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Abstract

Let (X,Y ) be a random pair taking values in Rd × J , where J ⊂ R
is supposed to be bounded. We propose a plug-in estimator of the level
sets of a regression function r of Y on X, using a kernel estimator of r.
We consider an error criterion defined by the volume of the symmetrical
difference between the real and estimated level sets. We state the con-
sistency of our estimator, and we get a rate of convergence equivalent to
the one obtained by Cadre for the density function level sets. Finally we
discuss the practical results obtained with a simulated data set.

Key-words and phrases: Regression function, Level set, Plug-in estimator,

Kernel estimator.

1 Introduction

In this paper, we consider the problem of estimating the level sets of a regression

function. More precisely, consider a random pair (X,Y ) taking values in Rd×J ,

where J ⊂ R is supposed to be bounded. The goal of this paper is then to build

an estimator of the level sets of the regression function r of Y on X, defined for

all x ∈ Rd by

r(x) = E [Y |X = x].

For t > 0, a level set for r is defined by

L(t) = {x ∈ Rd : r(x) > t}.

Assume that we have an independent and identically distributed sample (i.i.d.)(
(X1, Y1), . . . , (Xn, Yn)

)
with the same distribution than (X,Y ). We then con-

sider a plug-in estimator of L(t). More precisely, we use a consistent estimator
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r̂n of r, in order to estimate L(t) by

Ln(t) = {x ∈ Rd : r̂n(x) > t}.

Most of the research works on the estimation of level sets concern the density

function. One can cite the works of Cadre [3], Cuevas and Fraiman [7], Hartigan

[11], Polonik [15], Tsybakov [19], Walther [20]. This large number of works on

this subject is motivated by the high number of possible applications. Estimat-

ing these level sets can be useful in mode estimation (Müller and Stawitzki [13],

Polonik [15]), or in clustering (Biau, Cadre and Pelletier [1], Cuevas, Febrero

and Fraiman [6, 5]). In particular, Biau, Cadre and Pelletier [1] use an estimator

of the level sets of the density function to determine the number of clusters.

The same applications are possible with the regression function. Moreover, it

is for instance possible to use an estimator of the level sets of the regression

function to determine the path of water flow from a digital representation of an

area. In the same vein, in medical imaging, people want to estimate the areas

where some function of the image exceeds a fixed threshold. It may be useful,

for instance in order to automatically determine the location or the nature of

a tumor. Note that, in these two examples, the use of a compact set J is fully

justified. This is generally the case in most practical situations, particularly in

image analysis.

Despite the many potential applications, the estimation of the level sets of the

regression function has not been widely studied. Müller [12] mentioned it briefly

in his survey. One can also cite the recent work of Cavalier [4], Polonik and Wang

[16], Scott and Davenport [18], and Willett and Nowak [14]. The estimator pro-

posed by Cavalier is based on the maximization of the excess mass. It is an

adaptation of the estimator proposed by Tsybakov [19] for the density function.

Scott and Davenport use a cost sensitive approach. The main advantage of our

estimator is the simplicity of his calculation. Moreover, unlike the estimator

proposed by Cavalier, our estimator does not require that the level sets are star

shaped.

All our consistency results are in the sense of the symmetrical difference (Figure

1), defined by

Ln∆L = (Ln ∩ LC) ∪ (LCn ∩ L),

where Ln = Ln(t) and L = L(t).
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Figure 1: Symmetrical difference (in black) between two sets A (in red) and B
(in blue).

Our goal is to establish some consistency results under reasonable assump-

tions on r and r̂n. We first use the results by Cuevas, González-Manteiga

and Rodŕıguez-Casal [8] in order to state a consistency result for any consis-

tent estimator r̂n of r. Then we particularize our approach by considering a

kernel estimator of the regression function. For this estimator, we get a rate of

convergence equivalent to the one obtained by Cadre [3] for the density function.

This paper is organized as follows. We give the main results in Section 2. Section

3 is devoted to the confrontation of our estimator to simulated data. Finally,

proofs are collected in Section 4.

