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Introduction

In this paper, we consider the problem of estimating the level sets of a regression function. More precisely, consider a random pair (X, Y ) taking values in R d ×J, where J ⊂ R is supposed to be bounded. The goal of this paper is then to build an estimator of the level sets of the regression function r of Y on X, dened for all x ∈ R d by

r(x) = E [Y |X = x].
For t > 0, a level set for r is dened by

L(t) = {x ∈ R d : r(x) > t}.
Assume that we have an independent and identically distributed sample (i.i.d.) ((X 1 , Y 1 ), . . . , (X n , Y n )) with the same distribution as (X, Y ). We then consider a plug-in estimator of L(t). More precisely, we use a consistent estimator rn of r, in order to estimate L(t) by L n (t) = {x ∈ R d : rn (x) > t}.

Most of the research works on the estimation of level sets concern the density function. One can cite the works of Cadre [START_REF] Cadre | Kernel estimation of density level sets[END_REF], Cuevas and Fraiman [START_REF] Cuevas | A plug-in approach to support estimation[END_REF], Hartigan [START_REF] Hartigan | Estimation of a convex density contour in two dimensions[END_REF], Polonik [START_REF] Polonik | Measuring mass concentrations and estimating density contour clustersan excess mass approach[END_REF], Tsybakov [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF], Walther [START_REF] Walther | Granulometric smoothing[END_REF]. This large number of works on this subject is motivated by the high number of possible applications. Estimating these level sets can be useful in mode estimation (Müller and Stawitzki [7],

Polonik [START_REF] Polonik | Measuring mass concentrations and estimating density contour clustersan excess mass approach[END_REF]), or in clustering (Biau, Cadre and Pelletier [START_REF] Biau | A graph-based estimator of the number of clusters[END_REF], Cuevas, Febrero and Fraiman [START_REF] Cuevas | Cluster analysis: a further approach based on density estimation[END_REF][START_REF] Cuevas | Estimating the number of clusters[END_REF]). In particular, Biau, Cadre and Pelletier [START_REF] Biau | A graph-based estimator of the number of clusters[END_REF] use an estimator of the level sets of the density function to determine the number of clusters.

The same applications are possible with the regression function. Moreover, it is for instance possible to use an estimator of the level sets of the regression function to determine the path of water ow from a digital representation of an area. In the same vein, in medical imaging, people want to estimate the areas where some function of the image exceeds a xed threshold. In medical decision making, we can also nd a lot of applications. For instance, the severity of the cancer is characterized by a variable Y which directly impacts the choice of standard or aggressive chemotherapy. For osteosarcoma [START_REF] Man | Expression proles of osteosarcoma that can predict response to chemotherapy[END_REF], Y is the percent necrosis in the tumor after a rst round of treatment. If Y > 0.9 (this threshold has been xed by experts and is now the convention), the aggressive chemotherapy will be chosen. The problem is that Y is measured using an invasive biopsy. If we can collect from the patient a feature vector X (which acquisition is easier), such as gene expression levels, knowledge of the regression level sets would allow the choice of an ecient treatment planning without a biopsy. Note that, in these examples, the use of a compact set J is fully justied. This is generally the case in most practical situations, particularly in image analysis.

Despite the many potential applications, the estimation of the level sets of the regression function has not been widely studied. Müller [START_REF] Müller | The excess mass approach in statistics[END_REF] mentioned it briey in his survey. Willett and Nowak [START_REF] Nowak | Minimax optimal level-set estimation[END_REF] obtained minimax rates (for dierent smoothness classes) for estimators based on recursive dyadic partitions. Scott and Davenport [START_REF] Scott | Regression level set estimation via costsensitive classication[END_REF] use a cost sensitive approach and a dierent measure of risk. Cavalier [START_REF] Cavalier | Nonparametric estimation of regression level sets[END_REF] and Polonik and Wang [START_REF] Polonik | Estimation of regression contour clusters: an application of the excess mass approach to regression[END_REF] used estimators based on the maximization of the excess mass which was introduced by Müller and Sawitzki [START_REF] Müller | Excess mass estimates and tests for multimodality[END_REF] and Hartigan [START_REF] Hartigan | Estimation of a convex density contour in two dimensions[END_REF]. Cavalier demonstrated asymptotic minimax rate of convergence for piecewise polynomial estimators using smoothness assumptions on the boundary of the level sets. We used a dierent approach and construct a plug-in estimator using the kernel estimator of the regression. The main advantage of our estimator is the simplicity of his calculation, inherited from the plug-in approach. Moreover, our estimator does not require strong assumptions on the shape of level sets.

