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WEIGHTING THE EDGE STABILIZATION∗

ALEXANDRE ERN† AND JEAN-LUC GUERMOND‡§

Abstract. A modification of the edge stabilization technique is proposed to improve the behavior of the method
when solving conservation equations with non-smooth data and/or non-smooth solutions. The key ingredient is
tempering the edge stabilization in regions of large gradients through appropriate weights. The new method is shown
to preserve the convergence properties of the original method on smooth solutions and numerical tests indicate that
it performs better on non-smooth solutions.
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1. Introduction. Linear stabilization techniques are known to be very effective for solving
linear first-order PDEs like the transport equation. In particular, denoting h the meshsize and k
the polynomial degree of the approximation, linear stabilization techniques yield the near optimal
convergence rate O(hk+ 1

2 ) in the L2-norm for smooth solutions. The situation is not so bright when
it comes to solving linear problems with non-smooth data and nonlinear conservations equations with
non-unique weak solutions. Linear stabilization methods generally promote the Gibbs phenomenon
and introduce high-order dissipation that, in the case of nonlinear conservation equations, can lead
to convergence to non-entropic solutions.

We focus our attention on the edge stabilization technique [4, 9] as a prototype of linear stabi-
lization, that is relatively easy to implement with H1-conforming finite elements. We show through
numerical examples that edge stabilization promotes the Gibbs phenomenon, and, for nonlinear con-
servation equations with non-convex flux, cannot select the proper entropic solution. We also show
that, when not properly scaled, the extra dissipation induced by edge stabilization can transform a
convergent method into a non-convergent one. The purpose of this paper is then to introduce and
analyze a modified version of edge stabilization that does not suffer from the above problems. The
main modification is tempering, through appropriate weights, the edge stabilization in regions where
the discrete solution exhibits large gradients. This may seem a bit counter-intuitive at first glance,
since the use of linear stabilization techniques is often motivated to counter spurious oscillations
that are produced by large gradients. The proposed method is proved to deliver the near optimal
convergence rate O(hk+ 1

2 ) in the L2-norm for smooth solutions. Numerical tests on the linear trans-
port equation in one and two space dimensions show that the weighted edge stabilization performs
as required when combined with a nonlinear viscosity method: it no longer promotes the Gibbs phe-
nomenon and does not prevent the nonlinear viscosity method to converge to the correct entropic
solution. In other words, the weighted edge stabilization does not antagonize the nonlinear viscosity
method. Quite importantly, when combined with a nonlinear viscosity method and for polynomial
orders larger than or equal to two, we observe that the weighted edge stabilization increases the
convergence order of the nonlinear method in the regions where the solution is smooth. Thus, when
combining the weighted edge stabilization with a nonlinear viscosity method, one improves the con-
vergence order of the nonlinear viscosity method without sacrificing its weakened maximum principle
property and its ability to properly converge to entropic solutions.

The paper is organized as follows. In §2, we set the notation and present numerical experiments
illustrating the main difficulties that are addressed herein. In §3, we introduce and analyze the
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weighted edge stabilization method. In §4, we present one- and two-dimensional tests to illustrate
the improvements achieved by weighting the edge stabilization. Finally, we draw some conclusions
in §5.

2. Preliminaries. The objective of this section is twofold: (i) to set the notation and the
model problems we are interested in; (ii) to present numerical experiments that identify the main
difficulties that we want address in the present work.

2.1. Formulation of the problem. We are interested in approximating the solution of scalar-
valued conservation equations in the form

(2.1) ∂tu + ∇·f(u) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω×R+

where Ω is an open polyhedral domain in R
d and f ∈ C1(R; Rd). For the sake of simplicity, we

assume that there are no issues with the boundary conditions; for instance, either we assume periodic
boundary conditions or the initial data is compactly supported and we are interested in the solution
before the domain of dependence of u0 reaches the boundary of Ω. We assume that (2.1) has a
unique entropic solution satisfying additional entropy inequalities that we omit for brevity.

In order to approximate the entropic solution of (2.1) with H1-conforming finite elements, we
consider a mesh family {Kh}h>0 that we assume to be conforming (no hanging nodes) and shape-
regular in the sense of Ciarlet. By convention, the elements in {Kh}h>0 are closed in R

d. The

reference element is denoted K̂ and the map between K̂ and an arbitrary element K ∈ Kh is
denoted ΦK : K̂ −→ K. We define the scalar-valued finite element approximation space

(2.2) Xh = {v ∈ C0(Ω; R); v|K◦ΦK ∈ Pk, ∀K ∈ Kh},

where k ∈ N\{0} and Pk denotes the set of multivariate polynomials of total degree at most k. For
all K ∈ Kh, hK denotes the diameter of K divided by k and h := maxK∈Kh

hK is the so-called
meshsize.

Let tF > 0 be the final simulation time. We call Galerkin solution of (2.1) the function uh ∈
C1([0, tF];Xh) such that

(2.3)

∫

Ω

v∂tuh dΩ +

∫

Ω

v∇·f(uh) dΩ = 0,

for all v ∈ Xh and all t ∈ (0, tF), and uh(t = 0) = u0,h, where u0,h is an appropriate approximation
of u0 in Xh. In all the numerical tests reported herein, the time stepping is done either with the
so-called SSP RK3 method, see e.g., [15], or the standard RK4 method. To avoid mixing the space
and time discretization errors, we always perform our tests with a small CFL, say CFL = 0.2 or
even less. We finally emphasize that the mass matrix is never lumped in our simulations.

The Galerkin solution is known to be a poor approximation of the solution to (2.1) even when
the flux is linear. One simple device to stabilize the approximation is to add first-order viscous
dissipation. Henceforth, we call viscous solution the function uh ∈ C1([0, tF];Xh) such that uh(t =
0) = u0,h and

(2.4)

∫

Ω

v∂tuh dΩ +

∫

Ω

v∇·f(uh) dΩ + nvisc(uh; v) = 0,

for all v ∈ Xh and all t ∈ (0, tF), with

(2.5) nvisc(w; v) := cmax

∑

K∈Kh

hK‖f ′(w)‖L∞(K)

∫

K

∇w·∇v dK.
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We take cmax = 1
2k

in one space dimension and cmax = 1
4k

in two space dimensions on triangular
meshes.

It is well-known that the viscous solution is only first-order accurate. The performance of the
method can be greatly improved by substituting the first-order viscous dissipation by some linear
and/or nonlinear stabilization mechanism. We are going to use in this paper the so-called entropy
viscosity [20, 18, 21] as a nonlinear stabilization mechanism. We call entropy viscosity solution the
function uh ∈ C1([0, tF];Xh) such that uh(t = 0) = u0,h and

(2.6)

∫

Ω

v∂tuh dΩ +

∫

Ω

v∇·f(uh) dΩ + nev(uh; v) = 0,

for all v ∈ Xh and all t ∈ (0, tF), with

(2.7) nev(w; v) :=
∑

K∈Kh

νK(w)

∫

K

∇w·∇v dK,

where νK(·) : C1([0, tF];Xh) −→ P0(K) is a nonlinear viscosity functional. The details on how the
nonlinear viscosity is constructed are reported in the Appendix. At this point it is not important
to go through the detailed construction of nev(·; ·); it suffices to know that the entropy viscosity
solution has reasonable convergence properties. For instance, the entropy viscosity solution has
been observed to satisfy a weakened maximum principle in the sense that, for all ǫ > 0, there is
h0 > 0 and there are uniform constants c and α > 0 such that

(2.8) ‖uh(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + chα, ∀h < h0, ∀t > ǫ.