2 Main results

2.1 Consistency

From now on, ‖.‖ stands for the Euclidean norm on a finite dimensional space.

Besides, for all integrable function g : Rd → R, we denote by ‖g‖p the norm

defined by

‖g‖p =

(∫
Rd

|g(x)|pdx
)1/p

.

2.1.1 General estimator r̂n of r

In this paragraph, we assume that we know a consistent estimator r̂n of r (in

a sense defined hereafter). Let us introduce the following assumption on the
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regression function r:

A0 There exists t− such that L(t−) is compact. Besides, λ({r = t}) = 0.

Roughly speaking, the last part of this assumption means that the Lebesgue

measure does not charge the set {x ∈ Rd : r(x) = t}.

Theorem 3 by Cuevas, González-Manteiga and Rodŕıguez-Casal [8] states the

almost sure consistency of λ(Ln∆L) for any consistent estimator r̂n of r. The-

orem 2.1 below deals with the consistency of Eλ(Ln∆L).

Theorem 2.1 Under Assumption A0, if

sup
Rd

|r̂n − r| →
n→∞

0 a.s.,

then

Eλ
(
Ln(t)∆L(t)

)
→

n→∞
0.

Then, provided that r̂n is consistent with respect to the Lp or supremum norm,

the plug-in estimator of the level sets of the regression function is consistent with

respect to the symmetrical difference. For example, the BSE estimator (Bosq

and Lecoutre [2], Chapter 7), the k-nearest neighbor estimator ([2] Chapter 8),

as well as the regressogram ([2], Chapter 6) satisfy this property. In the next

paragraph, we focus on the case of the kernel estimator.

2.1.2 Kernel estimator rn of r

Let us consider now the case of the kernel estimator of the regression function.

Assume that we can write

r(x) =
ϕ(x)

f(x)
,

where f is the density function of X, and ϕ is defined by ϕ(x) = r(x)f(x).

Let K be a kernel on Rd, that is a probability density on Rd. We denote

Kh(x) = K(x/h). From an i.i.d. sample
(

(X1, Y1), . . . , (Xn, Yn)
)

, we define,

for all x ∈ Rd,

ϕn(x) =
1

nhd

n∑
i=1

YiKh(x−Xi) and fn(x) =
1

nhd

n∑
i=1

Kh(x−Xi).

For all x ∈ Rd, the kernel estimator of r is then defined by
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rn(x) =

{
ϕn(x)/fn(x) if fn(x) 6= 0
0 otherwise.

For a complete study of the kernel estimator of the regression function and its

properties, we refer to the book of Prakasa Rao [17].

We derive the following result from Theorem 2.1 using the consistency properties

of the kernel estimator of the regression function (Bosq and Lecoutre [2]).

Corollary 2.1 Under Assumption A0, if K is bounded, integrable, with com-

pact support and Lipschitz, and if h→ 0 and nhd/ log n→∞, then

Eλ
(
Ln(t)∆L(t)

)
→

n→∞
0.

This result gives concrete conditions to obtain the consistency of Ln(t)∆L(t)

for the kernel estimator. It then particularizes the previous result from Cuevas,

González-Manteiga and Rodŕıguez-Casal [8]. In the next paragraph, we estab-

lish a rate of convergence for this estimator.

2.2 Rate of convergence

Remember that rn is the kernel estimator of the regression function. From now

on, Θ ⊂ (0, supRd r) is an open interval. Let us introduce the following assump-

tions:

A1 The functions r and f are twice continuously differentiable, and, ∀t ∈
Θ ,∃0 < t− < t : inf

L(t−)
f > 0;

A2 For all t ∈ Θ,

inf
r−1({t})

‖Or‖ > 0,

where, Oψ(x) stands for the gradient at x ∈ Rd of the differentiable func-

tion ψ : Rd → R.

Let us mention that under Assumptions A1 and A2, we have (Proposition A.2

in [3])

∀t ∈ Θ : λ(r−1[t− ε, t+ ε])→ 0 as ε→ 0.

