

∂S T(u, p)ũi·n dσ, where n is the normal to ∂S oriented towards the interior of S. LetB(0, R) ⊂ R3

be a ball centered at 0 of radius R > 0 such that S ⊂ B(0, R) and denote FR := F ∩B(0, R). Using
the Green formulae and the fact that for every i ∈ {1, . . . , 6} we have D(ũi) :=

(
∇ũi+∇ũ∗i

)
/2 = 0,

we obtain
∫
∂S T(u, p)ũi · n dσ = −

∫
∂B(0,R)

T(u, p)ũi · n dσ, with n the normal to ∂FR oriented

towards the exterior of FR. Invoking the L2 orthogonality of the spherical harmonics, we get (4.6).

When the body is specialized to be the unit sphere and the boundary conditions for u are ei×x
or ej (i, j = 1, 2, 3), the entries of the vectors in (4.6) are the elements of the matrix M(c, 0) and
we get M(c, 0) = diag(8πId, 4πId). Similarly, if u = Vi (i = 1, . . . , 4) on the surface of the body,
the entries of the vectors in (4.6) turn out to be the elements of the matrix N(c, 0). Let now the
vector fields Vi be defined by Vi(%, α, β) := Vi(%, α, β)e% for every i ∈ {1, . . . , 4} with

V1(%, α, β) =%−(3+1)< (Y3,1) (4.7a)

V2(%, α, β) =%−(3+1)= (Y3,1) (4.7b)

V3(%, α, β) =%−(3+1)< (Y3,2) (4.7c)

V4(%, α, β) =%−(4+1)< (Y4,2) (4.7d)
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In this case, we get merely N(c, 0) = 0 and hence Xi(c, 0) = 0 (i = 1, . . . , 4) in identity (4.3).
Focusing now on the second term in the right hand side of (4.3), it remains to compute, for all
i, j = 1, . . . , 4 and c = (c, 0):

∂siXj(c)− ∂sjXi(c) = M(c)−1
[
(∂sjM(c)Xi(c)− ∂siM(c)Xj(c))

+ (∂sjN(c)fi − ∂siN(c)fj)
]
.

= M(c)−1
[
∂sjN(c)fi − ∂siN(c)fj

]
. (4.8)

In particular, we need the expressions of the derivatives of the entries of the matrix N(c) with
respect to s.

Lemma 4.6. Let V ∈ C1
0 (R3)3 ∩C∞(R3)3 and w0 ∈ C∞(Σ)3 (recall that Σ is the boundary of

the unit ball B and F := R3 \ B̄). For every t small enough, we define Θt = Id + tV, Bt = Θt(B),
Σt := ∂Bt, Ft = R3 \ Bt and wt = w0 ◦Θt−1 ∈ C∞(Σt).

Let also (ut, pt) and (uit, p
i
t) ∈ (W 1

0 (Ft))3 ×L2(Ft) (i = 1, . . . , 6) be the solutions to the Stokes
problems in Ft with boundary conditions ut = wt, uit(x) = x× ei if i ∈ {1, 2, 3} and uit(x) = ei−3

if i ∈ {4, 5, 6} on Σt. Then we have

d

dt

(∫
Ft
D(ut) : D(uit) dx

) ∣∣∣
t=0

=

∫
F

D(u′0) : D(uit=0) dx,

where u′0 ∈ (W 1
0 (F ))3 is solution of the homogeneous Stokes problem in F with the boundary

condition

u′0 = −∇ut=0V on Σ. (4.9)

Proof. Since, for all t small, the solution ut is smooth, according to [15, Theorem 4], the
derivative of t 7→ ut at t = 0 is solution of the homogeneous Stokes problem in F with boundary
condition (4.9) (notice that the boundary condition is merely obtained by differentiating the equa-
tion ut ◦ Θt = 0 with respect to t at t = 0). Using the same argument as in the proof of Lemma
4.5, we have 2

∫
Ft D(ut) : D(uit) dx = −

∫
∂B(0,R)

T(ut, pt)ũi · n dσ. Differentiating with respect to

t and invoking the linearity of T and the Green formulae, we get the conclusion.

