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Abstract

Let (X,Y ) be a random pair taking values in Rd×J , where J ⊂ R is supposed to
be bounded. We propose a plug-in estimator of the level sets of the regression
function r of Y on X, using a kernel estimator of r. We consider an error
criterion de�ned by the volume of the symmetrical di�erence between the real
and estimated level sets. We state the consistency of our estimator, and we get
a rate of convergence equivalent to the one obtained by Cadre (2006) for the
density function level sets.

Keywords: Regression function, Level set, Plug-in estimator, Kernel
estimator.

1. Introduction

In this paper, we consider the problem of estimating the level sets of a regression
function. More precisely, consider a random pair (X,Y ) taking values in Rd×J ,
where J ⊂ R is supposed to be bounded. The goal of this paper is then to build
an estimator of the level sets of the regression function r of Y on X, de�ned for
all x ∈ Rd by

r(x) = E [Y |X = x].

For t > 0, a level set for r is de�ned by

L(t) = {x ∈ Rd : r(x) > t}.

Assume that we have an independent and identically distributed sample (i.i.d.)
((X1, Y1), . . . , (Xn, Yn)) with the same distribution as (X,Y ). We then consider
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a plug-in estimator of L(t). More precisely, we use a consistent estimator r̂n of
r, in order to estimate L(t) by

Ln(t) = {x ∈ Rd : r̂n(x) > t}.

Most of the research works on the estimation of level sets concern the density
function. One can cite the works of Cadre [1], Cuevas and Fraiman [2], Harti-
gan [3], Polonik [4], Tsybakov [5], Walther [6]. This large number of works on
this subject is motivated by the high number of possible applications. Estimat-
ing these level sets can be useful in mode estimation (Müller and Stawitzki [7],
Polonik [4]), or in clustering (Biau, Cadre and Pelletier [8], Cuevas, Febrero and
Fraiman [9, 10]). In particular, Biau, Cadre and Pelletier [8] use an estimator
of the level sets of the density function to determine the number of clusters.

The same applications are possible with the regression function. Moreover, it
is for instance possible to use an estimator of the level sets of the regression
function to determine the path of water �ow from a digital representation of an
area. In the same vein, in medical imaging, people want to estimate the areas
where some function of the image exceeds a �xed threshold. In medical decision
making, we can also �nd a lot of applications. For instance, the severity of
the cancer is characterized by a variable Y which directly impacts the choice of
standard or aggressive chemotherapy. For osteosarcoma [11], Y is the percent
necrosis in the tumor after a �rst round of treatment. If Y > 0.9 (this threshold
has been �xed by experts and is now the convention), the aggressive chemother-
apy will be chosen. The problem is that Y is measured using an invasive biopsy.
If we can collect from the patient a feature vector X (which acquisition is eas-
ier), such as gene expression levels, knowledge of the regression level sets would
allow the choice of an e�cient treatment planning without a biopsy. Note that,
in these examples, the use of a compact set J is fully justi�ed. This is generally
the case in most practical situations, particularly in image analysis.

Despite the many potential applications, the estimation of the level sets of the
regression function has not been widely studied. Müller [12] mentioned it brie�y
in his survey. Willett and Nowak [13] obtained minimax rates (for di�erent
smoothness classes) for estimators based on recursive dyadic partitions. Scott
and Davenport [14] use a cost sensitive approach and a di�erent measure of
risk. Cavalier [15] and Polonik and Wang [16] used estimators based on the
maximization of the excess mass which was introduced by Müller and Sawitzki
[7] and Hartigan [3]. Cavalier demonstrated asymptotic minimax rate of con-
vergence for piecewise polynomial estimators using smoothness assumptions on
the boundary of the level sets. We used a di�erent approach and construct a
plug-in estimator using the kernel estimator of the regression. The main ad-
vantage of our estimator is the simplicity of his calculation, inherited from the
plug-in approach. Moreover, our estimator does not require strong assumptions
on the shape of level sets.
All our consistency results are in the sense of the symmetrical di�erence (Figure
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1), de�ned by

Ln(t)∆L(t) = (Ln(t) ∩ LC(t)) ∪ (LCn (t) ∩ L(t)).

Figure 1: Symmetrical di�erence (in black) between two sets A (in red) and B (in blue).

Our goal is to establish some consistency results under reasonable assumptions
on r and r̂n. Using a kernel estimator for r, we get a rate of convergence equiv-
alent to the one obtained by Cadre [1] for the density function.