All our consistency results are in the sense of the symmetrical dierence (Figure 1), dened by

L n (t)∆L(t) = (L n (t) ∩ L C (t)) ∪ (L C n (t) ∩ L(t)).
Figure 1: Symmetrical dierence (in black) between two sets A (in red) and B (in blue).

Our goal is to establish some consistency results under reasonable assumptions on r and rn . Using a kernel estimator for r, we get a rate of convergence equivalent to the one obtained by Cadre [START_REF] Cadre | Kernel estimation of density level sets[END_REF] for the density function.

This paper is organized as follows. The denition of our estimator and consistency results are given in Section 2. In Section 3 we confront our estimator to simulated data. Finally, proofs are collected in Section 4.

Main results

Construction of the estimator

As announced, we use a plug-in approach. That is, given an estimator r n of r we estimate {x ∈ Λ : r(x) > t} by {x ∈ Λ : r n (x) > t}. To estimate r, we choose to consider a kernel estimator.

Assume that we can write

r(x) = ϕ(x) f (x) ,
where f is the density function of X, and ϕ is dened by ϕ(x) = r(x)f (x).

Let K be a kernel on R d , that is a probability density on R d . We denote h = h n and K h (x) = K(x/h). From an i.i.d. sample (X 1 , Y 1 ), . . . , (X n , Y n ) , we dene, for all x ∈ R d ,

ϕ n (x) = 1 nh d n i=1 Y i K h (x -X i ) and f n (x) = 1 nh d n i=1 K h (x -X i ).
For all x ∈ R d , the kernel estimator of r is then dened by

r n (x) = ϕ n (x)/f n (x) if f n (x) = 0 0 otherwise.
The properties of this estimator are already well studied in the litterature. For instance, the interesting reader can look at Bosq and Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF] or Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF].

Under the assumption A0 There exists t -< t such that L(t -) is compact. Besides, λ({r = t}) = 0

(where λ stands for the Lebesgue measure), a rst consistency result can be trivialy obtained from a slight modication of Theorem 3 by Cuevas, González-Manteiga and Rodríguez-Casal [START_REF] Cuevas | Plug-in estimation of general level sets[END_REF] and the consistency properties of the kernel estimator. A1 The functions r and f are twice continuously dierentiable, and, ∀t ∈ Θ , ∃0 < t -< t : inf

L(t -) f > 0; A2 For all t ∈ Θ, inf r -1 ({t}) r > 0,
where, ψ(x) stands for the gradient at x ∈ R d of the dierentiable function ψ : R d → R.

The assumptions A1 on the regularity are inherited from the classical assumptions in kernel estimation [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF]. Note that "harder" assumptions on the regularity of r and f will not improve the obtained rate of consistency. Moreover, let us mention that under Assumptions A1 and A2, we have

(Proposition A.2 in [1]) ∀t ∈ Θ : λ(r -1 [t -ε, t + ε]) → 0 as ε → 0.
Let us now introduce the assumptions on the kernel K.

A3 K is a continuously dierentiable with a compact support. Moreover, there exists a decreasing function µ :

R + → R such that K(x) = µ( x ) for all x ∈ R d .
We are now in a position to establish a rate of convergence for E λ(L n (t)∆L(t)).

Theorem 2.1.

Under Assumptions A0 -A3, if nh d /(log n) → ∞ and nh d+4 log n → 0, then for almost all t ∈ Θ E λ(L n (t)∆L(t)) = O(1/ √ nh d ).
Remarks :

• Roughly speaking, the assumptions about the bandwidth impose to take h between ( logn n )

1 d and (n log n) -1 d+4 . Moreover, if we take h = O((n log n) -1 d+4 ), we get √ nh d = O n 2 d+4 (log n) d 2(d+4) = O n 1/3 (log n) 1/6 with d = 2,
that is a rate of the same order as Cadre [START_REF] Cadre | Convergent estimators for the L 1 -median of a Banach valued random variable[END_REF] in the density case.

