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 to solve both problems.

Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so that the data in each subset share some common trait. Proximity is determined according to some distance measure. For a thorough introduction to the subject, we refer to the book by [START_REF] Kaufman | Finding Groups in Data: an Introduction to Cluster Analysis[END_REF]. The origin of clustering goes back to 45 years ago, when some biologists and sociologists began to search for automatics methods to build dierent groups with their data. Today, clustering is used in many elds. For example, in medical imaging, it can be used to dierentiate between types of tissue and blood in a three dimensional image. Market researchers use it to partition the general population of consumers into market segments and to better understand the relationships between dierent groups of consumers/potential customers. There are also many dierent applications in articial intelligence, sociology, medical research, or political sciences.

The K-means clustering is the most popular method [START_REF] Hartigan | A k-means clustering algorithm[END_REF]Wong, 1979, MacQueen, 1967]. Its attractiveness lies in its symplicity and its fast execution. It has however two main drawbacks. On the one hand, the number of clusters K has to be supplied by the user. Thus, dierent ways to determine K have been studied in the litterature [START_REF] Li | Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters[END_REF][START_REF] Pham | Selection of K in K-means clustering[END_REF]. On the other hand, the algorithm strongly depends on the initialisation and can easily converge to a local minimum. [START_REF] Pelleg | X-means: Extending k-means with ecient estimation of the number of clusters[END_REF] oer a solution for the rst problem with a building-block algorithm called X-means which quickly estimates K. After each run of 2-means, local decisions are done whether subsets of the current centroid should be splitted or not. The splitting decision is done by computing the Bayesian Information Criterion (BIC). In a dierent approach, [START_REF] Laloë | L 1 quantizationand clustering in banach spaces[END_REF] proposes a consistent algorithm, called Alter, which also needs the specication of K.

The purpose of this paper is to combine the X-means and the Alter algorithm in order to overcome the drawbacks of both algorithms. The complexity of the Alter algorithm decreases and an automatic selection of the number of clusters simultaneously performed. Moreover, the convergence properties of the Alter algorithm will overcome the local optimality problem of the Xmeans algorithm, inherited from the K-means one.

The paper is organized as follows: in the rst section the dierent algorithms are presented. Performances of X-Alter, X-means and other methods are compared in the second section.

Methodology

The Alter algorithm Let us detail the Alter algorithm. All the theoretical results presented in this section come from [START_REF] Laloë | L 1 quantizationand clustering in banach spaces[END_REF]. The method is based on quantization.

It is a commonly used technique in signal compression [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]Luschgy, 2000, Linder, 2002].

Consider (H, . ) a normed space. We let X be a H-valued random variable with distribution µ such as E X < ∞.

Given a set C of points in H k , any Borel function q : H → C is called a quantizer. The set C is called a codebook, and the error made by replacing X by q(X) is measured by the distortion:

D(µ, q) = E d(X, q(X)) = H x -q(x) µ(dx).
Note that D(µ, q) < ∞ since E X < ∞. For a given k, the aim is to minimize D(µ, .) among the set Q k of all possible k-quantizers. The optimal distortion is then dened by

D * k (µ) = inf q∈Q k D(µ, q).
When it exists, a quantizer q * satisfying D(µ, q * ) = D * k (µ) is said to be an optimal quantizer.

From [START_REF] Laloë | L 1 quantizationand clustering in banach spaces[END_REF] we know that we can consider only nearest neighbor quantizers. That is a quantizer q will be characterized by its codebook C = {y i } k i=1 and the rule

q(x) = y i ⇐⇒ ∀1 ≤ j ≤ k, j = i, x -y i ≤ x -y j .
Thus, a quantizer can be dened by its codebook only. Moreover the aim is to minimize the distortion among all possible nearest neighbor quantizers.

However, in practice, the distribution µ of the observations is unknown, and we only have at hand n independent observations X 1 , . . . , X n with the same distribution than X. The goal is then to minimize the empirical distortion:

1 n n i=1 d(X i , q(X i )).
We choose here the L 1 -based distortion to obtain more robust estimators (see [START_REF] Kemperman | The median of a nite measure on a Banach space[END_REF] for a discussion on this fact). Then, clustering is done by regrouping the observations that have the same image by q. More precisely, we dene a cluster C by C = {X i : q(X i ) = xC }, xC being the representant of cluster C.

