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Abstract

Using quantization techniques, Laloé (2009) defined a new algo-
rithm called Alter. This L'-based algorithm is proved to be conver-
gent, but suffers two shortcomings. Firstly the number of clusters K
has to be supplied by the user. Secondly it has an high complexity.
In this article, we adapt the idea of X-means algorithm (Pelleg and
Moore; 2000) to offer solutions for these problems. This fast algorithm
is used as a building-block which quickly estimates K by optimizing
locally the Bayesian Information Criterion (BIC). Our algorithm com-
bines advantages of X-means (calculation of K and speed) and Alter
(convergence and parameter-free). Finally, an aggregative step is per-
formed to adjust the relevance of the final clustering according to BIC
criterion. We confront here our algorithm to different simulated data
sets, which show its relevance.

Key-words and phrases: Clustering, Quantization, K-means, Free-parameter
algorithm.



1 Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so
that the data in each subset share some common trait. Proximity is deter-
mined according to some distance measure. For a thorough introduction of
the subject, we refer to the book by Kaufman and Rousseeuw (1990). The
origin of clustering goes back to 45 years ago, when some biologists and so-
ciologists began to search for automatics methods to build different groups
with their data. Today, clustering is used in many fields. For example, in
medical imaging, it can be used to differentiate between types of tissue and
blood in a three dimensional image. Market researchers use it to partition
the general population of consumers into market segments and to better un-
derstand the relationships between different groups of consumers/potential
customers. There are also many different applications in artificial intelli-
gence, sociology, medical research, or political sciences.

The K-means clustering is the most popular method of clustering (Mac-
Queen; 1967; Hartigan and Wong; 1979). Its attractiveness lies in its sym-
plicity, and its fast execution. It has however two main shortcomings. One,
the number of clusters K has to be supplied by the user. Thus, different
ways to determine K have been studied in litterature (Pham et al.; 2005; Li
et al.; 2008). Two, the algorithm strongly depends on the initialisation and
can easily converge to a local minimum. Pelleg and Moore (2000) offer a so-
lution for the first problem with a building-block algorithm called X-means
which quickly estimates K. It goes into action after each run of 2-means,
making local decisions about which subsets of the current centroids should
split themselves in order to better fit the data. The splitting decision is done
by computing the Bayesian Information Criterion (BIC). On another hand,
Laloé (2009) proposes a consistent algorithm, called Alter, which also needs
the specification of K.

The purpose of this paper is to combine the X-means and the Alter algo-
rithm in order to overcome the drawbacks of both the algorithms. Besides
decreasing the complexity of the Alter algorithm, it allows an automatic
selection of the number of clusters. Moreover, thanks to the convergence
properties of the Alter algorithm, we can also hope it will overcome the local
optimality problem of the X-means algorithm, inherited from the K-means
one.

The paper is organized as follows: section 2 recalls the Alter algorithm.
Section 3 presents the X-Alter algorithm. Performances of X-Alter, X-
means and another algorithm are compared in Section 4.



2 The Alter algorithm

Let us first recall the background of the Alter algorithm. All the theoretical
results presented in this section come from Laloé (2009). The theoretical
method which supports this algorithm is the quantization. The quantization
is a commonly used technique in signal compression (Graf and Luschgy;
2000; Linder; 2002). Given a normed space (H,||.]|), a codebook (of size
K) is defined by a subset C C H with cardinality K. Then, each x € H is
represented by a unique & € C via the function ¢,

g: H —=C

r -z,

which is called a quantizer. Here we come back to the clustering, as we cre-
ate clusters in the data by regrouping the observations which have the same
image by q. More precisely, these images by ¢ are the representants of the
clusters.

Denote by d the distance induced by the norm L! on H:

d:HxH — RF
(@,y) — [z =yl

Considering a random variable X on H, with distribution u, the quality of the
approximation of X by ¢(X) is then given by the distortion Ed(X,¢(X)).
Thus the aim is to minimize Ed(X,q(X)) among all possible quantizers.
However, in practice, the distribution p of the observations is unknown, and
we only have at hand n independent observations X1,..., X, with the same
distribution than X. The goal is then to minimize the empirical distortion:

LY (X (X))
i=1

We choose here Ll-based distortion to lead to more robusts estimators. For
a discussion of the advantage of the L'-distortion we refer the reader to
Kemperman (1987).