• A remaining and crucial problem is the research of an optimal bandwidth h for our estimator. Indeed, if they are already results in the literature about an optimal bandwidth for the estimation of r, this bandwidth is not necessarily optimal for estimating L(t). However, in the simulations, we used a cross-validation procedure to choose a bandwidth.

Discussion about the rate

In this section, we provide a short comparison with the estimator proposed by

Cavalier. Indeed, we choose this estimator because it is proven to be optimal [START_REF] Cavalier | Nonparametric estimation of regression level sets[END_REF].

The main idea of this estimator is that the level set L(t) minimises the excess mass

M (G) = G f (x)dx -t * λ(G).
Starting from this, Cavalier proposes to introduce estimators with piecewisepolynomial structure based on the maximization of local empirical excess mass.

Assuming that L(t) can be expressed as

L(t) = {x = (r, ϕ), 0 ≤ r < 2π},
with g a 2π-periodic continuous function on R, one starts by computing a piecewise-polynomial estimator ĝ of g. Then, the estimate of L(t) is given by the closure of

{(r, ϕ) : 0 ≤ r < ĝ(ϕ), 0 ≤ ϕ < 2π}.
Note that this estimate is always star-shaped.

Depending on the used kind of design points, Cavalier obtains optimal rates of consistency.

If our estimator fails to get an optimal rate, its main advantage is its simplicity. Indeed, where getting the estimator ĝ of g could be a little dicult, our estimator is really easy to implement. One only needs to do is compute a kernel estimation of the regression function (with one of the various existing R packages) and use the results to estimate the level set. Moreover, despites the regularity assumptions for f and r inherited from the use of a kernel estimator, our rate of consistency is obtained for general shapes of level sets. For example, we do not require that the level sets are star-shaped.

Study of nite sample behavior

In this section, we illustrate our method on a simple simulated data set. Consider the function r dened on R 2 (Figure 2) by [START_REF] Cadre | Convergent estimators for the L 1 -median of a Banach valued random variable[END_REF][START_REF] Cadre | Convergent estimators for the L 1 -median of a Banach valued random variable[END_REF]. The size of the square is large enough to contain the level sets we will consider. We set Y i = r(X i ) + ε i , where (X 1 , . . . , X n ) is an i.i.d sample distributed as X, and (ε 1 , . . . , ε n ) is an i.i.d. sample with a normal distribution centered on 0 and with standard deviation 0.1 (X ≡ N (0, 0.1)).

r : (u, v) → sin(u) + sin(v) log √ u 2 + v 2 + 1 .

Illustration of the rate

In this section we illustrate our theoretical rate of convergence obtained in The- 

Selection of h by cross-validation

Now we use a simple cross-validation to select the bandwidth: For each value of n we use half the dataset to compute the kernel estimator with h (and the level set estimator) on a grid of 20 values between the limits allowed by the assumptions of Theorem 2.1 (see Remark 1 below Theorem 2.1). Then, we use the remaining part of the dataset to evaluate the volume of the symmetrical dierence and select the optimal h. We compare the error obtained to the previous ones in Figure 4. We see that our choice process of h does not improve the estimation of the level sets. If we compare the error multiplied by √ nh 2 (Figure 5), we see that we select a lower bandwidth. However, we cannot generalize about it since we are here in a very simple case.

Moreover, we use a naive cross-validation method. Looking for more ecient methods to derive an optimal bandwidth for the level-set estimation is still an interesting and opened question. For this, we could rst think of the adaptation of method used for density level sets estimation like Rinaldo, Singh, Nugent and Wasserman [START_REF] Rinaldo | Stability of Density-Based Clustering[END_REF] or Samworth and Wand [START_REF] Samworth | Asymptotics and optimal bandwidth selection for highest density region estimation[END_REF] for example.

Proofs

This section is dedicated to the proof of Theorem 2.1. From now on, c is a non-negative constant, which value may change from line to line.

Proof of Theorem 2.1

In this proof, some arguments are classical result from the kernel density (or regression) estimation theory. For more details, we refer the reader to the book by Bosq and Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF], chapter 4 and 5.