Theoritical results of consistency and rate of convergence have been proved in [START_REF] Laloë | L 1 quantizationand clustering in banach spaces[END_REF]. In particular, it is stated that the rate of convergence is closely related to the metric entropy. However, the minimization of the empirical distortion is not possible in practice and an alternative proposed in Laloë

[2010] is to perform the Alter algorithm.

The idea is to select an optimal codebook among the data set. More precisely the outline of the algoritm is:

1. List all possible codebooks , i.e., all possible K-tuples of data;

2. Compute the empirical distortion associated to the rst codebook.

Each observation X i is associated with its closed center;

3. For each successive codebook, compute the associated empirical distortion. Each time a codebook has an associated empirical distortion smaller than the previous smallest one, store the codebook;

4. Return the codebook that has the smallest distortion.

Again, theoritical results of consistency and rate of convergence have been proved for the Alter algorithm. In particular it is stated that the convergence rate is of the same order than the theoretical method described above.

Moreover, this algorithm does not depend on initial conditions (unlike the Kmeans algorithm) and it converges to the optimal distortion. Unfortunately its complexity is O(n K+1 ) and it is impossible to use it for high values of n or K.

The X-Means algorithm

In a dierent approach, [START_REF] Pelleg | X-means: Extending k-means with ecient estimation of the number of clusters[END_REF] dene the X-means algorithm which is adapted from K-means one. It goes into action after each run of K-means, making local decisions about which subset of the current centers should split themselves in order to better t the data. The splitting decision is done by computing the BIC criterion. This new approach proposes an ecient solution to one major drawbacks of K-means : the search of the number of clusters K. Moreover, X-means has a low computational cost. But results suer from the non-convergence property of the K-means algorithm. The outline of this algorithm is :

1. Perform 2-means. This gives us clustering C;

2. Evaluate the relevance of the classication C with a BIC Criterion;

3. Iterate step one and two in each cell of C. Keep going until there is no more relevant discrimination.

The X-Alter Algorithm Following the idea of X-means, a recursive use of Alter with K = 2 can simultaneously allow us to combine both advantages of these two methods : estimation of K/low computational cost for X-means and convergence/parameterfree character for Alter. We also add an aggregation step at the end of our algorithm to prevent the creation of too many clusters.

Note that no parameter is needed by the algorithm. Though, the user can specify a range in which the true K reasonably lies if he wishes to (this is [2, +∞[ if one had no information).

More precisely, the outline of the algorithm is the following:

1. Perform Alter with K = 2. This gives us clustering C;

2. Evaluate the relevance of the classication C (Figure 1) with a BIC Criterion;

3. Iterate step one and two in each cell of C (Figure 2). Keep going until there is no more relevant discrimination (Figure 3); 4. Final step of aggregation: aggregation can be considered if BIC(K = 1) > BIC(K = 2). The aggregations are successively made according to the decreasing values of BIC(K = 1) -BIC(K = 2) (Figure 4).

The algorithm starts by performing Alter with K = 2 centers. At this point, a model selection criterion (BIC, detailed below) is performed on all the data set. Using this criterion, we check the suitability of the discrimination by comparing BIC(K = 1) and BIC(K = 2). In another way, the criterion asks if the model with the two clusters is better than the one with only one.

If the answer is yes, the iterative procedure occurs in the two subsets.

The structure improvement operation begins by splitting each cluster into two subsets. The procedure is local on that the children are ghting each other for the points in the parent's region, no others. When the discrimination is not validated by BIC criterion, the algorithm ends in this region.

Up to there, the only dierence with X-means is that we use Alter instead of 2-means because the consistent property of Alter must improve results.

Finally, when all regions are asleep and no more clusters are needed, the aggregative step starts to prevent the creation of too many clusters or the presence of splitted clusters (as in Figure 2).

The complexity of this algorithm in the worst case scenario (that is when it creates n clusters with one data set) is O(n 4 ), which is less than the inital Alter algorithm. However, the computational cost is still higher than for X-means. For several thousand points, this complexity is not an important practical concern. But, if the database exceeds several tens of thousand points, it could still be too high.

The BIC criterion

We use here the same criterion than Pelleg and Moore Pelleg and Moore [2000], that is the formula from [START_REF] Kass | A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion[END_REF]. It evaluates the relevance of the classication C with

BIC(C) = l - p 2 log n
where l is the log-likelihood of the data according to the clustering C and taken at the maximum likelihood point, and p is the number of parameters in C. The number of free parameters p is simply the sum of K -1 class probabilities, d * K centroids coordinates, and one variance estimate. Note that we suppose here that in each cluster, the data are normally distributed around the center. We will see in the empirical study that it performs well on real data. 