Theoritical results of consistency and rate of convergence of this method have
been proved in Laloé (2009). However, the minimization of the empirical
distortion is not possible in practice. A possible alternative is to perform the
Alter algorithm. The idea is to select an optimal codebook among the data.
More precisely the outline of the algoritm is:

1. List all possible codebooks (set of the K centers of the clusters), i.e.,
all possible K-tuples of data;



2. Calculate the empirical distortion associated to the first codebook;

3. For each successive codebook, calculate the associated empirical dis-
tortion. Each time a codebook has an associated empirical distortion
smaller than the previous smallest one, store the codebook;

4. Return the codebook which has the smallest distortion.

Again, theoritical results of consistency and rate of convergence have been
proved for the Alter algorithm. Moreover, this algorithm does not depend
on initial conditions (unlike the K-means algorithm) and it converges to the
optimal distortion. Unfortunately its complexity is o(n*1) and it is impos-
sible to use it for high values of n or K.

Following the idea of the X-means algorithm, a recursive utilisation with
K =2 could allow us to bring down the time consuming of the algorithm.

3 The X-Alter Algorithm

Remember that the idea of the X-means algorithm lies on the recursive util-
isation of 2-means. After each run of 2-means, the splitting decision is done
using the BIC criterion. Then, the algorithm runs in each generated subset
since there is no split available. We couple here this idea with the Alter
algorithm and we add an aggregation final step to prevent the creation of
too much clusters.

Note that no parameter is needed by the algorithm. Though, the user can
specify a range in which the true K reasonably lies (which is [2, +oof if we
had no information).

The algorithm starts by performing Alter with K = 2 centroids. After this,
the structure improvement operation begins by splitting each cluster into two
children according. The procedure is local on that the children are fighting
each other for the points in the parent’s region, no others. At this point, a
model selection test is performed on all pairs of children. The test aks if the
model with the two offsprings is better than the one with his parent. If the
answer is yes, the iterative procedure occurs in the two children. If not, the
region is asleep and the algorithm tries to investigate other regions where
more clusters are needed.

More precisely, the outline of the algorithm is the following:
1. Clustering in 2 clusters using Alter (Figure 1);

2. Then we perform a new discrimination in two clusters within each
cluster previously obtained (Figure 2). This gives us clustering C';



3. We use the following formula from Kass and Wasserman (1995) for the
BIC criterion. It evaluates the relevance of the classification C' with

BIC(C) =1— glogn

where [ is the log-likelihood of the data according to the clustering C'
and taken at the maximum likelihood point, and p is the number of
parameters in C. Using this criterion, we check the suitability of the
discrimination (Figure 2) by comparing BIC(K = 1) and BIC(K = 2)
on our subset;

4. We iterate step two and three until there are no more relevant discrim-
ination (Figure 3);

5. Final step of aggregation: All pairs of clusters are tested and aggre-
gated according to the value of the criterion BIC (Figure 4): aggre-
gation can be considered if BIC(K = 1) > BIC(K = 2). The bigger
value of BIC(K = 1) — BIC(K = 2) gives the first aggregation. Next
aggregations are performed according to the decreasing values of the
BIC differences until it runs out of relevants.

The complexity of this algorithm in the worst case scenario (that is when
it creates n clusters with one data) is o(n*), what makes it more easily
usable than the inital Alter algorithm. However, it is still bigger than the
complexity of the X-means algorithm. But the consistent property of Alter
must improve results and the aggregation step must prevent the presence of
truncated clusters (as in Figure 2).
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Figure 1: First iteration of X-Alter algorithm (Step 1.)
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Figure 2: Second sub-classification in the two relevant clusters (Step 2.).
Sub-classifications are validated by BIC (Step 3.) so we obtain four clusters.
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Figure 3: No relevant sub-classification in the left cluster according to BIC.
In the three other clusters, we obtain the same rejection of sub-classification

(Step 4.).
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Figure 4: Final discrimination. The two middle clusters have been aggre-
gated in Step 5.



4 Simulations

In this section, we perform an empirical study in order to establish the
relevance of our method. To this aim, we consider two criterion: the number
of clusters and the Correct Classification Rate (CCR) which is the percentage
of data that are in the same cluster in both the real and estimated clustering
(Genolini and Falissard; 2010). Pelleg and Moore shown that the X-means
algorithm performs better and faster than repeateadly using accelerated K-
means for different values of K. So, we compare our X-Alter algorithm to
X-means and to X-means with the aggregation step, called X-means-R.

4.1 Simulated data
4.1.1 A simple case

We first consider a simple case: we simulate clusters of normal vector in
R?. First, in Table 1 we consider two clusters well identified in R?°. More

precisely we simulate two clusters of 20 data with o0? = ¢ = 100 and
w1 = —p2 = 15. The results are averaged on 300 simulations.
Algorithm | % of good number of clusters | CCR
X-means 99 0.99
X-means-R 100 1
X-Alter 100 1

Table 1: Results of the three algorithms for the two well-defined clusters.

As expected, we note that the three methods perform well on this very sim-
ple case.