From now on, we denote by ∂A the boundary of any subset A ⊂ R d . Besides, we introduce H the (d -1)-dimensional Hausdor measure (Evans and Gariepy [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]). Recall that H agrees with ordinary (k -1)-dimensional surface area on nice sets (Proposition A.1 in [START_REF] Cadre | Kernel estimation of density level sets[END_REF]). Finally, we set K = K 2 dλ.

Preliminary results

All the results in this sections are stated under Assumptions A0 -A3. The proof of the theorem relies on the four following lemmas.

Let us dene

Ω n,c = √ nh d sup Ln(t)∪L(t)
|r n -r| ≥ c log n .

Lemma 4.1. If nh d+4 / log n → 0, then there exists Γ > 0 such that

√ nh d P(Ω n,Γ ) → 0.
Note that the condition nh d+4 / log n → 0 is satised under the assumptions of Theorem 2.1.

Proof of Lemma 4.1

As r is continuous, we have sup

L(t -) |r| < c. Assuming that inf L(t -) f > 0, then, since sup L(t -) |f n -f | → 0 a.s.
under the assumptions of Lemma 4.1 (Bosq and Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF]), there exists θ > 0 such that inf L(t -) f n > θ a.s. for n large enough. So we can write sup

L(t -) |r n -r| = sup L(t -) ϕ n -ϕ f n + r f n -f f n ≤ c sup L(t -) |ϕ n -ϕ| + sup L(t -) |f n -f | . (1) 
We have sup

L(t -) |ϕ n -ϕ| ≤ sup L(t -) |ϕ n -E ϕ n | + sup L(t -) |E ϕ n -ϕ|. We cover L(t -) with n balls B k = B(x k , ρ n ) (k = 1, . . . , n ) of radius ρ n .
Consider x ∈ L(t -), we denote by B k the ball containing x. Then we set, for x, x ∈ L(t -),

A n (x, x ) = 1 n n i=1 Y i [K h (x -X i ) -K h (x -X i )] -E 1 n n i=1 Y i [K h (x -X i ) -K h (x -X i )] ,
which leads us to sup

L(t -) |ϕ n -ϕ| ≤ sup 1≤k≤ n |ϕ n (x k )-Eϕ n (x k )|+ sup x∈L(t -) |A n (x, x k )|+ sup L(t -) |E ϕ n -ϕ|. (2) 
Then, since K is Lipschitz, there exists γ > 0 such that

|A n (x, x k )| ≤ ch -d-γ ρ γ n 1 n n i=1 |Y i | + E|Y | ≤ ch -d-γ ρ γ n since Y is bounded.
As a consequence, we have

P sup x∈L(t -) |A n (x, x k )| > c 4 log n nh d ≤ P ch -d-γ ρ γ n > c 4 log n nh d .
One can choose

ρ n = n -a , a > 0 and ρ γ n = o h d+γ log n nh d , such that P sup x∈L(t -) |A n (x, x k )| > log n/ √ nh d = 0. (3) 
Then, using the arguments of the proof of Theorem 5.II.3 in [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF], we obtain ∀ε > 0, P sup

1≤k≤ln |ϕ n (x k ) -Eϕ n (x k )| > ε < 2 n e -nh d ε 2 c .
If we set ε = ε 0 log n/nh d , we have

P sup 1≤k≤ln |ϕ n (x k ) -Eϕ n (x k )| > ε 0 log n nh d ≤ c n n -2ε0/c
≤ cn -2ε0/c ρ -d n .

Remember that ρ n = n -a , with a > 0, one gets

√ nh d P sup 1≤k≤ln |ϕ n (x k ) -Eϕ n (x k )| > ε 0 log n nh d ≤ cn 1/2+ad-2ε0/c √ h d (4)
which tends to 0 choosing ε 0 > (1/2+ad)c 2 .

