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Abstract

Using quantization techniques, Laloé (2010) defined a new clus-
tering algorithm called Alter. This L!-based algorithm is proved to
be convergent, but suffers two major flaws. The number of clusters
K has to be supplied by the user and the computational cost is high.
In this article, we adapt the X-means algorithm [Pelleg and Moore,
2000] to solve both problems.
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Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so
that the data in each subset share some common trait. Proximity is deter-
mined according to some distance measure. For a thorough introduction to
the subject, we refer to the book by Kaufman and Rousseeuw [1990]. The
origin of clustering goes back to 45 years ago, when some biologists and so-
ciologists began to search for automatics methods to build different groups
with their data. Today, clustering is used in many fields. For example, in
medical imaging, it can be used to differentiate between types of tissue and
blood in a three dimensional image. Market researchers use it to partition
the general population of consumers into market segments and to better un-
derstand the relationships between different groups of consumers/potential
customers. There are also many different applications in artificial intelli-
gence, sociology, medical research, or political sciences.

The K-means clustering is the most popular method [Hartigan and Wong,
1979, MacQueen, 1967|. Its attractiveness lies in its symplicity and its fast
execution. It has however two main drawbacks. On the one hand, the num-
ber of clusters K has to be supplied by the user. Thus, different ways to
determine K have been studied in the litterature [Li et al, 2008, Pham et al,
2005]. On the other hand, the algorithm strongly depends on the initialisa-
tion and can easily converge to a local minimum. Pelleg and Moore [2000]
offer a solution for the first problem with a building-block algorithm called
X-means which quickly estimates K. After each run of 2-means, local deci-
sions are done whether subsets of the current centroid should be splitted or
not. The splitting decision is done by computing the Bayesian Information
Criterion (BIC). In a different approach, Laloé [2010]| proposes a consistent
algorithm, called Alter, which also needs the specification of K.

The purpose of this paper is to combine the X-means and the Alter algorithm
in order to overcome the drawbacks of both algorithms. The complexity of
the Alter algorithm decreases and an automatic selection of the number of
clusters simultaneously performed. Moreover, the convergence properties of
the Alter algorithm will overcome the local optimality problem of the X-
means algorithm, inherited from the K-means one.

The paper is organized as follows: in the first section the different algorithms
are presented. Performances of X-Alter, X-means and other methods are
compared in the second section.



Methodology

The Alter algorithm

Let us detail the Alter algorithm. All the theoretical results presented in
this section come from Laloé [2010]. The method is based on quantization.
It is a commonly used technique in signal compression [Graf and Luschgy,
2000, Linder, 2002].

Consider (H, ||.||) a normed space. We let X be a H-valued random variable
with distribution p such as E|| X || < oco.

Given a set C of points in H*, any Borel function ¢ : H — C is called a
quantizer. The set C is called a codebook, and the error made by replacing
X by ¢(X) is measured by the distortion:

D(p,q) = Ed(X, q(X)) = /H [ = gq()]| p(de).

Note that D(u,q) < oo since E||X|| < oco. For a given k, the aim is to
minimize D(u,.) among the set Qf of all possible k-quantizers. The optimal
distortion is then defined by

Diy(u) = nf Dlu,q).

When it exists, a quantizer ¢* satisfying D(u, ¢*) = Dj(u) is said to be an
optimal quantizer.

From Laloé [2010] we know that we can consider only nearest neighbor quan-
tizers. That is a quantizer ¢ will be characterized by its codebook C = {yi}le
and the rule

qz) =y = V1<j<kj#ilz—ul<|le—yl.

Thus, a quantizer can be defined by its codebook only. Moreover the aim is
to minimize the distortion among all possible nearest neighbor quantizers.

However, in practice, the distribution p of the observations is unknown, and

we only have at hand n independent observations X1, ..., X, with the same
distribution than X. The goal is then to minimize the empirical distortion:

%Zd(XiaQ(Xi))'
i=1
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We choose here the L'-based distortion to obtain more robust estimators
(see Kemperman [1987] for a discussion on this fact). Then, clustering is
done by regrouping the observations that have the same image by ¢q. More
precisely, we define a cluster C by C = {X; : ¢(X;) = Z¢}, Z¢ being the
representant of cluster C.