Applying Lemma 4.6 with the vector fields Vi (i = 1, . . . , 4) defined in (4.7), we obtain after
lengthy computations involving spherical harmonics:

∂s1N(c, s)
∣∣∣
s=0

=



0 0 0 0

0 0 − 3
√

5

2
7
2

0

0 − 3
8 0 0

0 0 0 −
√

3
√

5√
2
√

7

0 0 0 0
0 0 0 0


, ∂s2N(c, s)

∣∣∣
s=0

=



0 0 − 3
√

5

2
7
2

0

0 0 0 0
3
8 0 0 0
0 0 0 0

0 0 0
√

3
√

5√
2
√

7

0 0 0 0


,
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∂s3N(c, s)
∣∣∣
s=0

=



0 3
√

5

2
7
2

0 0

3
√

5

2
7
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 − 2
√

3√
7


, ∂s4N(c, s)

∣∣∣
s=0

=



0 0 0 0
0 0 0 0
0 0 0 0

−
√

3 5
3
2

2
9
2
√

7
0 0 0

0
√

3 5
3
2

2
9
2
√

7
0 0

0 0 − 5
√

3
8
√

7
0


.

One easily check now that dim
(
span

{
∂siN(c)fj − ∂sjN(c)fi, 1 ≤ i < j < 4

})
= 6 and then

dim
(
span

{
Zkc (Id, 0), [Zic(Id, 0),Zjc(Id, 0)], 1 ≤ k ≤ 4, 1 ≤ i < j < 4

})
= 10 which is the dimension

of SO(3)×R3 × S(c). It entails, according to the forth point of Proposition 4.4:
Proposition 4.7. For any integer n ≥ 4, the set of all the controllable SS is an open dense

subset in C(n).

5. Proofs of the Main Results.

Proof of Proposition 1.5. Let a control function ϑ be given in W 1,1([0, T ], D1
0(R3)) and

denote Θ := Id + ϑ. With the notation of Lemma 3.2, at any time t the entries of the matrix M(t)
have the form Φ(q) with q := (ϑ,W), W := (W1,W2), Wj ∈ {ei × Θt, ei, i = 1, 2, 3} (j = 1, 2).
We deduce that t ∈ [0, T ] 7→ M(t) ∈ M(3) is absolutely continuous. To get the expression of the
elements of the vector N(t) we only have to modify W2 which has to be equal to ∂tϑt. It entails
that t ∈ [0, T ] 7→ N(t) ∈ R6 is in L1([0, T ],R6). Existence of solutions is now straightforward
because t ∈ [0, T ] 7→ M(t)−1N(t) ∈ R6 is in L1([0, T ],R6) and Carathéodory’s existence theorem
applies to (1.1b). Uniqueness derives from Grönwall’s inequality.

Let us address the stability result. With the same notation as in the statement of Proposi-
tion 1.5, denote by (Ωj ,vj)∗ the left hand side of identity (1.1a) when the control is ϑj and (Ω̄, v̄)∗

when the control is ϑ̄. As j → +∞, it is clear that (Ωj ,vj)∗ → (Ω̄, v̄)∗ in L1([0, T ],R6). Then,
integrating (1.1b) between 0 and t for any 0 ≤ t ≤ T , we get the estimate ‖R̄(t) − Rj(t)‖M(3) ≤∫ T

0
‖R̄(s)−Rj(s)‖M(3)‖Ω̄(s)‖R3 +‖Ωj(s)−Ω̄(s)‖R3ds. Applying Grönwall’s inequality, we conclude

that Rj → R̄ in C([0, T ],M(3)) as j → +∞ and we use again the ODE to prove that Ṙj → ˙̄R in
L1([0, T ],M(3)). Then, it is easy to obtain the convergence of rj to r̄ and to conclude the proof.

Proof of Theorems 1.6 and 1.7. We shall focus on the proof of Theorem 1.6 because it
will contain the proof of Theorem 1.7. For any integer n, we shall use the notation ‖c‖C(n) :=
‖ϑ‖C1

0 (R3)3 +
∑n
i=1 ‖Vi‖C1

0 (R3)3 for all c ∈ C1
0 (R3)3 × (C1

0 (R3)3)n with, as usual, c := (ϑ,V) and
V := (V1, . . . ,Vn).