Empirical results

In this section, an empirical study is performed to show the relevance of our method. We confront our method to various simulated data sets, but also on classical real data sets. We consider three criterion: the number of detected clusters, the Adjusted Rand Index (A.R.I.) [Rand, 1971, Hubert and[START_REF] Hubert | Comparing partitions[END_REF] and the Dunn index [START_REF] Dunn | Well separated clusters and fuzzy partitions[END_REF][START_REF] Handl | Computational cluster validation in postgenomic data analysis[END_REF]. The Rand Index is a measure of the similarity between two clusters. A problem with the Rand index is that the expected value of the Rand index of two random partitions does not take a constant value (say zero). So, [START_REF] Hubert | Comparing partitions[END_REF] dened the A.R.I. which is the corrected-for-chance version of the Rand index. Studies have shown the need and usefulness of the adjusted measures [START_REF] Nguyen | Information theoretic measures for clustering comparison: Is a correction for chance necessary ? ICML'09[END_REF]. More clusters are similars (respectively dissimilars), closer to 1 (respectively 0) the A.R.I. is. On another way, the Dunn Index measures the compactness of the clusters and is a sort of the worst case indicator. The goal is to identify sets of clusters that are compact, with a small variance between individuals in the same cluster, and well separated, where the centers of dierent clusters are suciently far apart, as compared to the within cluster variance. Higher is the Dunn Index, better the clustering is. For more details on this classical cluster validation indexes we refer the reader to [START_REF] Dunn | Well separated clusters and fuzzy partitions[END_REF] or [START_REF] Handl | Computational cluster validation in postgenomic data analysis[END_REF].

Pelleg and Moore show that X-means performs better and faster than repeateadly using accelerated K-means for dierent values of K. So, we compare our X-Alter algorithm to X-means and to X-means with the aggregation step, called X-means-R. That is we obtain a clustering using X-means and we compute the aggregation procedure (Step 4 on Section ) on this clustering. It allows us to assess the usefulness and the computational time of the aggregation step.

Simulated data A simple case

We simulate here clusters of gaussian vectors in R d . First, in Table 1 we consider two clusters well identied in R 20 . More precisely we simulate two clusters of 25 vectors (in R 20 ) with µ 1 = -µ 2 = 15 and σ 2 1 = σ 2 2 = 100. That is the covariance matrices are given by Σ 2 = 100I 20 where I 20 is the identity 20 * 20 matrix and the mean vectors by

M 1 = -M 2 = 15      1 1 . . . 1     
. So, we have X 1 , . . . , X 25 ∼ N (M 1 , Σ) and X 25 , . . . , X 50 ∼ N (M 2 , Σ). The results are averaged on 300 simulations. As expected, we note that the three methods perform well on this very simple case.

Now we consider three simulated clusters well identied in R 5 . This allows us to see the relevance of the aggregation step, as X-means will often cut the middle cluster in its rst iteration. More precisely we simulate two clusters of 20 vectors (in R 5 ) with µ 1 = -µ 2 = 20 and σ 2 1 = σ 2 2 = 100; and one cluster of 20 vectors with µ 3 = 0 and σ 2 3 = 100. The results are averaged on 300 simulations and gathered in Table 2. We see here the inuence of the aggregation step, since X-means-R nd the good number of cluster almost fourty percent time more often than X-means.

Moreover, we note that our algorithm obtains better results than the other two: the inherited convergence property of Alter clearly improves the result.

Finally we perform tests with random values for the numbers of clusters, the mean, standard deviation and number of data in each clusters. The µ i are randomly selected between -50 and 50, the σ i between 5 and 15, the number of clusters between 2 and 10, the number of vectors in each cluster between 8 and 25. The dimension of the data is xed to 10. Table 3 summaries the results averaged on 300 simulations. 

Functional case

Now we want to consider functional data. Here, we must also compare computing times. When the dimension is smaller (as in the previous examples), these CPU time were sensibly the same. We consider two congurations:

First, we take functions √ x+cos(10x+π/2-10)/5, x+cos(10x+π/2-10)/5 and x 2 + cos(10x + π/2 -10)/5 in [0, 1] discretized 20 times. The term cos(10x + π/2 -10)/5 is added to disturb functions √ x, x and x 2 . Each data in R 20 is noised with a vector composed by twenty gaussian law N (0, σ) where the value of σ is selected for each data using σ ∼ N (0.1, 0.02). Figure 5 shows examples of some of the functions that we want to classify. Three clusters of size randomly chosen between 15 and 25 are simulated 300 times.