Theoritical results of consistency and rate of convergence have been proved in
Laloé [2010]. In particular, it is stated that the rate of convergence is closely
related to the metric entropy. However, the minimization of the empirical
distortion is not possible in practice and an alternative proposed in Laloé
[2010] is to perform the Alter algorithm.

The idea is to select an optimal codebook among the data set. More precisely
the outline of the algoritm is:

1. List all possible codebooks , i.e., all possible K-tuples of data;

2. Compute the empirical distortion associated to the first codebook.
Each observation X; is associated with its closed center;

3. For each successive codebook, compute the associated empirical dis-
tortion. Each time a codebook has an associated empirical distortion
smaller than the previous smallest one, store the codebook;

4. Return the codebook that has the smallest distortion.

Again, theoritical results of consistency and rate of convergence have been
proved for the Alter algorithm. In particular it is stated that the conver-
gence rate is of the same order than the theoretical method described above.
Moreover, this algorithm does not depend on initial conditions (unlike the K-
means algorithm) and it converges to the optimal distortion. Unfortunately
its complexity is O(n®*1) and it is impossible to use it for high values of n
or K.

The X-Means algorithm

In a different approach, Pelleg and Moore [2000] define the X-means algo-
rithm which is adapted from K-means one. It goes into action after each
run of K-means, making local decisions about which subset of the current
centers should split themselves in order to better fit the data. The splitting
decision is done by computing the BIC criterion. This new approach pro-
poses an efficient solution to one major drawbacks of K-means : the search
of the number of clusters K. Moreover, X-means has a low computational



cost. But results suffer from the non-convergence property of the K-means
algorithm. The outline of this algorithm is :

1. Perform 2-means. This gives us clustering C
2. Evaluate the relevance of the classification C' with a BIC Criterion;

3. Iterate step one and two in each cell of C. Keep going until there is
no more relevant discrimination.

The X-Alter Algorithm

Following the idea of X-means, a recursive use of Alter with K = 2 can simul-
taneously allow us to combine both advantages of these two methods : esti-
mation of K /low computational cost for X-means and convergence/parameter-
free character for Alter. We also add an aggregation step at the end of our
algorithm to prevent the creation of too many clusters.

Note that no parameter is needed by the algorithm. Though, the user can
specify a range in which the true K reasonably lies if he wishes to (this is
[2, 4+00] if one had no information).

More precisely, the outline of the algorithm is the following:

1. Perform Alter with K = 2. This gives us clustering C;

2. Evaluate the relevance of the classification C (Figure 1) with a BIC
Criterion;

3. Tterate step one and two in each cell of C (Figure 2). Keep going until
there is no more relevant discrimination (Figure 3);

4. Final step of aggregation: aggregation can be considered if BIC(K =
1) > BIC(K = 2). The aggregations are successively made according
to the decreasing values of BIC(K = 1) — BIC(K = 2) (Figure 4).

The algorithm starts by performing Alter with K = 2 centers. At this point,
a model selection criterion (BIC, detailed below) is performed on all the data
set. Using this criterion, we check the suitability of the discrimination by
comparing BIC(K = 1) and BIC(K = 2). In another way, the criterion
asks if the model with the two clusters is better than the one with only one.
If the answer is yes, the iterative procedure occurs in the two subsets.



The structure improvement operation begins by splitting each cluster into
two subsets. The procedure is local on that the children are fighting each
other for the points in the parent’s region, no others. When the discrimi-
nation is not validated by BIC criterion, the algorithm ends in this region.
Up to there, the only difference with X-means is that we use Alter instead
of 2-means because the consistent property of Alter must improve results.
Finally, when all regions are asleep and no more clusters are needed, the
aggregative step starts to prevent the creation of too many clusters or the
presence of splitted clusters (as in Figure 2).

The complexity of this algorithm in the worst case scenario (that is when it
creates n clusters with one data set) is O(n?*), which is less than the inital
Alter algorithm. However, the computational cost is still higher than for
X-means. For several thousand points, this complexity is not an important
practical concern. But, if the database exceeds several tens of thousand
points, it could still be too high.