Let ε > 0 and the functions t ∈ [0, T ] 7→ ϑ̄t ∈ D1
0(R3) and t ∈ [0, T ] 7→ (R̄(t), r̄(t)) ∈ SO(3)×R3

be given as in the statement of the theorem. According to Proposition B.1, we can assume that
ϑ̄ ∈ Cω([0, T ], D1

0(R3)) ∩ A because this space is a dense subspace of A.
Step 1 (small initial jerking of the swimmer). In this step, we prove that the swimmer
is able to modify slightly its shape in order to become controllable. Set ϑ̄1 := ϑ̄t=0 and V̄1

1 :=
∂tϑ̄t=0 ∈ C1

0 (R3)3. According to the self-propelled constraints (1.2), it is always possible to find
three elements V̄1

j (j = 2, 3, 4) in C1
0 (R3)3 such that the SS c̄1 := (ϑ̄1, V̄1) belongs to C(4) (with

V̄1 := (V̄1
1, . . . , V̄

1
4)). Then, Proposition 4.7 guarantees that for any δ > 0 it is possible to find

a controllable SS in C(4), denoted by c1 := (ϑ1,V1) where V1 := (V1
1, . . . ,V

1
4), such that ‖c1 −

c̄1‖C(4) < δ/2 (δ > 0 is meant to be small an will be fixed later on). Moreover, we claim that
c1 can be chosen in such a way that there exists a smooth allowable function (i.e. satisfying
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(1.2)) t ∈ [−1, 0] 7→ ϑ0
t ∈ D1

0(R3) such that ϑ0
t=−1 = ϑ̄1 and ϑ0

t=0 = ϑ1 (i.e. the swimmer
can modify its shape from ϑ̄1 into ϑ1 by self-deforming on time interval [−1, 0]). Indeed, denote

ĉ1 := (ϑ̂1, V̂1) ∈ C(4) a controllable SS such that ‖c̄1 − ĉ1‖C(4) be small. Then define ϑ̄0
t :=

ϑ̄1 + (1 + t)(ϑ̂1 − ϑ̄1) for every t ∈ [−1, 0]. Since D1
0(R3) is open, for ‖ϑ̂1 − ϑ̄1‖C1

0 (R3)3 small

enough, ϑ̄0
t will remain in D1

0(R3) for all t ∈ [−1, 0]. Then, Proposition 1.3 asserts that there exists
a function Q0 ∈ AC([−1, 0],SO(3)) and an allowable shape function ϑ0

t ∈ W 1,1([−1, 0], D1
0(R3))

such that Θ0
t links Θ̄1 (at t = −1) to some Θ1 (at t = 0) satisfying Θ1|Σ = Q0(0)Θ̂1|Σ. A

careful reading of the proof of Proposition 1.3 allows noticing that ‖Q0 − Id‖C([−1,0],M(3)) and

‖ϑ0
t − ϑ̄1‖W 1,1([−1,0],D1

0(R3)) go to 0 as ‖ϑ̂1 − ϑ̄1‖C1
0 (R3)3 goes to 0. Set now ϑ1 := Θ1 − Id, V1

i :=

Q0(0)V̂1
i (i = 1, . . . , 4) and observe that the resulting SS c1 satisfies the requirements. Furthermore,

according to Proposition 1.5, ‖ϑ̂1 − ϑ̄1‖C1
0 (R3)3 can always be made small enough for the control

function ϑ0
t to produce a rigid displacement t ∈ [−1, 0] 7→ (R0(t), r0(t)) ∈ SO(3) × R3 satisfying

supt∈[−1,0]