This property, first used by Polonik [15], is almost identical to the last part of

Assumption A0 in Paragraph 2.1.1. Let us now introduce the assumptions on

the kernel K.

5



A3 K is a continuously differentiable with a compact support. Moreover,

there exists a decreasing function µ : R+ → R such that K(x) = µ(‖x‖)
for all x ∈ Rd.

From now on, we denote by ∂A the boundary of any subset A ⊂ Rd. Besides,

we introduce H the (d− 1)-dimensional Hausdorff measure (Evans and Gariepy

[9]). Recall that H agrees with ordinary “(k - 1)-dimensional surface area” on

nice sets (Proposition A.1 in [3]). Finally, we set K̃ =
∫
K2dλ.

We are now in a position to establish a rate of convergence for Eλ(Ln(t)∆L(t)).

Theorem 2.2 Under Assumptions A0 − A3, if nhd/(log n)7 →∞ and

nhd+4 log n→ 0, then

E λ(Ln(t)∆L(t)) = O(1/
√
nhd).

Note that our estimator is easy to calculate and requires reasonable assump-

tions. Cavalier [4] gets a better rate, but with an estimator more difficult to

calculate and with more restrictive assumptions. For example, we do not need

for the level sets to be star-shaped. However, the choice of the bandwidth h in

our estimator is not an easy task, since an optimal bandwidth for estimating r

is not necessarily optimal for estimating L.

3 Study of finite sample behavior

In this section, we illustrate our method on a simple simulated data set. Con-

sider the function r : [−6.5, 4.5]× [−6.5, 4.5]→ [−2, 2] defined by

r : (u, v) 7→ sin(u) + sin(v).

Figure 2: Representation of r(u, v) = sin(u)+sin(v) on [−6.5, 4.5]× [−6.5, 4.5].
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We selected this function to check that our estimator detects the different con-

nected components of the level sets. Indeed, we see on Figure 2 that, for appro-

priate values of t, L(t) = {(u, v) : r(u, v) > t} admits four connected compo-

nents. This is an interesting point since a possible application of the estimation

of level sets is to use the connected components to do clustering (Biau, Cadre

and Pelletier [1]).

Let X be a random pair with a binormal distribution on R2 (truncated on

[−6.5, 4.5] × [−6.5, 4.5]) centered on (−1,−1) and with a covariance given by

6∗ Id. We set Yi = r(Xi) + εi, where (X1, . . . , Xn) is an i.i.d sample distributed

as X, and (ε1, . . . , εn) is an i.i.d. sample with a normal distribution N (0, 0.01).

For different values of n and t, we use the sample
(

(X1, Y1), . . . , (Xn, Yn)
)

to

estimate L(t). The problem of the selection of an optimal bandwidth hn is not

studied here. We simply choose a bandwidth fulfilling the conditions of The-

orem 2.2. The choice of hn is a full problem and it could be the subject of a

future work.

We consider the levels t = 0.5, t = 1 and t = 1.5, and the sample sizes n = 500,

n = 2500 and n = 7500. We evaluate our estimator on a regular grid of 3364

points on [−6.5, 4.5]× [−6.5, 4.5]. Figure 3 represents the symmetrical difference

between the real (R) and estimated (E) level sets, for the different values of t

(in collumn) and n (in row). The points of R\E are represented in blue, and

the one of E\R in red.

As expected, the quality of the estimation improves as n grows. However, we

observe that a relatively large number of observations is needed to obtain a

satisfactory estimation (based on a visual inspection).

We note that, in each situation, the connected components can be well dis-

tincted (visually speaking). It comforts us in the idea that we could use level

sets estimation to perform clustering. Besides, connecting clusters to level sets

has already been proposed. We can cite for instance Hartigan [10] or Cuevas,

Febrero and Freiman [6].
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Figure 3: Graphical representation of the symmetrical difference between the
real and estimated level sets.
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4 Proofs

This section is dedicated to the proofs of Theorem 2.1 and Theorem 2.2. From

now on, c, C1, and C2 are non-negative constants, whose values may change

from line to line.