This paper is organized as follows. The de�nition of our estimator and consis-
tency results are given in Section 2. In Section 3 we confront our estimator to
simulated data. Finally, proofs are collected in Section 4.

2. Main results

2.1. Construction of the estimator

As announced, we use a plug-in approach. That is, given an estimator rn of
r we estimate {x ∈ Λ : r(x) > t} by {x ∈ Λ : rn(x) > t}. To estimate r, we
choose to consider a kernel estimator.

Assume that we can write

r(x) =
ϕ(x)

f(x)
,

where f is the density function of X, and ϕ is de�ned by ϕ(x) = r(x)f(x).
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Let K be a kernel on Rd, that is a probability density on Rd. We denote

h = hn and Kh(x) = K(x/h). From an i.i.d. sample
(

(X1, Y1), . . . , (Xn, Yn)
)
,

we de�ne, for all x ∈ Rd,

ϕn(x) =
1

nhd

n∑
i=1

YiKh(x−Xi) and fn(x) =
1

nhd

n∑
i=1

Kh(x−Xi).

For all x ∈ Rd, the kernel estimator of r is then de�ned by

rn(x) =

{
ϕn(x)/fn(x) if fn(x) 6= 0
0 otherwise.

The properties of this estimator are already well studied in the litterature. For
instance, the interesting reader can look at Bosq and Lecoutre [17] or Gasser
and Müller [18].

Under the assumption

A0 There exists t− < t such that L(t−) is compact. Besides, λ({r = t}) = 0
(where λ stands for the Lebesgue measure),

a �rst consistency result can be trivialy obtained from a slight modi�cation of
Theorem 3 by Cuevas, González-Manteiga and Rodríguez-Casal [19] and the
consistency properties of the kernel estimator.

Proposition 2.1. Under Assumption A0, if K is bounded, integrable, with

compact support and Lipschitz, and if h→ 0 and nhd/ log n→∞, then

Eλ
(
Ln(t)∆L(t)

)
→

n→∞
0.

Note that the last part of assumption A0 means that the regression function
can not have a null derivative at the estimated level set.

2.2. Rate of convergence

From now on, Θ ⊂ (0, supRd r) is an open interval. Let us introduce the follow-
ing assumptions:

A1 The functions r and f are twice continuously di�erentiable, and, ∀t ∈
Θ ,∃0 < t− < t : inf

L(t−)
f > 0;

A2 For all t ∈ Θ,
inf

r−1({t})
‖Or‖ > 0,

where, Oψ(x) stands for the gradient at x ∈ Rd of the di�erentiable func-
tion ψ : Rd → R.
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The assumptions A1 on the regularity are inherited from the classical assump-
tions in kernel estimation [17]. Note that "harder" assumptions on the regularity
of r and f will not improve the obtained rate of consistency. Moreover, let us
mention that under Assumptions A1 and A2, we have (Proposition A.2 in [1])

∀t ∈ Θ : λ(r−1[t− ε, t+ ε])→ 0 as ε→ 0.

Let us now introduce the assumptions on the kernel K.

A3 K is a continuously di�erentiable with a compact support. Moreover,
there exists a decreasing function µ : R+ → R such that K(x) = µ(‖x‖)
for all x ∈ Rd.

We are now in a position to establish a rate of convergence for Eλ(Ln(t)∆L(t)).

Theorem 2.1. Under Assumptions A0 − A3, if nhd/(log n)→∞ and

nhd+4 log n→ 0, then for almost all t ∈ Θ

E λ(Ln(t)∆L(t)) = O(1/
√
nhd).

Remarks :

• Roughly speaking, the assumptions about the bandwidth impose to take h

between ( lognn )
1
d and (n log n)

−1
d+4 . Moreover, if we take h = O((n log n)

−1
d+4 ),

we get

√
nhd = O

(
n

2
d+4

(log n)
d

2(d+4)

)

= O

(
n1/3

(log n)1/6

)
with d = 2,

that is a rate of the same order as Cadre [20] in the density case.

• A remaining and crucial problem is the research of an optimal bandwidth
h for our estimator. Indeed, if they are already results in the literature
about an optimal bandwidth for the estimation of r, this bandwidth is not
necessarily optimal for estimating L(t). However, in the simulations, we
used a cross-validation procedure to choose a bandwidth.
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2.3. Discussion about the rate

In this section, we provide a short comparison with the estimator proposed by
Cavalier. Indeed, we choose this estimator because it is proven to be optimal
[15].