(
‖R0(t)− R̄(0)‖M(3) + ‖r0(t)− r̄(0)‖R3 + ‖ϑ0

t − ϑ̄1‖C1
0 (R3)3

)
< ε/2. Eventually, remark

that this step of initial jerking performed on the time interval [t0, t1] := [−1, 0] can actually be
carried out on a time interval arbitrarily short just by rescaling the time.
Step 2 (building a continuous piecewise C1 control function). Since the function ∂tϑ̄ is
continuous on the compact set [0, T ], it is uniformly continuous. For any ν > 0, there exists δν > 0
such that ‖∂tϑ̄t − ∂tϑ̄t′‖C1

0 (R3)3 < ν providing that |t− t′| ≤ δν . Then, we divide the time interval
[0, T ] into 0 = t1 < t2 < . . . < tk = T such that |tj+1 − tj | < δν for j = 1, . . . , k − 1. For any
t ∈ [t1, t2], we have the estimate:

‖ϑ̄t − (ϑ1 + (t− t1)V1
1)‖C1

0 (R3)3 ≤ ‖ϑ̄t − (ϑ̄1 + (t− t1)V̄1
1)‖C1

0 (R3)3

+ ‖ϑ̄1 − ϑ1‖C1
0 (R3)3 + (t− t1)‖V̄1

1 −V1
1‖C1

0 (R3)3 .

On the one hand, we have, for all t ∈ [t1, t2], ‖ϑ̄t − (ϑ̄1 + (t − t1)V̄1
1)‖C1

0 (R3)3 < ν|t − t1|. On

the other hand, still for t1 ≤ t ≤ t2 and if we assume that δν < 1, we get ‖ϑ̄1 − ϑ1‖C1
0 (R3)3 +

(t − t1)‖V̄1
1 − V1

1‖C1
0 (R3)3 ≤ δ/2. We denote ϑ̄2 := ϑ̄t=t2 . It is always possible to supplement

V̄2
1 := ∂tϑ̄t2 with vector fields V̄2

j (j = 2, . . . , 4) in such a way that c̄2 := (ϑ̄2, V̄2) be in C(4) with

the obvious notation V̄2 := (V̄2
1, . . . , V̄

2
4). We define ϑ2 := ϑ1 + (t2 − t1)V1

1. For any t1 ≤ t ≤ t2,
Proposition 4.4 guarantees that the SS c1t := (ϑ1 + (t − t1)V1

1,V1) is controllable. In particular,
for t = t2, there exists an integer k and a family of 10 vector fields1 in Ek (the set of all the
Lie brackets of order lower or equal to k) such that the determinant of the family is nonzero.
But this determinant can be thought of as an analytic function in V1. The set Π−1({ϑ2}) being
an analytic connected submanifold of (C1

0 (R3)3)4 (see Corollary 2.5), the determinant is nonzero
everywhere on this set but maybe in a closed subset of empty interior (for the induced topology).
Therefore, it is possible to find V2 ∈ (C1

0 (R3)3)4 such that the SS c2 := (ϑ2,V2) is controllable and
‖c̄2 − c2‖C(4) < (δ/2 + ν(t2 − t1)) + δ/4.

By induction, we can build c̄j and cj (j = 1, 2, . . . , k) such that (i) ‖c̄j−cj‖ ≤ δ/2+
∑k
i=2 δ/2

i+
ν(ti − ti−1) < δ + νT and (ii) every cj is controllable. We choose δ and ν in such a way that
δ + νT < ε/4 and we define t : [0, T ] 7→ ϑ̃t ∈ D1

0(R3) as continuous, piecewise affine functions
by ϑ̃t := ϑj + (t − tj)V

j
1 if t ∈ [tj , tj+1] (j = 1, . . . , k − 1). Notice that for any t ∈ [0, T ],

‖ϑ̄t − ϑ̃t‖C1
0 (R3)3 < ε/2.