Results are presented in Table 4 (time is given in seconds). We can see that our method gives better results, mostly on the search of the number of clusters. Second, we consider a slightly more dicult case. We construct this conguration on the same model than the rst, but based on functions √

x, x 3/4 and x which are closer than previous ones as we can see in Figure 6.

Results are gathered in Table 5. 

√

x are on dashed lines, ones based on x are on solid lines and ones based on x 3/4 are on dotted lines.

In this paragraph, we illustrate the robustness properties of the L 1 distance.

We consider as a starting point the rst functionnal conguration above used in Figure 5. To obtain noisy data we use the following protocol : we add a value x ∈ [-0.30; -0.15] ∪ [0.15; 0.30] to a ∈ [10; 25] percent of points (randomly chosen) of b ∈ [10; 25] percent of data (randomly chosen). An example is given in Figure 7. We repeat this 300 times and give averaged results in Table 6. The relevance of the L 1 -based distance error, which is much more robust to extrem values, is shown here. Indeed, if we compare to the results gathered in Table 4 we still nd the correct number of clusters 95% of the time while X-means and X-means-R do not (a loss of respectively 4% and 6%).

Real data

In this section, we confront our method to two conventional data sets from the UCI Machine Learning Repository [START_REF] Frank | UCI machine learning repository[END_REF]: the wine and iris ones. In this case, we do not know if the spherical gaussian assumption of the BIC criterion is veried. So it is an important test to make sure that this hypothesis is reasonable. We compare our method to the X-means algorithm but also to the K-means algorithm with K known to be 3 (the real number of clusters here). So, 3-means have a signicant advantage over others methods by knowing the number of clusters. In these two real cases, as suggested in the description of the data sets, we center and standardize each variable before performing clustering.

Since K-means, X-means and X-means-R depends on the initialisation, we give averaged results (over 50 runnings) for these methods.

Wine data set

We consider rst the wine data set. We have 178 instances and 13 variables found in each of the three types of wines. These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three dierent cultivars. In a classication context, this is a well posed problem with "well behaved" class structures. The results for the 4 methods are presented in Table 7. We can see that our method retrieves the real number of clusters, and that we get the same adjusted rand index than 3-means and slighty less than the 2 others. On the other hand, we do not have a good Dunn Index because one extreme instance is bad classied. We can also compare X-Alter to other methods used on this data set and listed on the UCI Machine Learning [START_REF] Frank | UCI machine learning repository[END_REF]. For example, we better estimate the number of clusters than [START_REF] Dy | Feature selection for unsupervised learning[END_REF] with their dierent methods.

Iris data set

We consider now the Iris data set. We have 150 instances and 4 variables of 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other two; the latter are not linearly separable from each other which makes it more dicult to classify.

The results are gathered in Table 8.

It appears that our method do not nd the real number of clusters but gets closer to it than others. While Adjusted Rand Index were previously very close for all methods, X-Alter is here signicantly better and can not be improved. Indeed, as we consider here the Adjusted Rand Index (and not [START_REF] Dy | Feature selection for unsupervised learning[END_REF], the estimation of the number of clusters is slighty better but, as discussed above, the quality of our clustering seems (as we don't use the same criterions) to be better. Moreover, we observe the interest of the aggregation step in X-means-R and it seems to appear that the spherical gaussian assumption required for the BIC is acceptable and that X-Alter can be used with every data set.

Finally, we see that in all cases (simulated or real data sets) our method performs better than others to estimate the number of clusters. This conrms that we avoid the local convergence of X-means, which is inherited from Kmeans. Furthermore, according to Adjusted Rand Index and to Dunn Index, quality of clustering is either equal or signicantly better than other methods.

Conclusion

We have presented a simple new algorithm to perform clustering. The main advantage of this method is that it is parameter-free. So, it can be easily used without an expertise knowledge of the data. This algorithm combines

Alter and X-means algorithm in order to benet of qualities of both (respectively the convergence and the automatic selection of the number of clusters). Moreover, we avoid the main drawbacks of these two methods :

the high complexity for Alter and the dependence on initials conditions for X-means. A confrontation on both simulated and real data sets shows the relevance of this method. However, even if the complexity decreases (with respect to the Alter algorithm) it is still too important for the method to be applied on really big data sets. A possible way to overcome this problem could be the utilisation of Alter-Fast algorithm [START_REF] Laloë | L 1 quantizationand clustering in banach spaces[END_REF] instead of Alter.
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 1 Figure 1: First iteration of X-Alter. The discrimination in 2 clusters (Step 1) is validated by BIC criterion (Step 2). In each cluster, observations are represented by a dierent symbol.