4.1 Proof of Theorem 2.1

Let ε > 0, for all n ∈ N, we define En,ε = {x ∈ Ln(t)∪L(t) : |r̂n(x)−r(x)| ≤ ε}.
Since supRd |r̂n − r| → 0 a.s., we have that Ln(t) ⊂ L(t−) for n large enough

which gives us En,ε = {x ∈ L(t−) : |r̂n(x)− r(x)| ≤ ε}.

Moreover we have

λ(Ln(t)∆L(t)) = λ ((Ln(t)∆L(t)) ∩ En,ε) + λ
(
(Ln(t)∆L(t)) ∩ Ecn,ε

)
.

Since (Ln(t)∆L(t)) ∩ En,ε ⊂ {t− ε ≤ r ≤ t+ ε}, we obtain

λ(Ln(t)∆L(t)) ≤ λ({t− ε ≤ r ≤ t+ ε}) + λ(Ecn,ε),

and

Eλ(Ln(t)∆L(t)) ≤ λ({t− ε ≤ r ≤ t+ ε}) + Eλ(Ecn,ε). (1)

Finally, as supRd |r̂n−r| → 0 a.s., then λ(Ecn,ε) →
n→∞

0 and, according to assump-

tion A0, Eλ(Ecn,ε) →
n→∞

0 by the Lebesgue’s dominated convergence theorem.

�

4.2 Proof of Theorem 2.2

In this proof, some arguments are classical result from the kernel density (or

regression) estimation theory. For more details, we refer the reader to the book

by Bosq and Lecoutre ([2]), chapter 4 and 5.

4.2.1 Preliminary results

All the results in this sections are stated under Assumptions A0 − A3. The

proof of the theorem relies on the four following lemmas.

Let us define

Ωn,c =
{√

nhd sup
Ln(t)∪L(t)

|rn − r| ≥ c
√

log n
}
.

Lemma 4.1 If nhd+4/ log n→ 0, then there exists Γ > 0 such that

√
nhdP(Ωn,Γ)→ 0.
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Note that the condition nhd+4/ log n→ 0 is satisfied under the assumptions of

Theorem 2.2.

Proof of Lemma 4.1

As r is continuous, we have supL(t−) |r| < c. Assuming that infL(t−) f > 0,

then, since supL(t−) |fn − f | → 0 a.s. under the assumptions of Lemma 4.1

(Bosq and Lecoutre [2]), there exists θ > 0 such that infL(t−) fn > θ a.s. for n

large enough. So we can write

sup
L(t−)

|rn − r| = sup
L(t−)

∣∣∣∣ϕn − ϕfn
+ r

fn − f
fn

∣∣∣∣
≤ c

(
sup
L(t−)

|ϕn − ϕ|+ sup
L(t−)

|fn − f |
)
. (2)

We have

sup
L(t−)

|ϕn − ϕ| ≤ sup
L(t−)

|ϕn − Eϕn|+ sup
L(t−)

|Eϕn − ϕ|.

We cover L(t−) with `n balls Bk = B(xk, ρn) (k = 1, . . . , `n) of radius ρn.

Consider x ∈ L(t−), we denote by Bk the ball containing x. Then we set, for

x, x′ ∈ L(t−),

An(x, x′) =
1

n

n∑
i=1

Yi [Kh(x−Xi)−Kh(x′ −Xi)]

−E 1

n

n∑
i=1

Yi [Kh(x−Xi)−Kh(x′ −Xi)] ,

which leads us to

sup
L(t−)

|ϕn−ϕ| ≤ sup
1≤k≤`n

|ϕn(xk)−Eϕn(xk)|+ sup
x∈L(t−)

|An(x, xk)|+ sup
L(t−)

|Eϕn−ϕ|.

(3)

Then, since K is Lipschitz, there exists γ > 0 such that

|An(x, xk)| ≤ ch−d−γργn

(
1

n

n∑
i=1

|Yi|+ E|Y |

)
≤ ch−d−γργn since Y is bounded.