This property is illustrated, for instance, in Table 2.1(a) below.
When f(u) = βu, with R

d-valued velocity field β, (2.1) reduces to the linear transport equation.
Many linear (symmetric) stabilization techniques can be considered for solving the linear transport
equation, e.g.,, subgrid viscosity [16], edge stabilization [4, 9, 8], and discontinuous Galerkin [24,

14, 22, 12]. All these methods are known to yield the near optimal convergence rate O(hk+ 1
2 ) in

the L2-norm for smooth solutions. We focus herein on the edge stabilization technique, which we
think is relatively simple to implement with H1-conforming finite elements. Let F i

h be the set of all
mesh interfaces. By convention, interfaces are closed in R

d−1. For all F ∈ F i
h, we denote hF the

diameter of F . Denoting K1,F ∈ Kh, K2,F ∈ Kh the two (closed) cells so that F = K1,F ∩ K2,F ,
we set ∆F = K1,F ∪ K2,F , see Figure 3.1 below. Moreover, letting v be a scalar-valued function
defined over ∆F and continuous over K1,F and K2,F , we denote {v} (x) = 1

2 (v|K1,F
(x) + v|K2,F

(x))
the average of v at F . The edge stabilization bilinear form is defined as follows:

(2.9) ned(w; v) = ced

∑

F∈Fi
h

h2
F ‖f ′(w)‖L∞(F )

∫

F

{∂nw} {∂nv} dF,

where ∂n is the outward normal derivative (so that {∂nw} is proportional to the jump of the normal
gradient across F ) and ced is a user-defined parameter. In our numerical experiments, we set ced =
0.05. We call edge stabilized solution the function uh ∈ C1([0, tF];Xh) such that uh(t = 0) = u0,h

and

(2.10)

∫

Ω

v∂tuh dΩ +

∫

Ω

v∇·f(uh) dΩ + ned(uh; v) = 0.

for all v ∈ Xh and all t ∈ (0, tF).
The objective of this paper is to investigate some aspects of the stabilization properties of

the bilinear form ned(·; ·). We want to show that, although this stabilization technique performs



4 A. ERN, J.L. GUERMOND

extremely well in smooth regions, it has counter-productive effects in regions of shocks and large
gradients. The purpose of the rest of this section is to illustrate through numerical experiments
some of the negative effects of ned(·; ·). A weighting technique that cures these problems is proposed
and analyzed in §3.

2.2. One-dimensional transport. We consider the one-dimensional transport problem

(2.11) ∂tu + ∂xu = 0, u(x, 0) =

{
1, if 0.4 < x < 0.7,

0, otherwise,

over the interval Ω = (0, 1) with periodic boundary conditions. We compute the solution at tF =
1 with continuous P1 finite elements on various uniform meshes. To assess departures from the
maximum principle, we compute the following indicators:

(2.12) eMax := max
x∈Ω

uh(x, 1) − 1, eMin := −min
x∈Ω

uh(x, 1).

2.2.1. Edge stabilization alone. We first compute the Galerkin solution on five uniform
meshes composed of 100, 2×100, . . . , 24×100 cells and we set CFL = 0.2. The graphs of the
solutions are shown in Figure 2.1(a). We observe the familiar spurious oscillations that characterize
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(a) Galerkin solution
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(b) Edge stabilized sol.
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(c) Edge stabilized sol. (Zoom)

Figure 2.1. One-dimensional linear transport. Results at tF = 1 without and with edge stabilization on five
uniform meshes composed of 100, 2×100, . . . , 24×100 cells.

the Galerkin technique. The graphs of the solutions computed with edge stabilization are shown
in Figure 2.1(b). This test exemplifies at the same time the stabilizing capability of the edge
stabilization and its inability to counter the so-called Gibbs phenomenon triggered in the vicinity
of discontinuities and large gradients. Figure 2.1(c) displays details of the graphs of the solutions
in the region x ∈ [0.65, 0.71]. Numerical tests on eight refinement levels (nor reported here) show
that both indicators eMax and eMin are bounded away from 0, i.e., mesh refinement does not to help
satisfy the maximum principle.

2.2.2. Edge stabilization plus entropy viscosity. It is frequently advocated in the liter-
ature that linear stabilization must be supplemented with a shock capturing technique to handle
properly shocks and large gradients [23, 25, 10, 6, 19]. We want to investigate the effects of combining
the edge stabilization with the entropy viscosity described in the Appendix.

We perform the following tests. We compute the entropy viscosity solution and the edge-
stabilized entropy viscosity solution of the one-dimensional transport equation (2.11) using P1 finite
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Table 2.1

One-dimensional linear transport. Maximum and minimum of entropy viscosity solution (left) and entropy
viscosity + edge stabilized solution (right); P1 finite elements, tF = 1.

(a) Entropy viscosity

h eMin rate eMax rate

2.500E-03 6.725E-03 – 6.715E-03 –

1.250E-03 5.441E-03 0.306 5.434E-03 0.305

6.250E-04 2.855E-03 0.930 2.854E-03 0.929

3.125E-04 2.235E-03 0.353 2.235E-03 0.353

1.563E-04 1.785E-03 0.324 1.785E-03 0.324

(b) Entropy viscosity + edge stabilization

eMin rate eMax rate

1.597E-02 – 1.597E-02 –

1.600E-02 -0.003 1.600E-02 -0.003

1.633E-02 -0.030 1.633E-02 -0.030

1.626E-02 0.006 1.626E-02 0.006

1.646E-02 -0.017 1.646E-02 -0.017

elements on various uniform meshes, and we evaluate the indicators eMax and eMin defined by (2.12).
The results for the entropy viscosity solution and the edge-stabilized entropy viscosity solution are
reported in Table 2.1(a) and Table 2.1(b), respectively. We observe that both indicators eMax and
eMin for the entropy viscosity solution converge to zero with the meshsize, in agreement with the claim
made in Section 2.1 that the entropy viscosity solution satisfies a weakened maximum principle in
the form (2.8). On the other hand, we observe in Table 2.1(b) that the weakened maximum principle
is lost when edge stabilization is added to the entropy viscosity. Thus, by adding edge stabilization
to a method that satisfies a weakened maximum principle, we obtain a method that does not satisfy
the maximum principle, even in the weak sense defined above.

The above problem can be easily fixed by increasing the strength of the entropy viscosity.
For instance, the weakened maximum principle can be recovered by using γ = 1

2 in the following
definition of the entropy viscosity

(2.13) νK(w) = min(cmaxhK‖f ′(w)‖L∞(K), cevh
γ
KRK(w)),

where RK(·) is the entropy residual (see the Appendix). The definition of νK introduced in the

Appendix uses γ = 1, which makes it asymptotically smaller by a factor h
1
2 than the above definition.

The γ = 1
2 fix is marginally satisfactory since it makes the method more dissipative and deteriorates

its convergence properties. For instance, convergence tests on the one-dimensional transport problem
(2.11) with P1 finite elements reveal that the convergence rate of the entropy viscosity method in
the L1-norm is 3

4 with γ = 1 and 2
3 with γ = 1

2 .

2.3. One-dimensional non-convex conservation equation. We now consider a problem
with non-convex flux proposed in [27] to test the edge stabilization technique with nonlinear conser-
vation equations. We restrict ourselves to the one-dimensional domain Ω = (0, 1) and we consider
the following scalar flux and initial data:

(2.14) f(u) =

{
1
4u(1 − u) if u < 1

2 ,
1
2u(u − 1) + 3

16 if 1
2 ≤ u,

u0(x) =

{
0, x ∈ [0, 0.35],

1, x ∈ (0.35, 1].