The BIC criterion

We use here the same criterion than Pelleg and Moore Pelleg and Moore
[2000], that is the formula from Kass and Wasserman [1995]. It evaluates
the relevance of the classification C' with

BIC(C) =1 - glogn

where [ is the log-likelihood of the data according to the clustering C' and
taken at the maximum likelihood point, and p is the number of parameters
in C. The number of free parameters p is simply the sum of K — 1 class
probabilities, d x« K centroids coordinates, and one variance estimate. Note
that we suppose here that in each cluster, the data are normally distributed
around the center. We will see in the empirical study that it performs well
on real data.
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Figure 1: First iteration of X-Alter. The discrimination in 2 clusters (Step

1) is validated by BIC criterion (Step 2). In each cluster, observations are
represented by a different symbol.
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Figure 2: Second iteration of X-Alter: the sub-classification is done in the
two relevant clusters (Step 1). Sub-classifications are validated by BIC (Step
2) so we obtain four clusters.
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Figure 3: No relevant sub-classification in the left cluster according to BIC.
In the three other clusters, we obtain the same rejection of sub-classification
(Step 3).
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Figure 4: Final discrimination. The two middle clusters have been aggre-
gated in Step 4.
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FEmpirical results

In this section, an empirical study is performed to show the relevance of our
method. We confront our method to various simulated data sets, but also on
classical real data sets. We consider three criterion: the number of detected
clusters, the Adjusted Rand Index (A.R.L.) [Rand, 1971, Hubert and Arabie,
1985] and the Dunn index |Dunn, 1974, Handl et al, 2005|. The Rand Index
is a measure of the similarity between two clusters. A problem with the Rand
index is that the expected value of the Rand index of two random partitions
does not take a constant value (say zero). So, Hubert and Arabie [1985]
defined the A.R.I. which is the corrected-for-chance version of the Rand in-
dex. Studies have shown the need and usefulness of the adjusted measures
[Nguyen et al, 2009]. More clusters are similars (respectively dissimilars),
closer to 1 (respectively 0) the A.R.I. is. On another way, the Dunn Index
measures the “compactness” of the clusters and is a sort of the worst case
indicator. The goal is to identify sets of clusters that are compact, with a
small variance between individuals in the same cluster, and well separated,
where the centers of different clusters are sufficiently far apart, as compared
to the within cluster variance. Higher is the Dunn Index, better the cluster-
ing is. For more details on this classical cluster validation indexes we refer
the reader to Dunn [1974] or Handl et al [2005].

Pelleg and Moore show that X-means performs better and faster than re-
peateadly using accelerated K-means for different values of K. So, we com-
pare our X-Alter algorithm to X-means and to X-means with the aggrega-
tion step, called X-means-R. That is we obtain a clustering using X-means
and we compute the aggregation procedure (Step 4 on Section ) on this clus-
tering. It allows us to assess the usefulness and the computational time of
the aggregation step.

Simulated data
A simple case

We simulate here clusters of gaussian vectors in R%.

First, in Table 1 we consider two clusters well identified in R?°. More pre-
cisely we simulate two clusters of 25 vectors (in R??) with p1 = —po = 15 and
0? = 03 = 100. That is the covariance matrices are given by X2 = 1001

where Iy is the identity 20 * 20 matrix and the mean vectors by
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Mi=-My=15
1
So, we have X1q,..., Xo5 ~ N (M1,Y) and Xos,..., X50 ~ N (M3, Y). The

results are averaged on 300 simulations.

Table 1: Results of the three algorithms for the two well-defined clusters.
Algorithm % of correct number of clusters A.R.I.  Dunn Index

X-means 99 1 1.62
X-means-R 100 1 1.64
X-Alter 100 1 1.64

As expected, we note that the three methods perform well on this very sim-
ple case.

Now we consider three simulated clusters well identified in R®. This allows
us to see the relevance of the aggregation step, as X-means will often cut the
middle cluster in its first iteration. More precisely we simulate two clusters
of 20 vectors (in R®) with p1 = —ps = 20 and 02 = 02 = 100; and one
cluster of 20 vectors with p3 = 0 and 03 = 100. The results are averaged on
300 simulations and gathered in Table 2.

Table 2: Results for the three algorithms on the three clusters.
Algorithm % of correct number of clusters A.R.I.  Dunn Index

X-means 55 0.82 0.22
X-means-R 76 0.82 0.22
X-Alter 86 0.84 0.22

We see here the influence of the aggregation step, since X-means-R find the
good number of cluster almost fourty percent time more often than X-means.
Moreover, we note that our algorithm obtains better results than the other
two: the inherited convergence property of Alter clearly improves the result.

