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Using quantization techniques, Laloë (2010) defined a new algorithm called Alter. This
L1-based algorithm is proved to be convergent, but suffers two shortcomings. First, the
number of clusters K has to be supplied by the user. Second, it has high complexity. In
this article, we adapt the idea of X-means algorithm by Pelleg and Moore (2000) to offer
solutions for these problems. This fast algorithm is used as a building-block which quickly
estimates K by optimizing locally the Bayesian Information Criterion (BIC). Our algorithm
combines advantages of X-means (calculation of K and speed) and Alter (convergence and
parameter-free). Finally, an aggregative step is performed to adjust the relevance of the final
clustering according to BIC criterion. We also confront our algorithm to different simulated
and real data sets, which shows its relevance.

Keywords : Clustering, Quantization, K-means, Free-parameter algorithm.

AMS Subject Classification : 62H30 ; 68T10.

1. Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so that the
data in each subset share some common trait. Proximity is determined according
to some distance measure. For a thorough introduction to the subject, we refer to
the book by Kaufman and Rousseeuw [1]. The origin of clustering goes back to 45
years ago, when some biologists and sociologists began to search for automatics
methods to build different groups with their data. Today, clustering is used in many
fields. For example, in medical imaging, it can be used to differentiate between
types of tissue and blood in a three dimensional image. Market researchers use it to
partition the general population of consumers into market segments and to better
understand the relationships between different groups of consumers/potential
customers. There are also many different applications in artificial intelligence,
sociology, medical research, or political sciences.

The K-means clustering is the most popular method of clustering [2, 3]. Its
attractiveness lies in its symplicity and its fast execution. It has however two main
shortcomings. One, the number of clusters K has to be supplied by the user. Thus,
different ways to determine K have been studied in the litterature [4, 5]. Two,
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the algorithm strongly depends on the initialisation and can easily converge to a
local minimum. Pelleg and Moore [6] offer a solution for the first problem with a
building-block algorithm called X-means which quickly estimates K. It goes into
action after each run of 2-means, making local decisions about which subsets of
the current centroid should split themselves in order to better fit the data. The
splitting decision is done by computing the Bayesian Information Criterion (BIC).
On another hand, Laloë [7] proposes a consistent algorithm, called Alter, which
also needs the specification of K.

The purpose of this paper is to combine the X-means and the Alter algorithm in
order to overcome the drawbacks of both the algorithms. Besides decreasing the
complexity of the Alter algorithm, it allows an automatic selection of the number
of clusters. Moreover, thanks to the convergence properties of the Alter algorithm,
we can also hope it will overcome the local optimality problem of the X-means
algorithm, inherited from the K-means one.

The paper is organized as follows: section 2 recalls the Alter algorithm. Section 3
presents the X-Alter algorithm. Performances of X-Alter, X-means and another
algorithm are compared in Section 4.

2. The Alter algorithm

Let us first recall the background of the Alter algorithm. All the theoretical re-
sults presented in this section come from Laloë [7]. The theoretical method which
supports this algorithm is the quantization. The quantization is a commonly used
technique in signal compression [8, 9]. Given a normed space (H, ‖.‖), a codebook
(of size K) is defined by a subset C ⊂ H with cardinality K. Then, each x ∈ H is
represented by a unique x̂ ∈ C via the function q,

q : H → C

x → x̂,

which is called a quantizer. Here we come back to the clustering, as we create
clusters in the data by regrouping the observations which have the same image by
q. More precisely, these images by q are the representants of the clusters.

Denote by d the distance induced by the norm L1 on H:

d : H×H → R+

(x, y)→ ‖x− y‖.

Considering a random variable X on H, with distribution µ, the quality of the
approximation of X by q(X) is then given by the distortion E d

(
X, q(X)

)
. Thus

the aim is to minimize E d
(
X, q(X)

)
among all possible quantizers. However, in

practice, the distribution µ of the observations is unknown, and we only have at
hand n independent observations X1, . . . , Xn with the same distribution than X.
The goal is then to minimize the empirical distortion:

1

n

n∑
i=1

d(Xi, q(Xi)).
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We choose here L1-based distortion to lead to more robusts estimators. For a dis-
cussion of the advantage of the L1-distortion we refer the reader to Kemperman [10].