As a consequence, we have

P

(
sup

x∈L(t−)

|An(x, xk)| > c

4

√
log n

nhd

)
≤ P

(
ch−d−γργn >

c

4

√
log n

nhd

)
.

One can choose

ρn = n−a, a > 0 and ργn = o

(
hd+γ

√
log n

nhd

)
,

10



such that

P

(
sup

x∈L(t−)

|An(x, xk)| > log n/
√
nhd

)
= 0. (4)

Then, using the arguments of the proof of Theorem 5.II.3 in [2], we obtain

∀ε > 0, P
(

sup
1≤k≤ln

|ϕn(xk)− Eϕn(xk)| > ε

)
< 2`ne

−nhdε2

c .

If we set ε = ε0

√
log n/nhd, we have

P

(
sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0

√
log n

nhd

)
≤ c`nn

−2ε0/c

≤ cn−2ε0/cρ−dn .

Remember that ρn = n−a, with a > 0, one gets

√
nhdP

(
sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0

√
log n

nhd

)
≤ cn1/2+ad−2ε0/c

√
hd (5)

which tends to 0 choosing ε0 >
(1/2+ad)c

2 .

Moreover, under A3, K is even which gives us

sup
L(t−)

|Eϕn − ϕ| = O

(√
log n

nhd

)
,

and, using that nhd+4/ log n→ 0 we obtain

√
nhdP

(
sup
L(t−)

|Eϕn − ϕ| ≥
c

2

√
log n

nhd

)
→ 0. (6)

From (3) and using (4), (5) and (6) we obtain

√
nhdP

(
sup
L(t−)

|ϕn − ϕ| ≥ c
√

log n

nhd

)
→ 0.

From (2) and such as supL(t−) |fn − f | → 0 a.s., we conclude the proof. �

Consider t ∈ Θ. For all x ∈ L(t−), we define

Vn(x, t) = Var((Y − t)Kh(x−X)) and Ẽ rn(x) = Eϕn(x)/E fn(x).

For all x ∈ L(t−) such that Vn(x, t) 6= 0, we set

tn(x) = E fn(x)

√
nh2d

Vn(x, t)
(t− Ẽrn(x)).
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Besides, we consider the sets

Vtn = r−1[t, t+Γ
√

log n/nhd]∩L(t−) and V̄tn = r−1[t−Γ
√

log n/nhd, t]∩L(t−).

Finally, we denote by Φ the distribution function of the standard normalN (0, 1),

and we define Φ(x) = 1− Φ(x).

Lemma 4.2 There exists c > 0 such that for all n ≥ 1, t ∈ R and x ∈ L(t−):

|P(rn(x) ≤ t)− Φ(tn(x))| ≤ c√
nhd

.

Proof of Lemma 4.2

Set, for i = 1, . . . , n,

Zi(x, t) = (Yi − t)Kh(x−Xi) , Z(x, t) = (Y − t)Kh(x−X).

By definition, we have Vn(x, t) = Var(Z(x, t)), and

P(rn(x) < t)

= P

(
1

n

n∑
i=1

Zi(x, t) < 0

)

= P

(
1

n

n∑
i=1

(
Zi(x, t)− EZ(x, t)

)
< −EZ(x, t)

)

= P

(√
n

Vn(x, t)

1

n

n∑
i=1

(
Zi(x, t)− EZ(x, t)

)
< tn(x)

)
.

Then, the Berry-Essen inequality gives us

|P(rn(x) < t)−Φ(tn(x))| ≤ c√
nVn(x, t)3

E |(Y − t)Kh(x−X)− E(Y − t)Kh(x−X)|3 .

(7)

Finally, under Assumptions A1 and A3, we have (see for example Bosq and

Lecoutre [2])

sup
x∈L(t−)

|(Y − t)Kh(x−X)− E(Y − t)Kh(x−X)|3 ≤ chd

and

inf
x∈L(t−)

Vn(x, t) ≥ chd.