Now we consider three simulated clusters well identified in R®. This allows
us to see the relevance of the aggregation step, as X-means should often
cut the middle cluster in its first iteration. More precisely we simulate two
clusters of 20 data with 0? = 03 = 100 and p1 = —pug = 20; and one cluster
with 03 = 100 and u3 = 0. The results are averaged on 300 simulations and
gathered in Table 2.

Algorithm | % of good number of clusters | CCR
X-means o6 0.88
X-means-R 78 0.91
X-Alter 86 0.91

Table 2: Results for the three algorithms on the three clusters.

We see here the influence of the aggregation steps, since X-means-R find



the good number of cluster almost fourty percent time more often than X-
means. Moreover, we note that our algorithm obtains better results than
the two others: the convergence property of Alter clearly improves results.

Finally we perform tests with random values for the numbers of clusters, the
mean, standard deviation and number of data in each clusters. The pu; are
randomly selected between —50 and 50, the o; between 5 and 15, the number
of clusters between 2 and 10, the number of data in each cluster between 8
and 25. The dimension of the data is fixed to 10. Table 3 summaries the
results averaged on 300 simulations.

Algorithm | % of good number of clusters | CCR
X-means 71 0.93
X-means-R 7 0.94
X-Alter 97 0.96

Table 3: Results for the three algorithms on the random clusters.

Again, we see that our algorithm obtains better result than the two others
mainly for the number of clusters.

4.1.2 Functionnal case

Now we consider functionnal data. Here, we must also compare times of
executions which were slightly the same previously. We consider two config-
urations:

First, we take functions \/z, z and z? in [0, 1] discretized 20 times. We dis-
turb each of these functions by adding cos(10x + 7/2 — 10)/5. Each data in
R?? is noised with a vector composed by twenty gaussian law N (0, o) where
the value of o is randomly selected for each data using ¢ ~ N(0.1,0.02).
Figure 5 shows examples of some functions to classify. Three clusters of size
randomly chosen between 15 and 25 are simulated 300 times. Results are
gathered in Table 5. Then, in order to illustrate the robustness properties
of the L distance we add an extreme fonction to the data set. In this last
case, we consider that the good number of clusters is found if the extreme
value is in the nearest cluster with all the others values or alone in a cluster.
Again the results are averaged on 300 simulations (Table 5).

In these two cases, our method gives better results on the search of the num-
ber of clusters and on the CCR. Further, our results are not pertubated by
the extreme value unlike K-means-type algorithm. The complexity of our
algorithm is still bigger than the X-means one, but is much smaller than the
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Figure 5: Example of functions. Functions based on y/z are on dashed lines,
ones based on z are on solid lines and ones based on 22 are on dotted lines.

Algorithm | % of good number of clusters | CCR | Time (in seconds)

X-means 82 0.89 2.0
X-means-R 86 0.90 3.5

X-Alter 99 0.91 29.6

Table 4: Results for the three algorithms on the functionnal data.

Alter one. Indeed Alter algorithm does not estimate the number of clusters.

Second, we consider a slightly more difficult case. We construct this configu-
ration on the same model than the first, but based on functions \/, 3/* and
x which are closer than previous ones as we can see in Figure 6. Again, in a
second time, we add an extreme function. Results are gathered in Tables 6
and 7.

We see that our method retrieves more often the good number of clusters.
It is particularly true for the second configuration. We see here the interest
of the L'-based distance error which is much more robust to extrem values.
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Algorithm | % of good number of clusters | CCR | Time (in seconds)

X-means 76 0.86 2.6
X-means-R 82 0.89 3.8

X-Alter 99 0.91 294

Table 5: Results for the three algorithms on the functionnal data with one
extreme function.
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Figure 6: Example of functions. Functions based on 1/ are on dashed lines,
ones based on z are on solid lines and ones based on 23/4 are on dotted lines.

5 Conclusion

We have presented a simple new algorithm to perform clustering. The main
advantage of this method is that it is parameter-free. So, it can be easily
used without an expertise knowledge of the data. This algorithm combines
Alter and X-means algorithm in order to benefit of qualities of both (respec-
tively the convergence and the automatic selection of the number of clusters).
Moreover, we avoid the main drawbacks of these two methods which are the
high complexity for Alter and the dependence on initials conditions for X-
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Algorithm | % of good number of clusters | CCR | Time (in seconds)

X-means 28 0.73 24
X-means-R 32 0.75 3.2

X-Alter 40 0.75 28.7

Table 6: Results for the three algorithms on the functionnal data.

Algorithm | % of good number of clusters | CCR | Time (in seconds)

X-means 24 0.67 2.2
X-means-R 27 0.70 3.9

X-Alter 47 0.74 31.5

Table 7: Results for the three algorithms on the functionnal data with one
extreme function.

means. Results of simulation show the relevance of this method.
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