Theoritical results of consistency and rate of convergence of this method have been
proved [7]. In particular, it is stated that the rate of convergence is closely related
to the metric entropy of the space of the data. However, the minimization of the
empirical distortion is not possible in practice. A possible alternative is to perform
the Alter algorithm. The idea is to select an optimal codebook among the data.
More precisely the outline of the algoritm is:

(1) List all possible codebooks (set of the K centers of the clusters), i.e., all
possible K-tuples of data;

(2) Calculate the empirical distortion associated to the first codebook;
(3) For each successive codebook, calculate the associated empirical distortion.

Each time a codebook has an associated empirical distortion smaller than
the previous smallest one, store the codebook;

(4) Return the codebook which has the smallest distortion.

Again, theoritical results of consistency and rate of convergence have been proved
for the Alter algorithm. In particular it is stated that the convergence rate is of
the same order than for the theoretical methods above. Moreover, this algorithm
does not depend on initial conditions (unlike the K-means algorithm) and it
converges to the optimal distortion. Unfortunately its complexity is o(nK+1) and
it is impossible to use it for high values of n or K.

Following the idea of the X-means algorithm, a recursive utilisation with K = 2
could allow us to bring down the time consuming of the algorithm and give us an
estimation of K.

3. The X-Alter Algorithm

Remember that the idea of the X-means algorithm lies on the recursive utilisation
of 2-means. After each run of 2-means, the splitting decision is done using the
BIC criterion. Then, the algorithm runs in each generated subset since there is no
split available. We couple here this idea with the Alter algorithm and we add an
aggregation final step to prevent the creation of too much clusters.

Note that no parameter is needed by the algorithm. Though, the user can specify
a range in which the true K reasonably lies (which is [2,+∞[ if we had no
information).

The algorithm starts by performing Alter with K = 2 centroids. After this, the
structure improvement operation begins by splitting each cluster into two children.
The procedure is local on that the children are fighting each other for the points
in the parent’s region, no others. At this point, a model selection test is performed
on all pairs of children. The test aks if the model with the two offsprings is better
than the one with his parent. If the answer is yes, the iterative procedure occurs in
the two children. If not, the region is asleep and the algorithm tries to investigate
other regions where more clusters are needed.

More precisely, the outline of the algorithm is the following:

(1) Clustering in 2 clusters using Alter (Figure 1). That is we list all possible
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pairs of data and take the one who minimize the empirical distortion;
(2) Then we perform a new discrimination in two clusters within each cluster

previously obtained (Figure 2). This gives us clustering C;
(3) We use the following formula from [11] for the BIC criterion. It evaluates

the relevance of the classification C with

BIC(C) = l − p

2
log n

where l is the log-likelihood of the data according to the clustering C and
taken at the maximum likelihood point, and p is the number of parameters
in C. The number of free parameters p is simply the sum of K − 1 class
probabilities, d ∗K centroids coordinates, and one variance estimate. Note
that we suppose here that in each cluster, the data are normally distributed
around the center. Using this criterion, we check the suitability of the dis-
crimination (Figure 2) by comparing BIC(K = 1) and BIC(K = 2) on
each subset;

(4) We iterate step two and three until there are no more relevant discrimination
(Figure 3);

(5) Final step of aggregation: All pairs of clusters are tested and aggregated
according to the value of the criterion BIC (Figure 4): aggregation can
be considered if BIC(K = 1) > BIC(K = 2). The bigger value of
BIC(K = 1)−BIC(K = 2) gives the first aggregation. Next aggregations
are performed according to the decreasing values of the BIC differences
until it runs out of relevants.