The entropic solution to this problem is a composite wave composed of a shock followed by a
rarefaction wave. This problem is challenging since many second-order central schemes with com-
pressive limiters are known to converge to weak solutions that are not entropic. For instance, it is
demonstrated in [27] that the so-called central-upwind scheme using second-order piecewise linear
reconstruction with either the superbee limiter or the so-called minmod2 limiter fails to converge to
the entropic solution. We compute the solution at time tF = 1 with continuous P1 finite elements.
The solution at tF = 1 is composed of a shock wave located at xs(1) = 1

4 (
√

6 − 1) followed by
a rarefaction wave. The left limit of the solution at the shock is u−

s (tF) = 0 and the right limit
is u+

s (tF) = 2
x1(tF)−xs(tF) (x1(tF) − x0 − 3

16 tF) − 1, where x0 = 0.35 and x1(t) = 1
2 t + x0 is the

time-dependent location of the head of the rarefaction wave.



6 A. ERN, J.L. GUERMOND

2.3.1. Edge stabilization alone. We show in Figure 2.2 the Galerkin and the edge stabilized
solutions obtained at tF = 1 on a uniform mesh composed of 1000 cells. The time stepping is done
with the SSP RK3 scheme, and to avoid time discretization errors, the time step size is based on
CFL = 0.01. The solution shown in the left panel of Figure 2.2 is the Galerkin solution and that
shown in the right panel is the edge stabilized solution. The entropic solution is shown in blue
solid line. It is clear that none of these approximations converge to the entropic solution in any
possible norm. The edge stabilized solution is almost free of spurious oscillations but converges to
a non-entropic weak solution.

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

1

1.1

−0.1

0

1

1.1

(a) Galerkin solution

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

1

1.1

−0.1

0

1

1.1

(b) Edge stabilized sol.

Figure 2.2. Non-convex flux. Results at tF = 1 on a uniform mesh composed of 1000 cells and CFL = 0.01.
Galerkin (left) and edge stabilized (right) solutions.

2.3.2. Edge stabilization plus entropy viscosity. We show in Figure 2.3 the entropy vis-
cosity solution and the entropy viscosity solution with edge stabilization at tF = 1 on a uniform
mesh composed of 1000 cells. The entropy viscosity solution is shown in the left panel and the
entropy viscosity solution with edge stabilization is shown in the center and right panels. The exact
solution (so-called entropic solution) is shown in blue solid line. This tests show that the entropy
viscosity solution converges to the entropic solution, whereas the entropy viscosity solution with
edge stabilization does not. Thus, by adding edge stabilization to a method that converges to the
correct weak solution, we obtain a method that converges to a wrong weak solution. This result is
similar to what has been observed in [27] concerning the second-order piecewise linear reconstruction
combined with either the superbee or the minmod2 limiter.

2.4. Edge stabilization plus first-order viscosity. In this section, we present two numerical
examples showing that the edge stabilization can have adverse effects even on the first-order viscosity
method. We first consider the one-dimensional inviscid Burgers equation

(2.15) ∂tu + ∂x( 1
2u2) = 0, u(x, 0) = sin(2πx),

over the interval Ω = (0, 1) with periodic boundary conditions. The solution is computed at tF = 0.25
with continuous P1 finite elements on a mesh composed of 200 elements, and CFL = 0.025. We
compute the first-order viscous solution and the first-order viscous solution with edge stabilization.
The coefficient ced in (2.9) is set to 1, and the coefficient cmax in (2.5) to 1

2 . When using finite
differences on a one-dimensional uniform grid, setting cmax = 1

2 corresponds to replacing the centered
differences by first-order upwind differences, and the resulting scheme is known to be monotone. The
graph of the two solutions is shown in Figure 2.4(a). For the solution with edge stabilization, we
observe over-shoots and under-shoots, and the amplitude of these spurious features is constant as
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(a) Entropy viscosity solution
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(b) Ent. visc. + edge stab.
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(c) Ent. visc. + edge stab. (zoom)

Figure 2.3. Non-convex flux. Results at tF = 1 with entropy viscosity without edge stabilization (left) and with
edge stabilization on a uniform mesh composed of 1000 cells (center and right).

the mesh is refined. This is characteristic of the Gibbs phenomenon. These over-shoots and under-
shoots can be tamed by increasing the viscous dissipation beyond what should normally be necessary.
Numerical tests (not shown) reveal that cmax = 2 is the lower bound on cmax that makes the viscous
dissipation strong enough to overcome the Gibbs phenomenon. These results indicate that edge
stabilization (and possibly linear stabilization at large) tends to promote the Gibbs phenomenon.

0 1

−1

0

1

(a) Burgers equation

0.45 0.46 0.47 0.48 0.49 0.5
0.6

0.61

0.62

0.63

0.64

0.65

(b) Non-convex flux, ced = 1 in (2.9)

0.45 0.46 0.47 0.48 0.49 0.5
0.6

0.61

0.62

0.63

0.64

0.65

(c) Idem, ced = 0.05 in (2.16)

Figure 2.4. Left: One-dimensional Burgers equation, tF = 0.25, CFL = 0.025, uniform mesh composed of 200
cells; first-order viscous solution without (in green) and with edge stabilization (in red). Center and right: Non-
convex flux, tF = 1, CFL = 0.025, uniform meshes composed of 4, 000 (in red) and 10, 000 cells (in green); first-order
viscous solution with edge stabilization (center: ced = 1 in (2.9); right: ced = 0.05 in (2.16)), the entropic solution is
shown in dashed blue.

The adverse effects of edge stabilization are even more dramatic on conservation equations with
non-convex flux. We consider again the test case of §2.3. We show in Figure 2.4(b) a zoom of the
graph of the solutions obtained with first-order viscosity (cmax = 1

2 ) without edge stabilization and
with edge stabilization (ced = 1) computed on two uniform meshes composed of 4, 000 and 10, 000
cells. We observe that the viscous solution converges to the entropic solution (as expected), whereas
the edge stabilized solution converges to a plateau between the expansion wave and the shock, which
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is wrong. The same effect is observed in Figure 2.4(c) with the choice ced = 0.05 in

(2.16) ned(w; v) = ced‖f ′(w)‖L∞(Ω)

∑

F∈Fi
h

h2
F

∫

F

{∂nw} {∂nv} dF,

2.5. Conclusions from numerical tests. The first series of tests presented in §2.2.1 shows
that the linear edge stabilization does a great job at suppressing spurious oscillations in the regions
where the solution is smooth, but this technique cannot get rid of the Gibbs phenomenon. The
second series of tests reported in §2.2.2 show that the linear edge stabilization actually promotes the
Gibbs phenomenon. The third series of tests on the one-dimensional nonlinear scalar conservation
equation with a non-convex flux in §2.3.1 demonstrates that the linear edge stabilization does again
a great job at removing the spurious oscillations plaguing the Galerkin solution, but it does not have
the correct type of dissipation to make the approximate solution converge to the entropic solution.
Finally, the tests reported in §2.3.2 and §2.4 show that not only the linear edge stabilization does not
produce the right dissipation, but the type of dissipation that it produces can transform a convergent
method (either first-order linear viscosity or nonlinear entropy viscosity) into a non-convergent one.
The authors conjecture that the above conclusions are not restricted to edge stabilization but can
be extended to some (or most of the) other linear stabilization methods available in the literature.

3. Weighting the edge stabilization. We introduce in this section a weighting technique for
the edge stabilization, and we prove that its convergence properties on the linear transport problem
are identical to that of the original unweighted edge stabilization in the case of smooth solutions.
We consider the linear transport equation

(3.1) ∂tu + ∇·(βu) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω×R+,

in space dimension d = 2 or d = 3. We assume that β is Lipschitz and divergence-free in Ω. Recall
that for simplicity, we assume either periodic boundary conditions, compactly supported solutions,
or β·n|∂Ω = 0.

In what follows, a . b means that inequality a ≤ c b holds with a constant c independent of
h (but possibly depending on the mesh-regularity, the polynomial degree k, and the regularity of
the problem data and the exact solution). Without loss of generality, we assume h ≤ 1. For any
set R ⊂ Ω (a mesh element, a mesh face, or a collection thereof), we denote by ‖·‖Lp(R) the usual
Lp(R)-norm, 1 ≤ p ≤ ∞, for scalar- or vector-valued functions.