110 is the dimension of SO(3)×R3 × S(c1t2 )
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Definition 4.2 and Proposition 4.3 ensure that, on every interval [tj , tj+1] (j = 1, . . . , k − 1),

there exist four C1 functions λji : [tj , tj+1] 7→ R (i = 1, . . . , 4) such that the solution (Rj , rj , s
j) :

[tj , tj+1] → SO(3) × R3 × R4 to the ODE (4.2) with vector fields Zicj (Rj , s
j) and Cauchy data

R1(t1) = R0(0), r1(t1) = r0(0), Rj(tj) = R̄(tj), rj(tj) = r̄(tj) (j = 2, . . . , k − 1) and sj(tj) = 0
(j = 1, . . . , k − 1) satisfies:

1. supt∈[tj ,tj+1]

(
‖R̄(t)−Rj(t)‖M(3) + ‖r̄(t)− rj(t)‖R3 + ‖ϑ̃t − ϑjt‖C1

0 (R3)3

)
< ε/4 with ϑjt :=

ϑj +
∑4
i=1 s

j
i (t)V

j
i ;

2. Rj(tj+1) = R̄(tj+1), rj(tj+1) = r̄(tj+1) and sj(tj+1) = (tj+1 − tj , 0, 0, 0)∗.

With these settings, the functions t ∈ [−1, T ] 7→ ϑ̆t ∈ D1
0(R3), R̆ : [−1, T ] → SO(3) and r̆ :

[−1, T ]→ R3 defined by ϑ̆t := ϑjt , R̆(t) := Rj(t) and r̆(t) := rj(t) if t ∈ [tj , tj+1] (j = 0, . . . , k − 1)
are continuous, piecewise C1.

Step 3 (smoothing the control function). We obtain a control function on [0, T ] (still denoted

by ϑ̆) by merely shifting/rescaling the time, from [−1, T ] onto [0, T ]. Beforehand and as already
mentioned, the first time interval [t0, t1] := [−1, 0] could have been shortened as much as necessary
for the estimate

sup
t∈[0,T ]

(
‖R̄(t)− R̆(t)‖M(3) + ‖r̄(t)− r̆(t)‖R3 + ‖ϑ̄t − ϑ̆t‖C1

0 (R3)3

)
< ε/2,

to be true after the shifting/rescaling process. Then, we invoke Proposition B.1 and Proposition 1.5
to conclude that there exists t ∈ [0, T ] 7→ ϑt ∈ D1

0(R3) analytic, satisfying (1.2) and such that

sup
t∈[0,T ]

(
‖R(t)− R̆(t)‖M(3) + ‖r(t)− r̆(t)‖R3 + ‖ϑt − ϑ̆t‖C1

0 (R3)3

)
< ε/2,

where (R, r) : [0, T ] 7→ SO(3) ×R3 is the solution to System (1.1) with initial data (R(0), r(0)) =
(R̄(0), r̄(0)) and control ϑ. The proof is then complete.

6. Conclusion. In this paper, we have proved that every 3D microswimmer as the ability to
swim (i.e. not only moving but tracking any given trajectory). Moreover, this can be achieved
by means of arbitrarily small shape changes which can be superimposed to any preassigned macro
deformation. When the shape changes are expressed as a finite combination of elementary defor-
mations (and no macro shape changes are prescribed), we have shown that only four elementary
deformations are needed for the swimmer to be able to track any trajectory. In this case and when
the rate of shape changes (i.e. the velocity of deformations) is valued in a compact set, an optimal
control exists for a wide variety of cost functionals.

Appendix A. Function spaces.

Classical function spaces.

• For any open set Ω ⊂ R3 (included Ω = R3), D(Ω) is the space of the smooth (C∞)
functions, compactly supported in Ω.
• For any open set Ω ⊂ R3 (included Ω = R3), the set C1

0 (Ω) is the completion of D(Ω) for
the norm ‖u‖C1

0 (Ω) := supx∈Ω |u(x)|+ ‖∇u(x)‖R3 . When Ω = R3, we get C1
0 (R3) := {u ∈

C1(R3) : |u(x)| → 0 and ‖∇u(x)‖R3 → 0 as ‖x‖R3 → +∞}.
• The space C1

0 (R3)3 is the Banach space of all of the vector fields in R3 whose every
component belongs to C1

0 (R3).
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• For any Banach space E and any T > 0, Cω([0, T ], E) is the space of analytic functions on
[0, T ], valued in E.