The main idea of this estimator is that the level set L(t) minimises the excess
mass

M(G) =

∫
G

f(x)dx− t ∗ λ(G).

Starting from this, Cavalier proposes to introduce estimators with piecewise-
polynomial structure based on the maximization of local empirical excess mass.
Assuming that L(t) can be expressed as

L(t) = {x = (r, ϕ), 0 ≤ r < 2π},

with g a 2π-periodic continuous function on R, one starts by computing a
piecewise-polynomial estimator ĝ of g. Then, the estimate of L(t) is given
by the closure of

{(r, ϕ) : 0 ≤ r < ĝ(ϕ), 0 ≤ ϕ < 2π}.

Note that this estimate is always star-shaped.

Depending on the used kind of design points, Cavalier obtains optimal rates of
consistency.

If our estimator fails to get an optimal rate, its main advantage is its simplic-
ity. Indeed, where getting the estimator ĝ of g could be a little di�cult, our
estimator is really easy to implement. One only needs to do is compute a ker-
nel estimation of the regression function (with one of the various existing R
packages) and use the results to estimate the level set. Moreover, despites the
regularity assumptions for f and r inherited from the use of a kernel estimator,
our rate of consistency is obtained for general shapes of level sets. For example,
we do not require that the level sets are star-shaped.

3. Study of �nite sample behavior

In this section, we illustrate our method on a simple simulated data set. Con-
sider the function r de�ned on R2 (Figure 2) by

r : (u, v) 7→ sin(u) + sin(v)

log
(√
u2 + v2 + 1

) .
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Figure 2: Representation of r.

Theoretically, our results are established for a function r de�ned on R2. How-
ever, in order to computer easily the volume of the symmetrical di�erence, we
will restrict ourselves to a bounded square. Let X be a random pair with a
uniform distribution on the square [−20, 20]× [−20, 20]. The size of the square
is large enough to contain the level sets we will consider. We set Yi = r(Xi)+εi,
where (X1, . . . , Xn) is an i.i.d sample distributed as X, and (ε1, . . . , εn) is an
i.i.d. sample with a normal distribution centered on 0 and with standard devi-
ation 0.1 (X ≡ N (0, 0.1)).

3.1. Illustration of the rate

In this section we illustrate our theoretical rate of convergence obtained in The-
orem 2.1. We use the function npreg of the R package �np� to perform the kernel
estimation function, and the bandwidth is given by h = (n log n)−1.1/6. Then,
we use a Monte-Carlo approach to estimate the volume of the symmetrical dif-
ference (on the square [−20, 20] × [−20, 20]). The error is then expressed in
percents of the volume of the square.

For a level t = 1 and di�erent values of n, we give the error multiplied by the
rate of Theorem 2.1

√
nh2 in Figure 3.

This �gure seems to con�rm the rate obtained in Theorem 2.1. Note that we
consider a very large square, what can decrease arti�cially the error. However,
it does not really matter since it does not change the conclusion.
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Figure 3: Illustration of the rate : The curve represent the estimated error multiplied by√
nh2.

3.2. Selection of h by cross-validation

Now we use a simple cross-validation to select the bandwidth: For each value
of n we use half the dataset to compute the kernel estimator with h (and the
level set estimator) on a grid of 20 values between the limits allowed by the
assumptions of Theorem 2.1 (see Remark 1 below Theorem 2.1). Then, we use
the remaining part of the dataset to evaluate the volume of the symmetrical
di�erence and select the optimal h. We compare the error obtained to the pre-
vious ones in Figure 4.

0 5000 10000 15000 20000
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0.4

0.6
0.8

1.0

Error

NbData
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Figure 4: Comparison of the error: the plain line stands for h = (n logn)−1.1/6, and the
dotted line for h selected by a cross-validation.
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We see that our choice process of h does not improve the estimation of the level
sets. If we compare the error multiplied by

√
nh2 (Figure 5), we see that we

select a lower bandwidth.
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Figure 5: Comparison of the rates: the plain line stands for h = (n logn)−1.1/6, and the
dotted line for h selected by a cross-validation.