3.1. Principle of the method. Consider the following discrete solution uh ∈ C1([0, tF];Xh),
with Xh defined in (2.2), so that uh(t = 0) = u0,h and

(3.2)

∫

Ω

v∂tuh dΩ +

∫

Ω

v∇·(βuh) dΩ + nlim,ed(uh;uh, v) = 0.

for all v ∈ Xh and all t ∈ (0, tF). The weighted edge stabilization semi-linear form is defined by

(3.3) nlim,ed(z;w, v) = ced

∑

F∈Fi
h

α(gF (z))h2
F |β|F

∫

F

{∂nw} {∂nv} dF,

with the shorthand notation |β|F := ‖β‖L∞(F ) and gF (z) is a measure of the gradient of z around
F which we take in the form

(3.4) gF (z) = ℓ−1|〈∇z〉∆F
|,

where 〈φ〉R := meas(R)−1
∫

R
φdR denotes the average of a function φ over a set R ⊂ Ω and where

the global scaling parameter ℓ is, e.g., set to ℓ := |〈∇u0,h〉Ω|. The key ingredient in (3.3) is the
function α : R+ → (0, 1] which weights the amount of edge stabilization. The function α must be
such that
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(i) α is non-increasing;
(ii) there is α0 ∈ R+ and λ ∈ R+ such that, for all r ≥ 1, α(r) ≥ α0r

−λ.
Typically, α(r) → 0 as r → +∞ so as to turn off edge stabilization in regions of large gradients. Con-
dition (ii) then means that α must not decrease too quickly, so as to retain the optimal convergence
properties of the method for smooth solutions.

3.2. Convergence analysis. We first prove a convergence result in two dimensions. In this
situation, there is no restriction on the parameter λ controlling the decrease of the weighting function
α at infinity.

Theorem 3.1. Let u and uh be the solutions to (3.1) and to (3.2), respectively. Assume that

u ∈ C1(0, tF;Hk+1(Ω)) ∩ C0(0, tF;W k+1,∞(Ω)). Assume d = 2 and quasi-uniform meshes. Let

λ > 0. Then, for all t ∈ [0, tF],

(3.5) ‖(u − uh)(·, t)‖L2(Ω) +

(∫ t

0

nlim,ed(uh;uh, uh) dτ

) 1
2

. hk+ 1
2 .

Proof. The proof is decomposed into three steps.
Step 1: error equation. For all t ∈ [0, tF], let w(·, t) be the L2-orthogonal projection of the exact
solution u(·, t) onto the discrete space Xh (in the case of compactly supported solutions, we project
onto Xh ∩ H1

0 (Ω)). We define the quantities (the dependence with respect to t is now left implicit)

e := uh − w, η := u − w,

so that the approximation error is uh − u = e − η. Observing that
∫

Ω

v∂tw dΩ +

∫

Ω

v∇·(βw) dΩ = −
∫

Ω

v∂tη dΩ −
∫

Ω

v∇·(βη) dΩ, ∀v ∈ Xh,

and subtracting this equation from (3.2), we infer, for all v ∈ Xh and all t ∈ [0, tF],

∫

Ω

v∂tedΩ +

∫

Ω

v∇·(βe) dΩ + nlim,ed(uh; e, v) =

∫

Ω

v∂tη dΩ +

∫

Ω

v∇·(βη) dΩ + nlim,ed(uh; η, v)

=: T1(η, v) + T2(η, v) + T3(uh; η, v),(3.6)

where we have used the fact that, for the exact solution u, {∂nu} = 0 for all F ∈ F i
h, so that

nlim,ed(uh;uh, v) = nlim,ed(uh; e, v) − nlim,ed(uh; η, v) + nlim,ed(uh;u, v)

= nlim,ed(uh; e, v) − nlim,ed(uh; η, v).

Step 2: basic estimates. Testing (3.6) with v = e and using the conservativity property

∫

Ω

e∇·(βe) dΩ = 0,

which holds owing to the choice of boundary conditions and the fact that β is divergence-free, we
infer that

1

2

d

dt
‖e‖2

L2(Ω) + nlim,ed(uh; e, e) ≤ |T1(η, e)| + |T2(η, e)| + |T3(uh; η, e)|.

Moreover, since u ∈ C1(0, tF;Hk+1(Ω)), classical finite element interpolation properties [3, 13] yield

(3.7) hK‖∇η‖L2(K) + ‖η‖L2(K) + ‖∂tη‖L2(K) . hk+1
K , ∀K ∈ Kh.
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Hence, by the Cauchy–Schwarz inequality, we obtain

|T1(η, e)| . hk+1‖e‖L2(Ω), |T2(η, e)| . hk‖e‖L2(Ω),

|T3(uh; η, e)| ≤ nlim,ed(uh; e, e)
1
2 nlim,ed(uh; η, η)

1
2 . hk+ 1

2 nlim,ed(uh; e, e)
1
2 ,

where the last bound results from the fact that nlim,ed(uh; η, η)
1
2 ≤ ned(η, η)

1
2 (since αF (uh) ≤ 1)

and the classical bound ned(η, η)
1
2 . hk+ 1

2 . Collecting the above estimates, using Young’s inequality,
and recalling that h ≤ 1, we arrive at

d

dt
‖e‖2

L2(Ω) + nlim,ed(uh; e, e) . hk‖e‖L2(Ω) + h2k+1,

whence by using Gronwall’s Lemma together with h ≤ 1, we obtain the suboptimal estimate

(3.8) ∀t ∈ [0, tF], ‖e(·, t)‖L2(Ω) +

(∫ t

0

nlim,ed(uh; e, e) dτ

) 1
2

. hk.

Step 3: improved estimate on T2(η, e). Let ǫ ≥ 0 and c0 ≥ 1 (the value of these quantities is chosen
later on). We fix a time t ∈ (0, tF). We define the sets

F ♯
h := {F ∈ F i

h; gF (uh) ≥ c0h
−ǫ},

K♭
h := {K ∈ Kh; ∀F ∈ FK , F 6∈ F ♯

h},
K♯

h := {K ∈ Kh; ∃F ∈ FK , F ∈ F ♯
h} = Kh \ K♭

h,

where FK is the collection of all the mesh interfaces having a nonempty intersection with K (see
Figure 3.2).

F

Figure 3.1. Definition of ∆F (grey triangles)

K

Figure 3.2. Definition of FK (thick lines)

Let βh be the continuous, piecewise affine interpolant of β on the mesh Kh and set zh := βh·∇e.
Observe that zh is a piecewise polynomial of degree ≤ k, but it does not belong to Xh because it
can jump across interfaces. We define Iav(zh) ∈ Xh to be so that its value at any Lagrange node is
equal to the arithmetic average of the values taken by zh from the mesh elements sharing that node.
It is well-known, see [1, 26, 7], that this type of averaging leads to the estimate, for all K ∈ Kh,

(3.9) ‖zh − Iav(zh)‖L2(K) .
∑

F∈FK

h
1
2

F ‖[[zh]]‖L2(F ) ≤
∑

F∈FK

h
1
2

F |β|F ‖ {∂ne} ‖L2(F ),
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where [[·]] denotes the jump across F and where we have used the continuity of βh across F . Inte-
grating by parts, accounting for boundary conditions, and using the fact that η is L2-orthogonal to
Xh, T2(η, e) can be decomposed as

T2(η, e) = −
∫

Ω

η(β·∇e) dΩ = −
∫

Ω

η(β − βh)·∇edΩ −
∫

Ω

ηzh dΩ

= −
∫

Ω

η(β − βh)·∇edΩ −
∫

Ω♭

η(zh − Iav(zh)) dΩ −
∫

Ω♯

η(zh − Iav(zh)) dΩ

=: T2,0(η, e) + T2,1(η, e) + T2,2(η, e),

where Ω♭ := ∪K∈K♭
h
K and Ω♯ := ∪

K∈K♯
h
K. Since β is Lipschitz, the term T2,0(η, e) is readily

bounded as follows:

|T2,0(η, e)| . ‖η‖L2(Ω)h‖∇e‖L2(Ω) . ‖η‖L2(Ω)‖e‖L2(Ω) . h2k+1,

where we have used an inverse inequality and the estimate (3.8) on ‖e‖L2(Ω). For the term T2,1(η, e),
we use (3.9), the Cauchy–Schwarz inequality, hK . hF , and |β|F . 1 to infer

|T2,1(η, e)| .