• Let now E be an open subset or an embedded submanifold of an Euclidean space and
T > 0, then AC([0, T ], E) consists in the absolutely continuous functions from [0, T ] into

E. It is endowed with the norm ‖u‖AC([0,T ],E) := supt∈[0,T ] ‖ut‖E +
∫ T

0
‖∂tut‖Edt.

• Cm0 (Ω,M(k)) (m an integer) is the Banach space of the functions of class Cm in R3 valued
in M(k) (M(k) stands for the Banach space of the k× k matrices, k a positive integer) and
compactly supported in Ω.

• Em0 (Ω,M(k)) stands for the connected component containing the zero function of the open
subset {M ∈ Cm0 (Ω,M(k)) : det(Id +M(x)) 6= 0 ∀x ∈ R3}.

Lemma A.1. The set D̃1
0(R3) := {ϑ ∈ C1

0 (R3)3 s.t. Id + ϑ is a C1 diffeomorphism of R3} is
open in C1

0 (R3)3.
Proof. The mapping ϑ ∈ C1

0 (R3)3 7→ δϑ := inf e∈S2

x∈R3
〈Id +∇ϑ(x), e〉 · e ∈ R (S2 stands for the

unit 2 dimensional sphere) is well defined and continuous. For any ϑ0 ∈ D̃1
0(R3), we have δϑ0

> 0
and for all x, y ∈ R3 and e := (y−x)/|y−x| the following estimate holds: (y+ϑ(y)−x−ϑ(x)) ·e =

|y − x|
∫ 1

0
〈Id +∇ϑ(x + te), e〉 · e dt > |y − x|δϑ. We deduce that Id + ϑ is one-to-one if ϑ is close

enough to ϑ0. Further, still for ϑ close enough to ϑ0, Id +ϑ is a local diffeomorphism (according to
the local inversion Theorem) and hence it is onto.

Definition A.2. We denote D1
0(R3) the connected component of D̃1

0(R3) that contains the
identically zero function.

If ϑ ∈ C1
0 (R3)3 is such that ‖ϑ‖C1

0 (R3)3 < 1, the local inversion Theorem and a fixed point

argument ensure that Id + ϑ is a C1 diffeomorphism so we deduce that D1
0(R3) contains the unit

ball of C1
0 (R3)3.

Sobolev spaces.
• We define the weight function θ(x) :=

√
1 + |x|2 (x ∈ R3) and the weighted Sobolev spaces:

W 1
0 (F) :=

{
u ∈ D′(F) : θ−1u ∈ L2(F)

}
, (A.1)

◦
W 1

0 (F) :=
{
u ∈W 1

0 (F) : γΣ(u) = 0
}
, (A.2)

where γΣ : W 1
0 (F) 7→ H1/2(Σ) is the classical trace operator. The dual space of

◦
W 1

0 (F) is
W−1

0 (F).
• For any Banach space E, W 1,1([0, T ], E) is the Bochner-Sobolev spaces (see for instance

[13, §7.1, page 187]) consisting in the functions u : [0, T ] 7→ E measurable and such that
u and u′ belong to L1([0, T ], E) (the derivative u′ as to be understood in the sense of
the distributions). It can be proved that W 1,1([0, T ], E) is continuously embedded in

C([0, T ], E) and that u(t) = u(0) +
∫ t

0
u′(s) ds for all t ∈ [0, T ] and all u ∈ W 1,1([0, T ], E),

where the integral is a Bochner integral (a generalization to Banach space valued func-
tions of the Lebesgue integral). The space W 1,1([0, T ], E) is endowed with the norm

‖u‖W 1,1([0,T ],E) := ‖u‖C([0,T ],E) +
∫ T

0
‖u′(s)‖E ds.

Appendix B. Control functions smoothing.
Proposition B.1. For every ε > 0 and every ϑ ∈ A, there exists ϑ̄ ∈ Cω([0, T ], D1

0(R3)) ∩ A
such that ‖ϑ̄ − ϑ‖W 1,1([0,T ],D1

0(R3)) < ε and ϑ̄t=0 = ϑt=0. In particular Cω([0, T ], D1
0(R3)) ∩ A is

dense in A.
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Proof. Let ϑ be in A. Since, Cω([0, T ], C1
0 (R3)3) is dense in L1([0, T ], C1

0 (R3)3), we can always
pick an element ζ ∈ Cω([0, T ], C1

0 (R3)3) which makes ‖ζ−∂tϑ‖L1([0,T ],C1
0 (R3)3) as small as required.