The lemma can then be deduced from (7). �

Define now Θ0 the set of all t in Θ such that

lim
ε↘0

1

ε
λ
(
r−1[t− ε, t]

)
= lim
ε↘0

1

ε
λ
(
r−1[t, t+ ε]

)
=

∫
∂L(t)

‖Or‖−1dH.

The following result is proven in Cadre [3] (Lemma 3.2).

12



Lemma 4.3 Θ0 = Θ almost everywhere.

Note that under Assumptions A1 and A2, we obtain, thanks to Proposition

A.2 in [3],

λ
(
r−1[t− ε, t+ ε]

)
= λ

(
r−1(t− ε, t+ ε)

)
,

for all t ∈ Θ and ε > 0 small enough.

Finally, we set

v(x) = Var(Y |X = x) + r2(x),

and, for t ∈ Θ and x ∈ L(t−),

tn(x) = f(x)

√
nhd

K̃f(x)(v(x) + t2)
(t− r(x)).

We are now in a position to prove Lemma 4.4 below.

Lemma 4.4 If nhd/(log n)7 →∞ and nhd+4 log n→ 0, then for all t ∈ Θ0,

lim
n→∞

√
nhd

[∫
Vt

n

P(rn(x) < t)dx−
∫
Vt

n

Φ(tn(x))dx

]
= 0,

and

lim
n→∞

√
nhd

[∫
Vt

n

P(rn(x) > t)dx−
∫
Vt

n

Φ(tn(x))dx

]
= 0.

Proof of Lemma 4.4 We only prove the first equation, the second one can be

obtained with similar arguments.

Define En by

En =
√
nhd

∫
Vt

n

|Φ(tn(x))dx− Φ(tn(x))dx|.

As Φ is Lipschitz we have

En ≤ c
√
nhdλ(Vtn) sup

Vt
n

|tn − tn|. (8)

By definition of tn(x) and tn(x), we have, for all x ∈ Vtn,

13



1√
nhd
|tn(x)− tn(x)|

≤ |t− r(x)|

∣∣∣∣∣∣ f(x)√
K̃f(x)(v(x) + t2)

− E fn(x)√
Vn(x, t)h−d

∣∣∣∣∣∣
+

√
hd

Vn(x, t)
E fn(x)|r(x)− Ẽ rn(x)|

≤
√

log n

nhd

∣∣∣∣∣
√
|f(x)Vn(x, t)h−d − (E fn(x))

2
K̃(v(x) + t2)|

K̃(v(x) + t2)Vn(x, t)h−d

∣∣∣∣∣
+

√
hd

Vn(x, t)
E fn(x)|r(x)− Ẽ rn(x)| (9)

Remember that

|Ẽ rn − r| ≤
1

fn
|Eφn − φ|+ |r||E|fn − f | (10)

Since Vtn is included in L(t−), we can deduce (Bosq and Lecoutre [2]) from A1,

A3 and (10) that

sup
Vt

n

|Ẽ rn − r| ≤ ch2. (11)

Moreover, if we set

V 1
n (x) = Var Kh(x−X), V 2

n = Var Y Kh(x−X),

we can write

|f(x)Vn(x, t)h−d − (E fn(x))
2
K̃(v(x) + t2)|

≤ |f(x)|
∣∣∣Vn(x, t)h−d − K̃E fn(x)(v(x) + t2)

∣∣∣+ c|f(x)− E fn(x)|

≤ |f(x)|
∣∣∣Vn(x, t)h−d − K̃f(x)(v(x) + t2)

∣∣∣+ c|f(x)− E fn(x)|

≤ |f(x)|
(
t2|V 1

n (x)h−d − K̃f(x)|+ |V 2
n (x)h−d − K̃f(x)v(x)|

+2t |Cov (Y Kh(x−X),Kh(x−X))|
)

+ c|f(x)− E fn(x)|

≤ c
(
|V 1
n (x)h−d − K̃f(x)|+ |V 2

n (x)h−d − K̃f(x)v(x)|

+ |Cov (Y Kh(x−X),Kh(x−X))|+ |f(x)− E fn(x)|
)
.