∑

K∈K♭
h

[α(gK(uh))hK ]
−1 ‖η‖2

L2(K)





1
2



∑

K∈K♭
h

α(gK(uh))
∑

F∈FK

h2
F |β|F ‖ {∂ne} ‖2

L2(F )





1
2

,

with gK(uh) := maxF∈FK
gF (uh). Since the function α is non-increasing, α(gK(uh)) ≤ α(gF (uh))

for all F ∈ FK , so that this estimate implies

|T2,1(η, e)| .




∑

K∈K♭
h

[α(gK(uh))hK ]
−1 ‖η‖2

L2(K)





1
2

nlim,ed(uh; e, e)
1
2 .

We now use Assumption (ii) on the function α to infer that, for all K ∈ K♭
h and all F ∈ FK ,

α(gF (uh)) ≥ α(c0h
−ǫ) ≥ α0c

−λ
0 hǫλ since c0h

−ǫ ≥ 1 (because c0 ≥ 1, ǫ ≥ 0, and h ≤ 1). Thus, we
obtain α(gK(uh)) ≥ α0c

−λ
0 hǫλ, whence




∑

K∈K♭
h

[α(gK(uh))hK ]
−1 ‖η‖2

L2(K)





1
2

. hk+ 1
2
− 1

2
λǫ,

so that

|T2,1(η, e)| . hk+ 1
2
− 1

2
λǫnlim,ed(uh; e, e)

1
2 .

We now bound T2,2(η, e). Since ‖η‖L∞(Ω) . hk+1 owing to u ∈ W k+1,∞(Ω) and the approximation
properties in L∞(Ω) of the L2-orthogonal projection for d = 2 and quasi-uniform meshes, see [11],
we infer

|T2,2(η, e)| ≤ ‖η‖L∞(Ω♯) meas(Ω♯)
1
2 ‖zh − Iav(zh)‖L2(Ω♯) . h2k meas(Ω♯)

1
2 ,

where we have used ‖zh − Iav(zh)‖L2(Ω) . ‖zh‖L2(Ω) . ‖∇e‖L2(Ω) . hk−1. We now estimate

meas(Ω♯). This is achieved by proving meas(Ω♯) . meas(Ω∆♯) and estimating meas(Ω∆♯). Here,

Ω∆♯ := ∪
F∈F♯

h
∆F , so that Ω∆♯ is the union of all the elements that have a face in F ♯

h. Note that

Ω∆♯ ⊂ Ω♯; see Figure 3.3.
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Figure 3.3. The faces in thick red lines are in the set F
♯
h; the triangles filled in dark grey are in Ω∆♯; the

triangles filled in dark or light grey are in Ω♯ (and thus belong to K
♯
h); unfilled triangles belong to K♭

h.

Consider K ∈ K♯
h. By definition, there is F ∈ FK such that F ∈ F ♯

h. By definition also, ∆F ⊂ Ω∆♯

and K ∩ ∆F 6= ∅ (recall that K and ∆F are closed). This means that there is K ′ ∈ Ω∆♯ such that

K ∩K ′ is nonempty, so that K♯
h ⊂ ∪K′∈Ω∆♯{K ′′ ∈ Kh; K ′∩K ′′ 6= ∅}. Hence, using mesh regularity,

we infer

meas(Ω♯) ≤
∑

K′∈Ω∆♯

meas({K ′′ ∈ Kh; K ′ ∩ K ′′ 6= ∅}) .
∑

K′∈Ω∆♯

meas(K ′) = meas(Ω∆♯).

The definition of F ♯
h now implies that

meas(Ω∆♯)h−2ǫ ≤
∑

F∈F♯
h

meas(∆F )h−2ǫ ≤ (c0ℓ)
−2

∑

F∈F♯
h

meas(∆F )|〈∇uh〉∆F
|2

≤ (c0ℓ)
−2

∑

F∈F♯
h

∫

∆F

|∇uh|2 dΩ ≤ 2(c0ℓ)
−2‖∇uh‖2

L2(Ω∆♯)

≤ 6(c0ℓ)
−2(‖∇e‖2

L2(Ω∆♯) + ‖∇η‖2
L2(Ω∆♯) + ‖∇u‖2

L2(Ω∆♯)).

Since ‖∇e‖L2(Ω∆♯) . hk−1, ‖∇η‖L2(Ω∆♯) . hk, and ‖∇u‖L2(Ω∆♯) ≤ meas(Ω∆♯)
1
2 ‖∇u‖L∞(Ω∆♯), choos-

ing c0 = max(
√

12ℓ−1‖∇u‖L∞(Ω×(0,tF)), 1) allows one to hide ‖∇u‖2
L2(Ω∆♯) on the left-hand side, so

that meas(Ω∆♯) . h2(k−1+ǫ), and hence

|T2,2(η, e)| . h3k−1+ǫ.

Collecting the above estimates and dropping higher-order terms, we arrive at

d

dt
‖e‖2

L2(Ω) + nlim,ed(uh; e, e) . h3k−1+ǫ + h2k+1−λǫ.

For k ≥ 2, we can take ǫ = 0 and obtain the desired estimate of order h2k+1 since 3k− 1 ≥ 2k +1 in
this case. In the case k = 1, the two terms on the right-hand side are balanced by choosing ǫ = 1

1+λ
.

This leads to the estimate (3.8) with the sharper bound h1+ρ with ρ = 1
2ǫ. We now use a bootstrap

argument. Suppose that estimate (3.8) holds with bound h1+ρn . Then, proceeding as above with
a parameter ǫn to be chosen, the new bound for T2,2(η, e) becomes h2+ǫn+2ρn , while the bound for
T2,1(η, e) is still h3−λǫn . Balancing the two bounds leads to the choice ǫn = 1

1+λ
(1 − 2ρn), thus

improving estimate (3.8) to h1+ρn+1 with ρn+1 = 1
2 (1 − λǫn) = 1

2 ( 1
1+λ

+ 2λ
1+λ

ρn). This recursive

relation shows that ρn converges to 1
2 (for all λ), thereby completing the proof.
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Remark 3.1. Theorem 3.1 holds in any space dimension under the assumption of locally quasi-
uniform meshes provided the parameter δ = suph>0 maxK∈Kh

maxK′∩K 6=∅ |1 − (hK′/hK)2| is small

enough, since the estimates ‖η‖L∞(Ω) . hk+1 and ‖h− 1
2 η‖L2(Ω) . hk+ 1

2 hold, see [2].
We now prove a convergence result in three dimensions (with a slightly less stringent regularity

assumption on the exact solution). The main difference with the result of Theorem 3.1 is that, at
least for the lowest-order polynomials, the convergence result now requires that the parameter λ
controlling the decrease of the weighting function α at infinity be not too large.

Theorem 3.2. Let u and uh be the solutions to (3.1) and to (3.2), respectively. Assume that

u ∈ C1(0, tF;Hk+1(Ω)) ∩ C0(0, tF;W 1,∞(Ω)). Assume d = 3 and quasi-uniform meshes. Then, the

following holds for all t ∈ [0, tF]: if k ≥ 3 and any λ,

(3.10) ‖(u − uh)(·, t)‖L2(Ω) +

(∫ t

0

nlim,ed(uh;uh, uh) dτ

) 1
2

. hk+ 1
2 ,

and the right-hand side becomes h2+ 2−λ
4+λ if k = 2 and λ < 2, and h1+ 2−3λ

4+λ if k = 1 and λ < 2
3 .