Figure 2 :

 2 Figure 2: Second iteration of X-Alter: the sub-classication is done in the two relevant clusters (Step 1). Sub-classications are validated by BIC (Step 2) so we obtain four clusters.

Figure 3 :

 3 Figure 3: No relevant sub-classication in the left cluster according to BIC. In the three other clusters, we obtain the same rejection of sub-classication (Step 3).

Figure 4 :

 4 Figure 4: Final discrimination. The two middle clusters have been aggregated in Step 4.
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 5 Figure 5: Example of functions. Functions based on√x are on dashed lines, ones based on x are on solid lines and ones based on x 2 are on dotted lines.

Figure 7 :

 7 Figure 7: Example of the results of the pertubation of√x + cos(10x + π/2 -10)/5. Aected functions are on dashed lines.

Table 1 :

 1 Results of the three algorithms for the two well-dened clusters.

	Algorithm	% of correct number of clusters A.R.I. Dunn Index
	X-means	99	1	1.62
	X-means-R	100	1	1.64
	X-Alter	100	1	1.64

Table 2 :

 2 Results for the three algorithms on the three clusters.

	Algorithm	% of correct number of clusters A.R.I. Dunn Index
	X-means	55	0.82	0.22
	X-means-R	76	0.82	0.22
	X-Alter	86	0.84	0.22

Table 3 :

 3 Results for the three algorithms on the random clusters.

	Algorithm	% of correct number of clusters A.R.I. Dunn Index
	X-means	63	0.96	0.60
	X-means-R	71	0.97	0.60
	X-Alter	91	0.96	0.59
	Again, we see that our algorithm obtains better results than the other two
	for the estimated number of clusters and that A.R.I. and Dunn Index are
	slightly the same.		

Table 4 :

 4 Results for the three algorithms on the functionnal data.

	Algorithm	% of correct number of clusters A.R.I. Dunn Time
	X-means	81	0.88	0.63	2.0
	X-means-R	85	0.88	0.63	3.5
	X-Alter	95	0.89	0.63	27.6

Table 5 :

 5 Results for the three algorithms on the functionnal data.

	Algorithm	% of correct number of clusters A.R.I. Dunn Time
	X-means	26	0.75	0.43	2.4
	X-means-R	31	0.75	0.46	3.2
	X-Alter	40	0.77	0.46	28.7
	Again, we see that our method retrieves more often the correct number of
	clusters. Note that if the complexity of our algorithm is larger than the X-
	means one, it is still much smaller than the Alter one. Moreover Alter does
	not estimate the number of clusters.			
	Robustness study			

Figure 6: Example of functions. Functions based on

Table 6 :

 6 Results for the three algorithms on the perturbated functionnal

	data sets.				
	Algorithm	% of correct number of clusters A.R.I. Dunn Time
	X-means	77	0.87	0.52	2.6
	X-means-R	79	0.87	0.52	3.8
	X-Alter	95	0.88	0.53	29.4

Table 7 :

 7 Results for the wine data set.

	Algorithm	Number of clusters	A.R.I.	Dunn	
	X-means	8.67 (var=6.92)	0.78 (var=0.03)	0.162 (var=2.10	-4 )
	X-means-R	8.54 (var=6.01)	0.78 (var=0.03)	0.165 (var=10	-4 )
	3-means	-	0.76 (var=0.03)	0.163 (var=0.0002)
	X-Alter	3	0.76	0.142	

Table 8 :

 8 Results for Iris data set. , it does not mean that our classication is perfect. However the high value of the A.R.I. informs us that the great majority of iris plant are well-classied, the 3 additional clusters are in fact very small and do not aect the A.R.I and the global quality of the obtained clustering. In Dy

	Algorithm	Number of clusters	A.R.I.	Dunn	
	X-means	13.7 (var=6.2)	0.46 (var=0.07)	0.0405 (var=6.10	-5 )
	X-means-R	8 (var=1.56)	0.57 (var=0.03)	0.0398 (var=0)
	3-means	-	0.46 (var=0.0036)	0.04 (var=0)	
	X-Alter	6	1	0.402	
	the Rand Index)			

Alter-Fast runs several times Alter in several randomly chosen partitions of the data set. It can help to save computational time but lose eciency. So as a future work, it could be interesting to look for another way to accelerate Alter while preserving (as much as possible) its properties of convergence.