Define for every t ∈ [0, T ] the analytic function ϑ̃t = ϑt=0 +
∫ t

0
ζ(s) ds, keeping in mind that the

quantity ‖ϑ̃− ϑ‖W 1,1([0,T ],D1
0(R3)) can be made arbitrarily small. Following the lines of the proof of

Proposition 1.3, we define s̃(t) := (1/4π)
∫

Σ
Θ̃t dσ, Θ̃†t := Θ̃t−s̃(t), the matrix J̃(t) :=

∫
Σ
‖Θ̃†t‖2R3Id−

Θ̃†t⊗Θ̃
†
tdσ (positive definite for every t ∈ [0, T ]) and χ̃(t) := J̃(t)−1

∫
Σ
∂tΘ̃

†
t×Θ̃

†
t dσ. Let us introduce

as well J(t) :=
∫

Σ
‖Θt‖2R3Id−Θt⊗Θtdσ. Observing again that the quantity ‖ϑ̃−ϑ‖W 1,1([0,T ],D1

0(R3))

can be arbitrarily small, we draw the same conclusion for ‖s̃‖W 1,1([0,T ],R3), then for ‖J̃(t)−1 −
J(t)−1‖C0([0,T ],M(3)) and finally for ‖χ̃‖L1([0,T ],R3). We infer that ‖Q − Id‖W 1,1([0,T ],M(3)), the
solution to the Cauchy problem ∂tQt = Qtχ̃(t) with initial data Qt=0 = Id is arbitrarily small as

well. Then we set Θ?t = Q(t)Θ̃†t . At this point, Θ? satisfies (1.2) but ϑ?t (for t ∈ [0, T ]) is unlikely
in D1

0(R3) (because Θ?(x)→ Q(t)(x− s̃(t)) 6= x as ‖x‖R3 → +∞). Notice however that for every
smooth compactly supported function ξ : R3 → R, the quantity ‖ξ(ϑ?−ϑ)‖W 1,1([0,T ],D1

0(R3)) can be

made small. Let Ω and Ω′ be large balls such that
⋃
t∈[0,T ]Θ

?
t (B̄) ⊂ Ω and Ω̄ ⊂ Ω′ and define ξ as a

cut-off function valued in [0, 1] and such that ξ = 1 in Ω and ξ = 0 in R3\Ω̄′. To complete the proof,
define Θ̄ as the flow associated with the Cauchy problem Ẋ(t, x) = ξ(x)∂tϑ

?
t (x)+(1− ξ(x))∂tϑt(x),

X(0, x) = Θt=0(x). Indeed, ‖ϑ − ϑ̄‖W 1,1([0,T ],D1
0(R3)) goes to 0 as ‖ξ(∂tϑ?t − ∂tϑ)‖L1([0,T ],C1

0 (R3)3)

goes to 0.

Appendix C. Stokes Problem and Change of Variables.

C.1. Well-posedness of the Stokes problem in an exterior domain. The following
results that can be found in [7]:

Theorem C.1. Let Σ be connected an Lipschitz continuous. Then, for any (f , g,h) ∈
(W−1

0 (F))3 × L2(F) × (H1/2(Σ))3, there exists a unique pair (u, p) ∈ (W 1
0 (F))3 × L2(F) such

that:

−∆u +∇p = f in F , (C.1a)

∇ · u = g in F , (C.1b)

u = h on Σ. (C.1c)

The solution has to be understood in the weak sense, namely:∫
F
∇u : ∇v dx−

∫
F
p∇ · v) dx = 〈f ,v〉

(W−1
0 )3×(

◦
W 1

0 )3
, ∀v ∈ (

◦
W 1

0 (F))3, (C.2a)

∇ · u = g in F , (C.2b)

γΣ(u) = h on Σ. (C.2c)

Besides, there exists a constant CF > 0 (depending on F only) such that:

‖u‖(W 1
0 (F))3 + ‖p‖L2(F) ≤ CF [‖f‖(W−1

0 (F))3 + ‖g‖L2(F) + ‖h‖(H1/2(Σ))3 ].