The complexity of this algorithm in the worst case scenario (that is when it creates
n clusters with one data) is o(n4), what makes it more easily usable than the
inital Alter algorithm. However, it is still bigger than the complexity of the X-
means algorithm. For several thousand points, this complexity is not an important
practical concern. But, if the database exceeds several tens of thousand points, it
could be annoying. A possible way to overcome this problem would be the utilisation
of Alter-Fast algorithm [7] instead of Alter. Alter-Fast algorithm runs several times
Alter in several randomly chosen partitions of the data set. It can help to save
computational time without losing too much efficiency. But the consistent property
of Alter must improve results and the aggregation step must prevent the presence
of truncated clusters (as in Figure 2).
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Figure 1. First iteration of X-Alter algorithm (Step 1.)
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Figure 2. Second sub-classification in the two relevant clusters (Step 2.). Sub-classifications are validated
by BIC (Step 3.) so we obtain four clusters.
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Figure 3. No relevant sub-classification in the left cluster according to BIC. In the three other clusters,
we obtain the same rejection of sub-classification (Step 4.).
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Figure 4. Final discrimination. The two middle clusters have been aggregated in Step 5.
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4. Empirical study

In this section, we perform an empirical study to establish the relevance of our
method. We confront our method to various simulated data sets, but also on clas-
sical real data sets. We consider three criterion: the number of clusters found, the
Adjusted Rand Index (A.R.I.) [12, 13] and the Dunn index [14, 15]. The A.R.I. is
the corrected-for-chance version of the Rand index which is a measure of the sim-
ilarity between two clusters. More clusters are similars (respectively dissimilars),
closer to 1 (respectively 0) the A.R.I. is. On another way, the Dunn Index measures
the “compactness” of the clusters and is a sort of the worst case indicator. Higher is
the Dunn Index, better the clustering is. For more details on this classical cluster
validation indexes we refer the reader to the given references.
Pelleg and Moore shown that the X-means algorithm performs better and faster
than repeateadly using accelerated K-means for different values of K. So, we com-
pare our X-Alter algorithm to X-means and to X-means with the aggregation step,
called X-means-R.

4.1. Simulated data

4.1.1. A simple case

We simulate here clusters of gaussian vectors in Rd (d can be different in each
following case).
First, in Table 1 we consider two clusters well identified in R20. More precisely we
simulate two clusters of 25 vectors (in R20) with σ21 = σ22 = 100 and µ1 = −µ2 = 15.
That is the covariance matrices are given by

Σ2
1 = Σ2

2 = 100


1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1


and the mean vectors by

M1 = −M2 = 15


1
1
...
1

 .

The results are averaged on 300 simulations.

Table 1. Results of the three algorithms for the two well-defined clusters.

Algorithm % of good number of clusters A.R.I. Dunn Index
X-means 99 1 1.62
X-means-R 100 1 1.64
X-Alter 100 1 1.64

As expected, we note that the three methods perform well on this very simple case.
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Now we consider three simulated clusters well identified in R5. This allows us to
see the relevance of the aggregation step, as X-means should often cut the middle
cluster in its first iteration. More precisely we simulate two clusters of 20 vectors
(in R5) with σ21 = σ22 = 100 and µ1 = −µ2 = 20; and one cluster of 20 vectors with
σ23 = 100 and µ3 = 0. The results are averaged on 300 simulations and gathered in
Table 2.

Table 2. Results for the three algorithms on the three clusters.

Algorithm % of good number of clusters A.R.I. Dunn Index
X-means 55 0.82 0.22
X-means-R 76 0.82 0.22
X-Alter 86 0.84 0.22

We see here the influence of the aggregation steps, since X-means-R find the
good number of cluster almost fourty percent time more often than X-means.
Moreover, we note that our algorithm obtains better results than the other two:
the convergence property of Alter clearly improves results.

Finally we perform tests with random values for the numbers of clusters, the mean,
standard deviation and number of data in each clusters. The µi are randomly
selected between −50 and 50, the σi between 5 and 15, the number of clusters
between 2 and 10, the number of vectors in each cluster between 8 and 25. The
dimension of the data is fixed to 10. Table 3 summaries the results averaged on
300 simulations.