Proof. We proceed as in the proof of Theorem 3.1, up to the bound on T2,2(η, e) in step 3 of
the previous proof. Here, we no longer use approximation properties in L∞(Ω) of the L2-orthogonal
projection. Instead, owing to the Sobolev embedding, we observe that there holds ‖η‖Lp(Ω) . hk

with p = 6. Then,

|T2,2(η, e)| . h2k−1 meas(Ω♯)
p−2

2p ,

and bounding meas(Ω♯) as before yields

|T2,2(η, e)| . h2k−1+ p−2

p (k−1+ǫ).

Collecting the above estimates and dropping higher-order terms, we arrive at

d

dt
‖e‖2

L2(Ω) + nlim,ed(uh; e, e) . h2k−1+ p−2

p (k−1+ǫ) + h2k+1−λǫ.

For k ≥ 4, we can take ǫ = 0 so that, with p = 6, 2k − 1 + p−2
p

(k − 1 + ǫ) = 2k − 1 + 2
3 (k −

1) ≥ 2k + 1, yielding the desired estimate. In the case k ≤ 3, we use a bootstrap argument.
Suppose that the error estimate (3.8) holds with bound hk+ρn . Then, the new bound for T2,2(η, e)

is h2k−1+ρn+ p−2

p (k−1+ǫn+ρn), the bound on T2,1(η, e) remaining unchanged. The two terms are
balanced by the choice

ǫn =
(3 − k)p + 2(k − 1)

(1 + λ)p − 2
− 2(p − 1)

(1 + λ)p − 2
ρn

and this leads to the new error estimate with bound hk+ρn+1 where ρn+1 = 1
2 (1 − λǫn). Hence, we

obtain a recursive relation of the form ρn+1 = a+bρn. We want the fixed-point iteration to deliver a
positive value. This, in turn, requires a > 0. Moreover, the desired 1

2 value is reached if a + 1
2b ≥ 1

2 .
Taking p = 6 yields

a =
1

2

(
1 − 4λ

4 − k

6λ + 4

)
, b =

5λ

6λ + 4
.

Condition a > 0 is fulfilled for all λ if k = 3, all λ < 2 if k = 2, and all λ < 2
3 if k = 1. The

fixed-point is ρ∞ = 2+λ(2k−5)
4+λ

, which is larger than 1
2 only for k = 3. This completes the proof.

Remark 3.2. Sharper results can be derived by using the advective derivative in the weighting
function. Following [17], the proof of the error estimate then hinges on discrete inf-sup stability,

assuming additional regularity in time of the exact solution. As a result, the desired hk+ 1
2 error

estimate is achieved for any polynomial degree, any value for λ, and shape-regular meshes.
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4. Numerical experiments. The objective of this section is to illustrate the efficiency of the
weighted edge stabilization introduced and analyzed in §3.

4.1. One-dimensional tests. We report in this section one-dimensional tests over the periodic
domain Ω := (0, 1) using P1 finite elements. The time stepping is done with the SSP RK3 scheme
with CFL = 0.2. The parameters for the first-order viscosity, entropy viscosity, and edge stabilization
are cmax = 1

2 , cev = 1
2 , and ced = 0.05, respectively.

4.1.1. Smooth transport. We consider the one-dimensional transport equation ∂tu + ∂xu =
0 with initial data u0(x) = sin(2πx) to compare the convergence properties of the linear edge
stabilization with those of the weighted edge stabilization. The computations are performed up to
tF = 1 on various meshes. The meshes are non-uniform to avoid super-convergence effects. The size
of each cell is chosen randomly with deformation factor equal to 3, that is, the size ratio between
two neighboring cells is at most 3.

The L1- and L2-norms of the error at tF = 1 are reported in Table 4.1 for seven meshes. This
test shows that the convergence properties of the linear edge stabilization and those of the weighted
edge stabilization are identical for smooth solutions.

(c) Edge stabilization

h L
1
-norm rate L

2
-norm rate

1.000E-02 3.309E-04 – 4.095E-04 –

5.000E-03 7.845E-05 2.077 9.699E-05 2.078

2.500E-03 1.875E-05 2.065 2.342E-05 2.050

1.250E-03 4.630E-06 2.018 5.788E-06 2.017

6.250E-04 1.158E-06 1.999 1.439E-06 2.008

3.125E-04 2.874E-07 2.011 3.572E-07 2.010

1.563E-04 7.081E-08 2.021 8.796E-08 2.022

(d) Weighted edge stabilization

L
1
-norm rate L

2
-norm rate

3.442E-04 – 5.233E-04 –

7.837E-05 2.135 1.068E-04 2.292

1.866E-05 2.070 2.448E-05 2.126

4.625E-06 2.013 5.954E-06 2.039

1.157E-06 1.999 1.467E-06 2.021

2.875E-07 2.009 3.625E-07 2.017

7.114E-08 2.015 8.939E-08 2.020

Table 4.1

Linear transport with smooth solution. L1- and L2-norms of error, P1 finite elements with edge stabilization
(left) and weighted edge stabilization (right), tF = 1, non-uniform meshes.

4.1.2. Non-smooth transport. We now test the convergence properties of the entropy vis-
cosity method with the weighted edge stabilization. We consider the one-dimensional transport
equation with non-smooth initial data (2.11) and periodic boundary conditions. The computations
are performed with P1 finite elements up to tF = 1 on various meshes. The L1- and L2-norms of the
error are reported in Table 4.2 for seven uniform (left table) and seven non-uniform meshes (right ta-
ble). The convergence orders in the L1- and L2-norm seem to be 3

4 and 3
8 , respectively. Considering

that the initial data is in BV (Ω) (almost W 1,1(Ω)) and in B
1
2

∞,2(Ω) (almost H
1
2 (Ω) := W

1
2
,2(Ω)),

these rates are compatible with the estimates
k+ 1

2

k+1 and 1
2

k+ 1
2

k+1 obtained by interpolation using the

rate (k + 1
2 ) for smooth solutions.

We now verify that the weighted edge stabilization does preserve the weakened maximum prin-
ciple (see (2.8)) of the entropy viscosity, contrary to the linear (unweighted) edge stabilization, see
§2.2.2. We show in Table 4.3 the indicators eMax and eMin defined by (2.12) for seven uniform and
non-uniform meshes. By comparing Table 2.1 with Table 4.3, we observe that the convergence rate
on eMax and eMin for the entropy viscosity solution with weighted edge stabilization is larger than
that for the entropy viscosity solution alone, so that the entropy viscosity and the weighted edge
stabilization are now working together instead of antagonizing each other.

4.1.3. One-dimensional non-convex conservation equation. We finish this series of one-
dimensional tests by testing again the nonlinear scalar conservation equation with non-convex flux
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(a) Uniform meshes

h L
1
-norm rate L

2
-norm rate

1.000E-02 4.694E-02 – 1.194E-01 –

5.000E-03 2.720E-02 0.787 9.094E-02 0.393

2.500E-03 1.590E-02 0.774 6.965E-02 0.385

1.250E-03 9.342E-03 0.768 5.350E-02 0.381

6.250E-04 5.504E-03 0.763 4.115E-02 0.379

3.125E-04 3.254E-03 0.758 3.168E-02 0.378

1.563E-04 1.930E-03 0.754 2.439E-02 0.377

(b) Non-uniform meshes

L
1
-norm rate L

2
-norm rate

4.897E-02 – 1.219E-01 –

2.873E-02 0.769 9.320E-02 0.388

1.685E-02 0.770 7.132E-02 0.386

1.002E-02 0.750 5.511E-02 0.372

5.954E-03 0.751 4.240E-02 0.378

3.552E-03 0.745 3.269E-02 0.375

2.115E-03 0.748 2.522E-02 0.374

Table 4.2

Linear transport with non-smooth solution. Entropy viscosity method with the weighted edge stabilization. L1-
and L2-norms of error on uniform meshes (left) and non-uniform meshes (right), P1 finite elements, tF = 1.