Finally we perform tests with random values for the numbers of clusters, the

mean, standard deviation and number of data in each clusters. The p; are
randomly selected between —50 and 50, the o; between 5 and 15, the number
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of clusters between 2 and 10, the number of vectors in each cluster between
8 and 25. The dimension of the data is fixed to 10. Table 3 summaries the
results averaged on 300 simulations.

Table 3: Results for the three algorithms on the random clusters.
Algorithm % of correct number of clusters A.R.I.  Dunn Index

X-means 63 0.96 0.60
X-means-R 71 0.97 0.60
X-Alter 91 0.96 0.59

Again, we see that our algorithm obtains better results than the other two
for the estimated number of clusters and that A.R.I. and Dunn Index are
slightly the same.

Functional case

Now we want to consider functional data. Here, we must also compare com-
puting times. When the dimension is smaller (as in the previous examples),
these CPU time were sensibly the same. We consider two configurations:

First, we take functions y/z+cos(10z+7/2—10)/5, z+cos(10z+m/2—10)/5
and 22 + cos(10z + 7/2 — 10)/5 in [0, 1] discretized 20 times. The term
cos(10x + 7/2 — 10)/5 is added to disturb functions \/z, x and z2. Each
data in R?? is noised with a vector composed by twenty gaussian law N (0, o)
where the value of o is selected for each data using o ~ N(0.1,0.02). Figure
5 shows examples of some of the functions that we want to classify. Three
clusters of size randomly chosen between 15 and 25 are simulated 300 times.
Results are presented in Table 4 (time is given in seconds).

Table 4: Results for the three algorithms on the functionnal data.
Algorithm % of correct number of clusters A.R.I. Dunn Time

X-means 81 0.88 0.63 2.0
X-means-R 85 0.88 0.63 3.5
X-Alter 95 0.89 0.63 276

We can see that our method gives better results, mostly on the search of the
number of clusters.
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Figure 5: Example of functions. Functions based on /z are on dashed lines,
ones based on z are on solid lines and ones based on z? are on dotted lines.

Second, we consider a slightly more difficult case. We construct this config-
uration on the same model than the first, but based on functions /z, z3/4
and x which are closer than previous ones as we can see in Figure 6.
Results are gathered in Table 5.

Table 5: Results for the three algorithms on the functionnal data.
Algorithm % of correct number of clusters A.R.I. Dunn Time

X-means 26 0.75 0.43 2.4
X-means-R 31 0.75 0.46 3.2
X-Alter 40 0.77 0.46 28.7

Again, we see that our method retrieves more often the correct number of
clusters. Note that if the complexity of our algorithm is larger than the X-
means one, it is still much smaller than the Alter one. Moreover Alter does
not estimate the number of clusters.

Robustness study

14
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Figure 6: Example of functions. Functions based on /z are on dashed lines,
ones based on z are on solid lines and ones based on z3/4 are on dotted lines.

In this paragraph, we illustrate the robustness properties of the Ly distance.
We consider as a starting point the first functionnal configuration above used
in Figure 5. To obtain noisy data we use the following protocol : we add
a value x € [—0.30; —0.15] U [0.15;0.30] to a € [10;25] percent of points
(randomly chosen) of b € [10;25] percent of data (randomly chosen). An
example is given in Figure 7. We repeat this 300 times and give averaged
results in Table 6.

Table 6: Results for the three algorithms on the perturbated functionnal

data sets.
Algorithm % of correct number of clusters A.R.I. Dunn Time

X-means 77 0.87 0.52 2.6
X-means-R 79 0.87 0.52 3.8
X-Alter 95 0.88 0.53 29.4
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Figure 7: Example of the results of the pertubation of /z + cos(10z +7/2 —
10)/5. Affected functions are on dashed lines.

The relevance of the L!-based distance error, which is much more robust to
extrem values, is shown here. Indeed, if we compare to the results gathered
in Table 4 we still find the correct number of clusters 95% of the time while
X-means and X-means-R do not (a loss of respectively 4% and 6%).