Moreover, under A3, K is even which gives us sup

L(t -) |E ϕ n -ϕ| = O log n nh d ,
Then, the Berry-Esseen inequality [START_REF] Berry | The accuracy of the Gaussian approximation to the sum of independent variables[END_REF] gives us

|P(r n (x) < t)-Φ(t n (x))| ≤ c nV n (x, t) 3 E |(Y -t)K h (x -X) -E(Y -t)K h (x -X)| 3 . (6) 
Finally, under Assumptions A1 and A3, we have (see for example Bosq and

Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF])

sup x∈L(t -) |(Y -t)K h (x -X) -E(Y -t)K h (x -X)| 3 ≤ ch d and inf x∈L(t -) V n (x, t) ≥ ch d .
The lemma can then be deduced from [START_REF] Walther | Granulometric smoothing[END_REF].

Dene now Θ 0 the set of all t in Θ such that lim ε 0

1 ε λ r -1 [t -ε, t] = lim ε 0 1 ε λ r -1 [t, t + ε] = ∂L(t)
r -1 dH.

The following result is proven in Cadre [START_REF] Cadre | Kernel estimation of density level sets[END_REF] (Lemma 3.2).

Lemma 4.3. Θ 0 = Θ almost everywhere.

Note that under Assumptions A1 and A2, we obtain, thanks to Proposition

A.2 in [1], λ r -1 [t -ε, t + ε] = λ r -1 (t -ε, t + ε) ,
for all t ∈ Θ and ε > 0 small enough.

Finally, we set

v(x) = Var(Y |X = x) + r 2 (x),
and, for t ∈ Θ and x ∈ L(t -),

t n (x) = f (x) nh d Kf (x)(v(x) + t 2 ) (t -r(x)).
We are now in a position to prove Lemma 4.4 below.

Lemma 4.4. If nh d /(log n) → ∞ and nh d+4 log n → 0, then for all t ∈ Θ 0 ,

lim n→∞ √ nh d V t n P(r n (x) < t)dx - V t n Φ(t n (x))dx = 0, and lim n→∞ √ nh d V t n P(r n (x) > t)dx - V t n Φ(t n (x))dx = 0.
Proof of Lemma 4.4 We only prove the rst equation, the second one can be obtained with similar arguments.

Dene E n by E n = √ nh d V t n |Φ(t n (x))dx -Φ(t n (x))dx|.
As Φ is Lipschitz we have

E n ≤ c √ nh d λ(V t n ) sup V t n |t n -t n |. (7) 
By denition of t n (x) and t n (x), we have, for all x ∈ V t n ,

1 √ nh d |t n (x) -t n (x)| ≤ |t -r(x)| f (x) Kf (x)(v(x) + t 2 ) - E f n (x) V n (x, t)h -d + h d V n (x, t) E f n (x)|r(x) -E r n (x)| ≤ log n nh d |f (x)V n (x, t)h -d -(E f n (x)) 2 K(v(x) + t 2 )| K(v(x) + t 2 )V n (x, t)h -d + h d V n (x, t) E f n (x)|r(x) -E r n (x)| (8) 
Remember that

| E r n (x) -r(x)| ≤ 1 f n (x) |Eφ n (x) -φ(x)| + |r(x)||E|f n (x) -f (x)| (9) 
Since V t n is included in L(t -), we can deduce (Bosq and Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF]) from A1, A3 and (9) that sup

x∈V t n | E r n (x) -r(x)| ≤ ch 2 . ( 10 
) Moreover, if we set V 1 n (x) = Var K h (x -X), V 2 n = Var Y K h (x -X), we can write |f (x)V n (x, t)h -d -(E f n (x)) 2 K(v(x) + t 2 )| ≤ |f (x)| V n (x, t)h -d -KE f n (x)(v(x) + t 2 ) + c|f (x) -E f n (x)| ≤ |f (x)| V n (x, t)h -d -Kf (x)(v(x) + t 2 ) + c|f (x) -E f n (x)| ≤ |f (x)| t 2 |V 1 n (x)h -d -Kf (x)| + |V 2 n (x)h -d -Kf (x)v(x)| +2t |Cov (Y K h (x -X), K h (x -X))| + c|f (x) -E f n (x)| ≤ c |V 1 n (x)h -d -Kf (x)| + |V 2 n (x)h -d -Kf (x)v(x)| + |Cov (Y K h (x -X), K h (x -X))| + |f (x) -E f n (x)| .
Again, since V t n ⊂ L(t -), we can deduce (Bosq and Lecoutre [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF]) from A1 and A3 that sup

x∈V t n |f (x)V n (x, t)h -d -(E f n (x)) 2 K(v(x) + t 2 )| ≤ ch. (11) 
We deduce from ( 8), ( 10) and ( 11) that

sup x∈V t n |t n (x) -t n (x)| ≤ c h log n + √ nh k+4 .
Then, thanks to [START_REF] Müller | Excess mass estimates and tests for multimodality[END_REF] and since t ∈ Θ 0 , we have for n large enough

E n ≤ c log n h log n + √ nh k+4 , (12) 
which tends to 0 under the assumptions on h of Theorem 2. 