(a) Uniform meshes

h eMin rate eMax rate

1.000E-02 6.498E-03 – 6.515E-03 –

5.000E-03 4.470E-03 0.540 4.470E-03 0.544

2.500E-03 2.966E-03 0.592 2.966E-03 0.592

1.250E-03 2.021E-03 0.553 2.021E-03 0.553

6.250E-04 1.345E-03 0.588 1.345E-03 0.588

3.125E-04 8.992E-04 0.580 8.992E-04 0.580

1.563E-04 6.091E-04 0.562 6.091E-04 0.562

(b) Non-uniform meshes

eMin rate eMax rate

6.655E-03 – 6.354E-03 –

4.452E-03 0.580 4.462E-03 0.510

3.171E-03 0.490 3.153E-03 0.501

2.124E-03 0.578 2.177E-03 0.534

1.474E-03 0.527 1.473E-03 0.564

1.013E-03 0.541 1.022E-03 0.527

7.544E-04 0.425 7.189E-04 0.508

Table 4.3

Weakened maximum principle for linear transport with non-smooth solution on uniform meshes (left) and non-
uniform meshes (right), P1 finite elements, tF = 1.

and initial data specified by (2.14). The computations are performed on five uniform meshes com-
posed of 100, 200, 400, 800, and 1600 cells using the entropy viscosity method with weighted edge
stabilization. The graphs of the solutions obtained at tF = 1 are shown in Figure 4.1. We observe
that, contrary to what is shown in Figure 2.2(b), the method now converges to the correct entropic
solution thereby confirming again that weighting the edge stabilization is a good idea.
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Figure 4.1. Nonconvex flux. Results at tF = 1 with entropy viscosity with weighted edge stabilization on five
uniform meshes composed of 100, 200, 400, 800, and 1600 cells.
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4.2. Two-dimensional tests. We illustrate the method on two-dimensional problems.

4.2.1. Smooth transport. Let us consider the domain Ω = {x ∈ R
2, ‖x‖ < 1}, the rotating

velocity field β(x) = 2π(−y, x), where x = (x, y), and the two-dimensional transport problem

∂tu + ∇·(βu) = 0, u(x, 0) =
1

2

(
1 − tanh

(
(x − r0)

2

a2
− 1

))
,(4.1)

with a = 0.3 and r0 = (0.4, 0). Note that ∇·β = 0 and β·n|∂Ω = 0.
We perform tests on triangular isoparametric finite elements. The meshes are quasi-uniform

and based on a Delaunay triangulation technique [28]. The time stepping uses the RK4 scheme and
the CFL used in all the tests is CFL=0.25. The parameters for the first-order viscosity, entropy
viscosity, and edge stabilization are cmax = 1

4k
, cev = 0.1, and ced = 0.025, respectively.

Convergence tests on the above smooth problem, not reported here, have shown that, when used
alone, the weighted edge stabilization performs as well as the original edge stabilization technique
both for P1 and P2 finite elements. When combined with the weighted edge stabilization, the
converge rate of the entropy viscosity method with P1 finite elements, which is already second-order
in the L2-norm, is not increased. The story is a little different for higher-order finite elements. The
entropy viscosity alone has been observed to be second-order for P1 finite elements and to be of
order (k + ǫ(k)) for higher-order polynomial degrees; see [21]. Augmenting the entropy viscosity
method with weighted edge stabilization improves the convergence order. We show in Table 4.4
convergence tests on the above smooth transport problem (4.1) with P2 finite elements. We compare
the convergence rate of the entropy viscosity method and the entropy viscosity method with weighted
edge stabilization. Adding the weighted edge stabilization clearly improves the convergence rate of
the entropy viscosity method. Some super-convergence effect is observed (the errors are estimated
by using a Gaussian quadrature exact on P5 polynomials).

(a) Entropy Viscosity

h L1 rate L2 rate

2.00E-01 1.102E-01 – 8.410E-02 –

1.00E-01 2.317E-02 2.251 1.700E-02 2.306

5.00E-02 3.659E-03 2.663 2.268E-03 2.906

2.50E-02 8.099E-04 2.176 4.579E-04 2.308

1.25E-02 2.142E-04 1.919 1.173E-04 1.965

1.00E-02 1.337E-04 2.109 7.370E-05 2.083

(b) Ent. Visc. + Weighted Ed. St.

L1 rate L2 rate

1.104E-01 – 8.851E-02 –

1.783E-02 2.630 1.675E-02 2.401

1.362E-03 3.710 1.304E-03 3.684

1.121E-04 3.603 1.137E-04 3.520

9.368E-06 3.581 1.019E-05 3.479

4.249E-06 3.543 4.733E-06 3.439

Table 4.4

Linear transport with smooth solution (4.1). L1- and L2-norms of error with the entropy viscosity method (left)
and the entropy viscosity with weighted edge stabilization (right), P2 finite elements, tF = 1.

4.2.2. Non-smooth transport. We solve again the linear transport problem (4.1), but this
time we consider the following non-smooth initial data u(x, 0) = 1 if ‖x − r0‖ < a and u(x, 0) = 0
otherwise. The meshes and the time stepping are the same as before.

We report in Table 4.5 convergence tests in the L1- and L2-norms for various meshes using the
entropy viscosity method with weighted edge stabilization. The results for P1 elements are shown in
the left table and those for P2 elements are shown in the right table. The convergence orders in the
L1- and L2-norms seem to be 3

4 and 3
8 for P1 elements and 4

5 and 2
5 for P2 elements, respectively.

As above, these rates are compatible with the estimates
k+ 1

2

k+1 and 1
2

k+ 1
2

k+1 obtained by interpolation

using the rate (k + 1
2 ) for smooth solutions.

We now verify the weakened maximum principle by computing the indicators eMax and eMin

defined by (2.12) for each mesh. The results are reported in Table 4.6; those for P1 finite elements
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(a) Ent. Visc. + Weighted Ed. St. P1

h L1 rate L2 rate

2.00E-01 1.381E+00 – 7.374E-01 –

1.00E-01 9.170E-01 0.591 5.544E-01 0.411

5.00E-02 5.454E-01 0.750 4.172E-01 0.410

2.50E-02 3.236E-01 0.753 3.158E-01 0.402

1.25E-02 1.904E-01 0.765 2.411E-01 0.389

1.00E-02 1.607E-01 0.759 2.214E-01 0.383

6.25E-03 1.124E-01 0.760 1.851E-01 0.381

(b) Ent. Visc. + Weighted Ed. St. P2

L1 rate L2 rate

7.464E-01 – 5.058E-01 –

4.562E-01 0.710 3.779E-01 0.420

2.605E-01 0.808 2.794E-01 0.436

1.490E-01 0.806 2.114E-01 0.402

8.594E-02 0.794 1.601E-01 0.401

7.211E-02 0.786 1.466E-01 0.394

Table 4.5

Linear transport with non-smooth solution. L1- and L2-norms of error with entropy viscosity with weighted edge
stabilization for P1 finite elements (left) and P2 finite elements (right), at tF = 1.

are shown in the left table and those for P2 finite elements in the right table. We observe that
both indicators eMax and eMin converge to zero with the meshsize thus indicating that the entropy
viscosity with weighted edge stabilization satisfies a weakened maximum principle.