However, we cannot generalize about it since we are here in a very simple case.
Moreover, we use a naive cross-validation method. Looking for more e�cient
methods to derive an optimal bandwidth for the level-set estimation is still an
interesting and opened question. For this, we could �rst think of the adaptation
of method used for density level sets estimation like Rinaldo, Singh, Nugent and
Wasserman [21] or Samworth and Wand [22] for example.

4. Proofs

This section is dedicated to the proof of Theorem 2.1. From now on, c is a
non-negative constant, which value may change from line to line.

4.1. Proof of Theorem 2.1

In this proof, some arguments are classical result from the kernel density (or
regression) estimation theory. For more details, we refer the reader to the book
by Bosq and Lecoutre [17], chapter 4 and 5.

From now on, we denote by ∂A the boundary of any subset A ⊂ Rd. Besides,
we introduce H the (d− 1)-dimensional Hausdor� measure (Evans and Gariepy
[23]). Recall that H agrees with ordinary �(k - 1)-dimensional surface area� on

nice sets (Proposition A.1 in [1]). Finally, we set K̃ =
∫
K2dλ.
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4.1.1. Preliminary results

All the results in this sections are stated under Assumptions A0 − A3. The
proof of the theorem relies on the four following lemmas.

Let us de�ne

Ωn,c =
{√

nhd sup
Ln(t)∪L(t)

|rn − r| ≥ c
√

log n
}
.

Lemma 4.1. If nhd+4/ log n→ 0, then there exists Γ > 0 such that

√
nhdP(Ωn,Γ)→ 0.

Note that the condition nhd+4/ log n→ 0 is satis�ed under the assumptions of
Theorem 2.1.
Proof of Lemma 4.1

As r is continuous, we have supL(t−) |r| < c. Assuming that infL(t−) f > 0,
then, since supL(t−) |fn − f | → 0 a.s. under the assumptions of Lemma 4.1
(Bosq and Lecoutre [17]), there exists θ > 0 such that infL(t−) fn > θ a.s. for n
large enough. So we can write

sup
L(t−)

|rn − r| = sup
L(t−)

∣∣∣∣ϕn − ϕfn
+ r

fn − f
fn

∣∣∣∣
≤ c

(
sup
L(t−)

|ϕn − ϕ|+ sup
L(t−)

|fn − f |
)
. (1)

We have
sup
L(t−)

|ϕn − ϕ| ≤ sup
L(t−)

|ϕn − Eϕn|+ sup
L(t−)

|Eϕn − ϕ|.

We cover L(t−) with `n balls Bk = B(xk, ρn) (k = 1, . . . , `n) of radius ρn.

Consider x ∈ L(t−), we denote by Bk the ball containing x. Then we set, for
x, x′ ∈ L(t−),

An(x, x′) =
1

n

n∑
i=1

Yi [Kh(x−Xi)−Kh(x′ −Xi)]

−E 1

n

n∑
i=1

Yi [Kh(x−Xi)−Kh(x′ −Xi)] ,

which leads us to

sup
L(t−)

|ϕn−ϕ| ≤ sup
1≤k≤`n

|ϕn(xk)−Eϕn(xk)|+ sup
x∈L(t−)

|An(x, xk)|+ sup
L(t−)

|Eϕn−ϕ|.

(2)
Then, since K is Lipschitz, there exists γ > 0 such that
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|An(x, xk)| ≤ ch−d−γργn

(
1

n

n∑
i=1

|Yi|+ E|Y |

)
≤ ch−d−γργn since Y is bounded.

As a consequence, we have

P

(
sup

x∈L(t−)

|An(x, xk)| > c

4

√
log n

nhd

)
≤ P

(
ch−d−γργn >

c

4

√
log n

nhd

)
.

One can choose

ρn = n−a, a > 0 and ργn = o

(
hd+γ

√
log n

nhd

)
,

such that

P

(
sup

x∈L(t−)

|An(x, xk)| > log n/
√
nhd

)
= 0. (3)

Then, using the arguments of the proof of Theorem 5.II.3 in [17], we obtain

∀ε > 0, P
(

sup
1≤k≤ln

|ϕn(xk)− Eϕn(xk)| > ε

)
< 2`ne

−nhdε2

c .

If we set ε = ε0

√
log n/nhd, we have

P

(
sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0

√
log n

nhd

)
≤ c`nn

−2ε0/c

≤ cn−2ε0/cρ−dn .