I n = V t n Φ(t n (x))dx, I n = V t n
Φ(t n (x))dx.

We have 

I n = 1 2π K V t n bn(x) -∞ exp -u 2
I n ≥ C 1 2π K V t n b n (x) -∞ exp -C 2 1 u 2 2 K
du dx, and

I n ≤ C 2 2π K V t n b n (x) -∞ exp -C 2 2 u 2 2 K du dx.
Using the arguments of the proof of Proposition 3.1 in [START_REF] Cadre | Kernel estimation of density level sets[END_REF], we obtain 
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 21133 Figure 3: Illustration of the rate : The curve represent the estimated error multiplied by √ nh 2 .
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 4 Figure 4: Comparison of the error: the plain line stands for h = (n log n) -1.1/6 , and the dotted line for h selected by a cross-validation.
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 5 Figure5: Comparison of the rates: the plain line stands for h = (n log n) -1.1/6 , and dotted line for h selected by a cross-validation.

  where b n (x) = f (x)nh d (t -r(x))/ v(x) + t 2 . Besides, b n (x) = |ϕ(x)| v(x) + t 2 b n (x), with b n (x) = √ nh d (t -r(x))/ |r(x)|.Then we can nd two positive constants C 1 and C 2 (whose values will then change from line to line) such thatC 1 b n (x) ≤ b n (x) ≤ C 2 b n (x),which leads us to

  tends to 0 since λ(r -1 [t -ε, t + ε]) → 0. This and (12) ends the proof. -1 [t, t+Γ log n/nh d ]∩L(t -) and Vt n = r -1 [t-Γ log n/nh d , t]∩L(t -).

	and remember that	
	V t n = r		
			1. Finally, Lemma
	4.2 leads us to	
	√	nh d	
		V t	
	4.1.2. Proof of Theorem 2.1	
	We rst note that	
	E λ L n (t)∆L(t) =	P(r n (x) < t)dx +	P(r n (x) ≥ t)dx.
		L(t -)∩{r≥t}	L(t -)∩{r<t}

n P(r n (x) < t)dx -V t n Φ(t n (x))dx ≤ cλ(V t n ) which Set P n,t (x) = P(r n (x) < t), P n,t (x) = P(r n (x) ≥ t)

Consider t ∈ Θ 0 and dene

  These inequalities, Lemma 4.4 and Lemma 4.3 concludes the proof.

					1 r	∂H ≤ lim	n→∞	√	nh d I n ≤ C 2	t K √ 2π ∂L(t)	1 r	∂H.
	With similar arguments, we have						
	C 1	t 2π	K	∂L(t)	dH r	≤ lim n→∞	√	nh d I n ≤ lim n→∞	√	nh d I n ≤ C 2	t 2π	K	∂L(t)	dH r	.

n→∞ √ nh d I n ≤ lim
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and, using that nh d+4 / log n → 0 we obtain √ nh d P sup

From (2) and using (3), ( 4) and ( 5) we obtain

From (1) and such as sup L(t -) |f n -f | → 0 a.s., we conclude the proof.

Consider t ∈ Θ. For all x ∈ L(t -), we dene

For all x ∈ L(t -) such that V n (x, t) = 0, we set

Besides, we consider the sets

Finally, we denote by Φ the distribution function of the standard normal N (0, 1), and we dene Φ(x) = 1 -Φ(x).

Lemma 4.2. There exists c > 0 such that for all n ≥ 1, t ∈ R and x ∈ L(t -):

Proof of Lemma 4.2

Set, for i = 1, . . . , n,

By denition, we have V n (x, t) = Var(Z (x, t)), and

Z i (x, t) -E Z(x, t) < t n (x) .