Table 3. Results for the three algorithms on the random clusters.

Algorithm % of good number of clusters A.R.I. Dunn Index
X-means 63 0.96 0.60
X-means-R 71 0.97 0.60
X-Alter 91 0.96 0.59

Again, we see that our algorithm obtains better results than the other two for the
number of clusters and that A.R.I. and Dunn Index are slightly the same.

4.1.2. Functionnal case

Now we consider functionnal data. Here, we must also compare times of executions
which were slightly the same previously. We consider two configurations:

First, we take functions
√
x, x and x2 in [0, 1] discretized 20 times. We disturb each

of these functions by adding cos(10x+π/2−10)/5. Each data in R20 is noised with
a vector composed by twenty gaussian law N(0, σ) where the value of σ is selected
for each data using σ ∼ N(0.1, 0.02). Figure 5 shows examples of some functions
to classify. Three clusters of size randomly chosen between 15 and 25 are simulated
300 times. Results are presented in Table 4 (time is given in seconds).

Table 4. Results for the three algorithms on the functionnal data.

Algorithm % of good number of clusters A.R.I. Dunn Time
X-means 81 0.88 0.63 2.0
X-means-R 85 0.88 0.63 3.5
X-Alter 95 0.89 0.63 27.6
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Figure 5. Example of functions. Functions based on
√
x are on dashed lines, ones based on x are on solid

lines and ones based on x2 are on dotted lines.

We can see that our method gives better results, mostly on the search of the
number of clusters.

Second, we consider a slightly more difficult case. We construct this configuration
on the same model than the first, but based on functions

√
x, x3/4 and x which are

closer than previous ones as we can see in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.
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8
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0
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Figure 6. Example of functions. Functions based on
√
x are on dashed lines, ones based on x are on solid

lines and ones based on x3/4 are on dotted lines.

Results are gathered in Table 5.
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Table 5. Results for the three algorithms on the functionnal data.

Algorithm % of good number of clusters A.R.I. Dunn Time
X-means 26 0.75 0.43 2.4
X-means-R 31 0.75 0.46 3.2
X-Alter 40 0.77 0.46 28.7

Again, we see that our method retrieves more often the good number of clusters.
Note that if the complexity of our algorithm is bigger than the X-means one, it
is much smaller than the Alter one. Indeed Alter algorithm does not estimate the
number of clusters.

Robustness study
In this paragraph, we illustrate the robustness properties of the L1 distance. We
consider as a starting point the first functionnal configuration above :

√
x, x and

x2 in [0, 1] noised with cos(10x + π/2 − 10)/5 (Figure 5). To perturb data we
use the following protocol : we add a value x ∈ [−0.30;−0.15] ∪ [0.15; 0.30] to
a ∈ [10; 25] percent of points (randomly chosen) of b ∈ [10; 25] percent of data
(randomly chosen). An example is given in Figure 7. We repeat this 300 times and
give averaged results in Table 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 7. Example of the results of the pertubation of
√
x cos(10x+ π/2− 10)/5. Affected functions are

on dashed lines.

Table 6. Results for the three algorithms on the perturbated functionnal data
sets.

Algorithm % of good number of clusters A.R.I. Dunn Time
X-means 77 0.87 0.52 2.6
X-means-R 79 0.87 0.52 3.8
X-Alter 95 0.88 0.53 29.4

The relevance of the L1-based distance error, which is much more robust to extrem
values, is shown here. Indeed, if we compare to the results gathered in Table 4 we
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still find the good number of clusters 95% of the time while X-means and X-means-
R suffer from a loss of respectively 4% and 6%.