Remember that ρn = n−a, with a > 0, one gets

√
nhdP

(
sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0

√
log n

nhd

)
≤ cn1/2+ad−2ε0/c

√
hd (4)

which tends to 0 choosing ε0 >
(1/2+ad)c

2 .
Moreover, under A3, K is even which gives us

sup
L(t−)

|Eϕn − ϕ| = O

(√
log n

nhd

)
,
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and, using that nhd+4/ log n→ 0 we obtain

√
nhdP

(
sup
L(t−)

|Eϕn − ϕ| ≥
c

2

√
log n

nhd

)
→ 0. (5)

From (2) and using (3), (4) and (5) we obtain

√
nhdP

(
sup
L(t−)

|ϕn − ϕ| ≥ c
√

log n

nhd

)
→ 0.

From (1) and such as supL(t−) |fn − f | → 0 a.s., we conclude the proof. �

Consider t ∈ Θ. For all x ∈ L(t−), we de�ne

Vn(x, t) = Var((Y − t)Kh(x−X)) and Ẽ rn(x) = Eϕn(x)/E fn(x).

For all x ∈ L(t−) such that Vn(x, t) 6= 0, we set

tn(x) = E fn(x)

√
nh2d

Vn(x, t)
(t− Ẽrn(x)).

Besides, we consider the sets

Vtn = r−1[t, t+Γ
√

log n/nhd]∩L(t−) and V̄tn = r−1[t−Γ
√

log n/nhd, t]∩L(t−).

Finally, we denote by Φ the distribution function of the standard normalN (0, 1),
and we de�ne Φ(x) = 1− Φ(x).

Lemma 4.2. There exists c > 0 such that for all n ≥ 1, t ∈ R and x ∈ L(t−):

|P(rn(x) ≤ t)− Φ(tn(x))| ≤ c√
nhd

.

Proof of Lemma 4.2

Set, for i = 1, . . . , n,

Zi(x, t) = (Yi − t)Kh(x−Xi) , Z(x, t) = (Y − t)Kh(x−X).

By de�nition, we have Vn(x, t) = Var(Z(x, t)), and

P(rn(x) < t)

= P

(
1

n

n∑
i=1

Zi(x, t) < 0

)

= P

(
1

n

n∑
i=1

(
Zi(x, t)− EZ(x, t)

)
< −EZ(x, t)

)

= P

(√
n

Vn(x, t)

1

n

n∑
i=1

(
Zi(x, t)− EZ(x, t)

)
< tn(x)

)
.
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Then, the Berry-Esseen inequality [24] gives us

|P(rn(x) < t)−Φ(tn(x))| ≤ c√
nVn(x, t)3

E |(Y − t)Kh(x−X)− E(Y − t)Kh(x−X)|3 .

(6)
Finally, under Assumptions A1 and A3, we have (see for example Bosq and
Lecoutre [17])

sup
x∈L(t−)

|(Y − t)Kh(x−X)− E(Y − t)Kh(x−X)|3 ≤ chd

and
inf

x∈L(t−)
Vn(x, t) ≥ chd.

The lemma can then be deduced from (6). �

De�ne now Θ0 the set of all t in Θ such that

lim
ε↘0

1

ε
λ
(
r−1[t− ε, t]

)
= lim
ε↘0

1

ε
λ
(
r−1[t, t+ ε]

)
=

∫
∂L(t)

‖Or‖−1dH.

The following result is proven in Cadre [1] (Lemma 3.2).

Lemma 4.3. Θ0 = Θ almost everywhere.

Note that under Assumptions A1 and A2, we obtain, thanks to Proposition
A.2 in [1],

λ
(
r−1[t− ε, t+ ε]

)
= λ

(
r−1(t− ε, t+ ε)

)
,

for all t ∈ Θ and ε > 0 small enough.

Finally, we set
v(x) = Var(Y |X = x) + r2(x),

and, for t ∈ Θ and x ∈ L(t−),

tn(x) = f(x)

√
nhd

K̃f(x)(v(x) + t2)
(t− r(x)).

We are now in a position to prove Lemma 4.4 below.

Lemma 4.4. If nhd/(log n)→∞ and nhd+4 log n→ 0, then for all t ∈ Θ0,

lim
n→∞

√
nhd

[∫
Vt

n

P(rn(x) < t)dx−
∫
Vt

n

Φ(tn(x))dx

]
= 0,

and

lim
n→∞

√
nhd

[∫
Vt

n

P(rn(x) > t)dx−
∫
Vt

n

Φ(tn(x))dx

]
= 0.
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Proof of Lemma 4.4 We only prove the �rst equation, the second one can be
obtained with similar arguments.