(a) Ent. Visc. + Weighted Ed. St. P1

h eMin rate eMax rate

2.00E-01 4.264E-02 – 5.354E-01 –

1.00E-01 5.337E-02 -0.324 2.037E-01 1.394

5.00E-02 5.313E-02 0.006 3.546E-02 2.522

2.50E-02 1.911E-02 1.475 1.283E-02 1.467

1.25E-02 6.362E-03 1.587 7.776E-03 0.722

1.00E-02 5.713E-03 0.482 6.798E-03 0.603

6.25E-03 4.885E-03 0.333 5.461E-03 0.466

(b) Ent. Visc. + Weighted Ed. St. P2

eMin rate eMax rate

2.003E-02 – 1.626E-01 –

1.250E-02 0.680 1.015E-02 4.001

8.397E-03 0.574 7.904E-03 0.361

7.900E-03 0.088 6.943E-03 0.187

6.131E-03 0.366 5.953E-03 0.222

5.150E-03 0.782 5.211E-03 0.596

Table 4.6

Linear transport with non-smooth solution. Weakened maximum principle at tF = 1 for entropy viscosity with
weighted edge stabilization with P1 finite elements (left) and P2 finite elements (right).

4.3. Non-convex conservation equation. Consider the following two-dimensional scalar
conservation equation with non-convex fluxes:

(4.2) ∂tu + ∇·f(u) = 0, f(u) = (sinu, cos u), u(x, y, 0) =

{
3.5π, x2 + y2 < 1;

0.25π, otherwise.

The local velocity is f ′(u) = (cos u,− sin u). This is a Cauchy problem in R
2. This test was

proposed in [27] and is challenging to many high-order numerical schemes because the solution has
a two-dimensional composite wave structure; see [27] for details.

We perform computations on a mesh composed of triangular finite elements. The mesh family
is quasi-uniform. The solution is computed at tF = 1. The time stepping is done with the standard
RK4 scheme with CFL = 0.025. Three computations are done with the entropy viscosity method
(with coefficients cmax = 1

2 , cev = 1): one without edge stabilization, one with unweighted edge
stabilization (with ced = 1), and one with weighted edge stabilization (with ced = 1 and λ = 2). The
graph of the P1 solution without edge stabilization is shown in Figure 4.2(a). The solution shows the
expected rotating composite wave structure composed of a shock and an expansion. This solution
is an accurate approximation of the entropic solution. The graph of the solution with unweighted
edge stabilization is shown in Figure 4.2(b). We observe that this solution exhibits a non-physical
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layer between the shock and the expansion wave. We have verified by mesh refinement that this
approximation does not converge to the entropic solution. Finally, the graph of the solution with
weighted edge stabilization is shown in Figure 4.2(c). We observe that the unphysical layer has been
pushed back to the shock, thereby recovering the correct physical behavior.
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Figure 4.2. Two-dimensional conservation equation with non-convex flux, tF = 1. Entropy viscosity solution
without edge stabilization (left), with unweighted edge stabilization (center), and with weighted edge stabilization
(right) on a uniform mesh composed of 118850 P1 nodes, CFL = 0.025.

5. Conclusions. To conclude we would like to offer some thoughts on the relative importance of
nonlinear viscosities (also called shock capturing in the literature) and linear stabilization techniques.
Substantial efforts have been devoted to the construction of linear stabilization techniques (GaLS,
RFB, SUPG, VMS, Streamline Diffusion, Subgrid Viscosity, Edge Stabilization, local projection,
etc.), and it is often implicitly understood that linear stabilization is the workhorse whereas shock
capturing is only meant to remove remaining spurious oscillations. As a result, the amount of research
dedicated to constructing and analyzing shock capturing techniques is comparatively smaller than
that dedicated to linear stabilization. As shown in the present paper, linear stabilization techniques
can promote the Gibbs phenomenon and can transform a converging method into a non-converging
one. We think that nonlinear stabilization methods (shock capturing, nonlinear viscosities, etc.)
deserve more attention. These methods should be considered the workhorses that kill the Gibbs
phenomenon and ensure convergence to the physically-correct weak solution; linear stabilization
techniques should be seen as auxiliary tools whose job is to improve the convergence of an already
converging nonlinear stabilization method. We refer to [5] for a recent step in this direction.

Appendix A. Entropy viscosity. The purpose of this appendix is to briefly recall the princi-
ples of the so-called entropy viscosity method. The specificities of the method are unrelated to the
content of this paper, but we nevertheless describe how it is implemented for the sake of complete-
ness. Full descriptions of the technique can be found in [20, 21]. The time approximation of (2.6) is
done using an explicit Runge-Kutta method defined by a Butcher tableau

(A.1)

0
c2 a21

c3 a31 a32

...
...

. . .

cr ar1 ar2 · · · ar,r−1

b1 b2 · · · br−1 br
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The algorithm is initialized by setting ν0
h = 0 and u0

h = u0,h. The viscosity field is piecewise constant
over the mesh Kh. Assume that the current time is tn and let un

h be the approximation of uh(tn).
The next time increment is defined by

(A.2) ∆tn = CFL min
K∈Kh

hK

|f ′(un
h|K)| .

The approximation un+1
h and the viscosity field νn+1

h are evaluated at time tn+1 = tn + ∆tn as

(A.3) un+1
h = un

h − ∆tn(b1k1 + b2k2 + · · · + brkr), νn+1
h = νr,

where the functions {kl}1≤l≤r and the viscosity fields {νl}1≤l≤r are recursively computed as follows:

(A.4)






w1 = un
h,

ν1 = νn
h ,

∫

Ω

k1v dΩ =

∫

Ω

v∇·f(w1) + bev(ν1, w1, v), ∀v ∈ Xh

w2 = un
h − ∆tna21k1,

ν2 = H2(w1, w2),

∫

Ω

k2v dΩ =

∫

Ω

v∇·f(w2) + bev(ν2, w2, v), ∀v ∈ Xh

...

wr = un
h − ∆tn(ar1k1 + ar2k2 + · · · + ar,r−1kr−1)

νr = Hr(w1, w2, . . . , wr),

∫

Ω

krv dΩ =

∫

Ω

v∇·f(wr) + bev(νr, wr, v), ∀v ∈ Xh,

where bev(ν, w, v) :=
∑

K∈Kh
ν|K

∫
K
∇w·∇v dK.

The functions H2, . . . ,Hr are piecewise constant over the mesh Kh and are defined as follows.
First, we define the so-called entropy functional E ∈ C1(R; R). Second, we evaluate the entropy
residual associated with two given states ch, dh ∈ Xh as follows. Let δ be the time increment
separating the states ch and dh. The entropy residual in the cell K at x ∈ K is defined as

(A.5) RK(ch, dh, δ)(x) =
E(dh(x)) − E(ch(x))

δ
+ f ′(dh(x))·∇(E(dh(x))).

We now define the entropy residual associated with the mesh interfaces. Let F ∈ F i
h. Then, for all

x ∈ F , we set

(A.6) JF (dh)(x) = (f ′(dh(x))·n(x))[[∂nE(dh(x))]].

The total entropy residual in the cell K is then defined to be

(A.7) DK(ch, dh, δ) = max(‖RK(ch, dh, δ)‖L∞(K), max
F∈∂K∩Fi

h

‖JF (dh)‖L∞(F )).

The maximum local wave speed in the cell K is estimated by

(A.8) βK(dh) = |max
x∈K

f ′(dh(x))|.

Then, the value over K of the viscosity function Hl, 2 ≤ l ≤ r, is defined as follows:

(A.9) Hl(w1, . . . , wl)|K = min(cmaxβK(wl)hK , cevh
2
KDK(w1, wl, cl∆tn))

Note that each step of (A.4) requires solving a mass matrix linear system. We stress again that
we do not recommend to use the lumped mass matrix instead of the consistent mass matrix since
mass lumping induces large dispersion errors.
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