C.2. Change of variables. We denote, for all ξ ∈ D1
0(B̄,R3), Υ := Id + ξ, Jξ := det(∇Υ )

and we define the matrices Aξ := (∇Υ ∗∇Υ )−1Jξ and Bξ := (∇Υ ∗)−1Jξ.
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Proposition C.2. If Σ is Lipschitz continuous, for all ξ ∈ D1
0(B̄,R3) and for all (f , g,h) ∈

(W−1
0 (F))3 × L2(F)× (H1/2(F))3 the following problem:∫
F
∇UξAξ : ∇V dx−

∫
F
PξBξ : ∇V dx = 〈f ,V〉

(W−1
0 )3×(

◦
W 1

0 )3
, ∀V ∈ (

◦
W 1

0 (F))3, (C.3a)

Bξ : ∇Uξ = g in F , (C.3b)

γΣ(Uξ) = h on Σ, (C.3c)

admits a unique solution (Uξ, Pξ) ∈ (W 1
0 (F))3×L2(F). Moreover, there exists a constant Cξ(F) >

0 depending on F and ξ only such that:

‖Uξ‖(W 1
0 (F))3 + ‖Pξ‖L2(F) ≤ Cξ(F)[‖f‖(W−1

0 (F))3 + ‖g‖L2(F) + ‖h‖(H1/2(Σ))3 ].

Proof. Let us introduce Fξ := Υ (F), Σξ := Υ (Σ), gξ := g ◦ Υ−1/(Jξ ◦ Υ−1) and hξ := h ◦ Υ−1.
We denote by fξ the distribution in (W−1

0 (Fξ))−1 defined by

〈fξ, ϕ〉
(W−1

0 (Fξ))3×(
◦
W 1

0 (Fξ))3
:= 〈f , ϕ ◦ Υ 〉

(W−1
0 (F))3×(

◦
W 1

0 (F))3
, ∀ϕ ∈

◦
W 1

0 (F))3.

This definition makes sense because there exist two constants αi(ξ) > 0 (i = 1, 2) such that
α1(ξ)‖ϕ‖(W 1

0 (Fξ))3 ≤ ‖ϕ ◦ Υ‖(W 1
0 (F))3 ≤ α2(ξ)‖ϕ‖(W 1

0 (Fξ))3 for all ϕ ∈ (W 1
0 (Fξ))3. Notice that

when f is regular enough (i.e. can be identified with a function of (L1
loc(F))3) then we get merely

fξ := f ◦ Υ−1/(Jξ ◦ Υ−1). It is easy to check that, according to the properties of ξ, the following
mapping is a bicontinuous isomorphism:

Rξ : (W−1
0 (F))3 × L2(F)× (H1/2(F))3→ (W−1

0 (Fξ))3 × L2(Fξ)× (H1/2(Fξ))3

(f , g,h) 7→ (fξ, gξ,hξ),
.

Denote (uξ, pξ) = Sξ(fξ, gξ,hξ) the unique solution to the Stokes problem (C.2) in Fξ. The op-
erator Sξ is hence a bicontinuous isomorphism mapping (W−1

0 (F))3 × L2(F) × (H1/2(F))3 onto
(W 1

0 (Fξ))3 × L2(Fξ). The following operator is a bicontinuous isomorphism as well:

Hξ : (W 1
0 (Fξ))3 × L2(Fξ) → (W 1

0 (F))3 × L2(F)
(v, q) 7→ (V, Q) = (v ◦ Υ, q ◦ Υ ).

The solution to problem (C.3) is provided by the operator Tξ := Hξ ◦ Sξ ◦ Rξ and the following
diagram commutes:

(f , g,h)
Tξ //

Rξ

��

(Uξ, Pξ)

(fξ, gξ,hξ)
Sξ // (uξ, pξ)

Hξ

OO

The proof is then completed.
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