Real data

In this section, we confront our method to two conventional data sets from
the UCI Machine Learning Repository [Frank and Asuncion, 2010]: the wine
and iris ones. In this case, we do not know if the spherical gaussian assump-
tion of the BIC criterion is verified. So it is an important test to make sure
that this hypothesis is reasonable. We compare our method to the X-means
algorithm but also to the K-means algorithm with K known to be 3 (the
real number of clusters here). So, 3-means have a significant advantage over
others methods by knowing the number of clusters. In these two real cases,
as suggested in the description of the data sets, we center and standardize
each variable before performing clustering.
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Since K-means, X-means and X-means-R depends on the initialisation, we
give averaged results (over 50 runnings) for these methods.

Wine data set

We consider first the wine data set. We have 178 instances and 13 variables
found in each of the three types of wines. These data are the results of a
chemical analysis of wines grown in the same region in Italy but derived
from three different cultivars. In a classification context, this is a well posed
problem with "well behaved" class structures. The results for the 4 methods
are presented in Table 7.

Table 7: Results for the wine data set.
Algorithm  Number of clusters ARL Dunn

X-means 8.67 (var—=6.92)  0.78 (var=0.03) 0.162 (var—2.10~%)
X-means-R 854 (var=6.01)  0.78 (var=0.03)  0.165 (var=10—%)

3-means - 0.76 (var=0.03) 0.163 (var=0.0002)

X-Alter 3 0.76 0.142

We can see that our method retrieves the real number of clusters, and that
we get the same adjusted rand index than 3-means and slighty less than
the 2 others. On the other hand, we do not have a good Dunn Index be-
cause one extreme instance is bad classified. We can also compare X-Alter to
other methods used on this data set and listed on the UCI Machine Learning
[Frank and Asuncion, 2010]. For example, we better estimate the number of
clusters than Dy and Brodley [2004| with their different methods.

Iris data set

We consider now the Iris data set. We have 150 instances and 4 variables
of 3 classes of 50 instances each, where each class refers to a type of iris
plant. One class is linearly separable from the other two; the latter are not
linearly separable from each other which makes it more difficult to classify.
The results are gathered in Table 8.

It appears that our method do not find the real number of clusters but gets
closer to it than others. While Adjusted Rand Index were previously very
close for all methods, X-Alter is here significantly better and can not be
improved. Indeed, as we consider here the Adjusted Rand Index (and not
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Table 8: Results for Iris data set.

Algorithm  Number of clusters ARIL Dunn
X-means 13.7 (var=6.2) 0.46 (var=0.07)  0.0405 (var=6.10"9)

X-means-R 8 (var=1.56) 0.57 (var=0.03) 0.0398 (var=0)
3-means - 0.46 (var=0.0036) 0.04 (var=0)
X-Alter 6 1 0.402

the Rand Index), it does not mean that our classification is perfect. However
the high value of the A.R.I. informs us that the great majority of iris plant
are well-classified, the 3 additional clusters are in fact very small and do not
affect the A.R.I and the global quality of the obtained clustering. In Dy
and Brodley [2004], the estimation of the number of clusters is slighty better
but, as discussed above, the quality of our clustering seems (as we don’t use
the same criterions) to be better. Moreover, we observe the interest of the
aggregation step in X-means-R and it seems to appear that the spherical
gaussian assumption required for the BIC is acceptable and that X-Alter
can be used with every data set.

Finally, we see that in all cases (simulated or real data sets) our method per-
forms better than others to estimate the number of clusters. This confirms
that we avoid the local convergence of X-means, which is inherited from K-
means. Furthermore, according to Adjusted Rand Index and to Dunn Index,
quality of clustering is either equal or significantly better than other methods.

Conclusion

We have presented a simple new algorithm to perform clustering. The main
advantage of this method is that it is parameter-free. So, it can be easily
used without an expertise knowledge of the data. This algorithm combines
Alter and X-means algorithm in order to benefit of qualities of both (re-
spectively the convergence and the automatic selection of the number of
clusters). Moreover, we avoid the main drawbacks of these two methods :
the high complexity for Alter and the dependence on initials conditions for
X-means. A confrontation on both simulated and real data sets shows the
relevance of this method. However, even if the complexity decreases (with
respect to the Alter algorithm) it is still too important for the method to
be applied on really big data sets. A possible way to overcome this problem
could be the utilisation of Alter-Fast algorithm [Laloé, 2010] instead of Alter.
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Alter-Fast runs several times Alter in several randomly chosen partitions of
the data set. It can help to save computational time but lose efficiency. So
as a future work, it could be interesting to look for another way to acceler-
ate Alter while preserving (as much as possible) its properties of convergence.
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