4.2. Real data

In this section, we confront our method to two conventional data sets from the
UCI Machine Learning Repository [16]: the wine and iris ones. In this case, we
do not know if the spherical gaussian assumption of the BIC criterion is verified.
We compare our method to the X-means algorithm but also to the K-means
algorithm with K known to be 3 (the real number of clusters here). In these two
cases, as suggested in the description of the data sets, we center and standardize
each variable before performing clustering.

Since K-means, X-means and X-means-R depends on the initialisation, we give
averaged results (over 50 runnings) for these methods.

4.2.1. Wine data set

We consider first the wine data set. We have 178 instances and 13 variables found
in each of the three types of wines. These data are the results of a chemical analysis
of wines grown in the same region in Italy but derived from three different cultivars.
In a classification context, this is a well posed problem with "well behaved" class
structures. The results for the 4 methods are presented in Table 7.

Table 7. Results for the wine data set.

Algorithm Number of clusters A.R.I. Dunn
X-means 8.67 (var=6.92) 0.78 (var=0.03) 0.162 (var=2.10−4)
X-means-R 8.54 (var=6.01) 0.78 (var=0.03) 0.165 (var=10−4)
3-means ∅ 0.76 (var=0.03) 0.163 (var=0.0002)
X-Alter 3 0.76 0.142

We can see that our method retrieve the real number of clusters, and that we get
the same adjusted rand index than 3-means and slighty less than the 2 others. We
can also compare X-Alter to other methods used on this data set and listed on the
UCI Machine Learning [16]. For example, we estimate better the number of clusters
than Dy and Brodley [17].

4.2.2. Iris data set

We consider now the Iris data set. We have 150 instances and 4 variables of 3
classes of 50 instances each, where each class refers to a type of iris plant. One
class is linearly separable from the other 2; the latter are not linearly separable
from each other which makes it more difficult to classify. The results are gathered
in Table 8.

Table 8. Results for Iris data set.

Algorithm Number of clusters A.R.I. Dunn
X-means 13.7 (var=6.2) 0.46 (var=0.07) 0.0405 (var=6.10−5)
X-means-R 8 (var=1.56) 0.57 (var=0.03) 0.0398 (var=0)
3-means ∅ 0.46 (var=0.0036) 0.04 (var=0)
X-Alter 6 1 0.402

It appears that our method do not find the real number of clusters but gets
closer to it than others. While Adjusted Rand Index were previously very close
for all methods, X-Alter is here significantly better and is maximum. Indeed,
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as we consider here the Adjusted Rand Index (and not the Rand Index), it
doesn’t mean that our classification is perfect. However the high value of the
A.R.I. informs us that the great majority of iris plant are well-classified, the 3
additional clusters are in fact very small and doesn’t affect the A.R.I and the
global quality of the obtained clustering. In Dy and Brodley [17], the estimation of
the number of clusters is slighty better but, as discussed above, the quality of our
clustering seems (as we don’t use the same criterions) to be slightly better. More-
over, we observe the interest of the aggregation step in X-means-R and it seems
to appear that the spherical gaussian assumption required for the BIC is reasonable.

Finally, we see that in all cases (simulated or real data sets) our method per-
forms better than others to estimate the number of clusters. This confirms that
we avoid the local convergence property of X-means, which is inherited from K-
means. Furthermore, according to Adjusted Rand Index and to Dunn Index, quality
of clustering is either equal or significantly better than other methods.

5. Conclusion

We have presented a simple new algorithm to perform clustering. The main advan-
tage of this method is that it is parameter-free. So, it can be easily used without
an expertise knowledge of the data. This algorithm combines Alter and X-means
algorithm in order to benefit of qualities of both (respectively the convergence and
the automatic selection of the number of clusters). Moreover, we avoid the main
drawbacks of these two methods which are the high complexity for Alter and the
dependence on initials conditions for X-means. A confrontation on both simulated
and real data sets shows the relevance of this method. However, even if the com-
plexity is lowered (with respect to the Alter algorithm) it is still too important to
apply the method on really big data sets. So as a future work, it could be interesting
to look for another way to accelerate Alter while preserving (as much as possible)
its properties of convergence.
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