Again, since Vtn ⊂ L(t−), we can deduce (Bosq and Lecoutre [2]) from A1 and

A3 that

sup
x∈Vt

n

|f(x)Vn(x, t)h−d − (E fn(x))
2
K̃(v(x) + t2)| ≤ ch. (12)
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We deduce from (9), (11) and (12) that

sup
x∈Vt

n

|tn(x)− tn(x)| ≤ c
(√

h log n+
√
nhk+4

)
.

Then, thanks to (8) and since t ∈ Θ0, we have for n large enough

En ≤ c
√

log n
(√

h log n+
√
nhk+4

)
. (13)

Finally, Lemma 4.2 leads us to

√
nhd

[∫
Vt

n

P(rn(x) < t)dx−
∫
Vt

n

Φ(tn(x))dx

]
≤ cλ(Vtn)

which tends to 0 since λ(r−1[t − ε, t + ε]) → 0. This and (13) ends the proof.

�

4.2.2 Proof of Theorem 2.2

We first note that

E λ
(
Ln(t)∆L(t)

)
=

∫
L(t−)∩{r≥t}

P(rn(x) < t)dx+

∫
L(t−)∩{r<t}

P(rn(x) ≥ t)dx.

Set

Pn,t(x) = P(rn(x) < t), Pn,t(x) = P(rn(x) ≥ t)

and remember that

Vtn = r−1[t, t+Γ
√

log n/nhd]∩L(t−) and V̄tn = r−1[t−Γ
√

log n/nhd, t]∩L(t−).

Consider t ∈ Θ0 and define

In =

∫
Vt

n

Φ(tn(x))dx, In =

∫
Vt

n

Φ(tn(x))dx.

We have

In =
1√
2πK̃

∫
Vt

n

∫ bn(x)

−∞
exp

(
−u2

2K̃

)
du dx

where bn(x) =
√
f(x)nhd(t− r(x))/

√
v(x) + t2.

Besides,

bn(x) =

√
|ϕ(x)|

v(x) + t2
b′n(x),

with b′n(x) =
√
nhd(t− r(x))/

√
|r(x)|. Then we can find two positive constants

C1 and C2 such that

C1b
′
n(x) ≤ bn(x) ≤ C2b

′
n(x),

15



which leads us to

In ≥
C1√
2πK̃

∫
Vt

n

∫ b′n(x)

−∞
exp

(
−C2

1u
2

2K̃

)
du dx,

and

In ≤
C2√
2πK̃

∫
Vt

n

∫ b′n(x)

−∞
exp

(
−C2

2u
2

2K̃

)
du dx.

Using the arguments of the proof of Proposition 3.1 in [3], we obtain

C1

√
tK̃√
2π

∫
∂L(t)

1

‖Or‖
∂H ≤ lim

n→∞

√
nhdIn ≤ lim

n→∞

√
nhdIn ≤ C2

√
tK̃√
2π

∫
∂L(t)

1

‖Or‖
∂H.

With similar arguments, we have

C1

√
t

2π
K̃

∫
∂L(t)

dH
‖Or‖

≤ lim
n→∞

√
nhdIn ≤ lim

n→∞

√
nhdIn ≤ C2

√
t

2π
K̃

∫
∂L(t)

dH
‖Or‖

.

These inequalities, Lemma 4.4 and Lemma 4.3 give us, for all t ∈ Θ,

min

(
lim
n→∞

√
nhd

∫
Vt

n

Pn,t(x)dx, lim
n→∞

√
nhd

∫
Vt

n

Pn,t(x)dx

)
≥ C1

√
2t

π
K̃

∫
∂L(t)

dH
‖Or‖

,

and

max

(
lim
n→∞

√
nhd

∫
Vt

n

Pn,t(x)dx, lim
n→∞

√
nhd

∫
Vt

n

Pn,t(x)dx

)
≤ C2

√
2t

π
K̃

∫
∂L(t)

dH
‖Or‖

,

and Lemma 4.1 concludes the proof. �
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