De�ne En by

En =
√
nhd

∫
Vt

n

|Φ(tn(x))dx− Φ(tn(x))dx|.

As Φ is Lipschitz we have

En ≤ c
√
nhdλ(Vtn) sup

Vt
n

|tn − tn|. (7)

By de�nition of tn(x) and tn(x), we have, for all x ∈ Vtn,

1√
nhd
|tn(x)− tn(x)|

≤ |t− r(x)|

∣∣∣∣∣∣ f(x)√
K̃f(x)(v(x) + t2)

− E fn(x)√
Vn(x, t)h−d

∣∣∣∣∣∣
+

√
hd

Vn(x, t)
E fn(x)|r(x)− Ẽ rn(x)|

≤
√

log n

nhd

∣∣∣∣∣
√
|f(x)Vn(x, t)h−d − (E fn(x))

2
K̃(v(x) + t2)|

K̃(v(x) + t2)Vn(x, t)h−d

∣∣∣∣∣
+

√
hd

Vn(x, t)
E fn(x)|r(x)− Ẽ rn(x)| (8)

Remember that

|Ẽ rn(x)− r(x)| ≤ 1

fn(x)
|Eφn(x)− φ(x)|+ |r(x)||E|fn(x)− f(x)| (9)

Since Vtn is included in L(t−), we can deduce (Bosq and Lecoutre [17]) from A1,
A3 and (9) that

sup
x∈Vt

n

|Ẽ rn(x)− r(x)| ≤ ch2. (10)

Moreover, if we set

V 1
n (x) = Var Kh(x−X), V 2

n = Var Y Kh(x−X),
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we can write

|f(x)Vn(x, t)h−d − (E fn(x))
2
K̃(v(x) + t2)|

≤ |f(x)|
∣∣∣Vn(x, t)h−d − K̃E fn(x)(v(x) + t2)

∣∣∣+ c|f(x)− E fn(x)|

≤ |f(x)|
∣∣∣Vn(x, t)h−d − K̃f(x)(v(x) + t2)

∣∣∣+ c|f(x)− E fn(x)|

≤ |f(x)|
(
t2|V 1

n (x)h−d − K̃f(x)|+ |V 2
n (x)h−d − K̃f(x)v(x)|

+2t |Cov (Y Kh(x−X),Kh(x−X))|
)

+ c|f(x)− E fn(x)|

≤ c
(
|V 1
n (x)h−d − K̃f(x)|+ |V 2

n (x)h−d − K̃f(x)v(x)|

+ |Cov (Y Kh(x−X),Kh(x−X))|+ |f(x)− E fn(x)|
)
.

Again, since Vtn ⊂ L(t−), we can deduce (Bosq and Lecoutre [17]) from A1 and
A3 that

sup
x∈Vt

n

|f(x)Vn(x, t)h−d − (E fn(x))
2
K̃(v(x) + t2)| ≤ ch. (11)

We deduce from (8), (10) and (11) that

sup
x∈Vt

n

|tn(x)− tn(x)| ≤ c
(√

h log n+
√
nhk+4

)
.

Then, thanks to (7) and since t ∈ Θ0, we have for n large enough

En ≤ c
√

log n
(√

h log n+
√
nhk+4

)
, (12)

which tends to 0 under the assumptions on h of Theorem 2.1. Finally, Lemma
4.2 leads us to

√
nhd

[∫
Vt

n

P(rn(x) < t)dx−
∫
Vt

n

Φ(tn(x))dx

]
≤ cλ(Vtn)

which tends to 0 since λ(r−1[t − ε, t + ε]) → 0. This and (12) ends the proof.
�

4.1.2. Proof of Theorem 2.1

We �rst note that

E λ
(
Ln(t)∆L(t)

)
=

∫
L(t−)∩{r≥t}

P(rn(x) < t)dx+

∫
L(t−)∩{r<t}

P(rn(x) ≥ t)dx.

Set
Pn,t(x) = P(rn(x) < t), Pn,t(x) = P(rn(x) ≥ t)

15



and remember that

Vtn = r−1[t, t+Γ
√

log n/nhd]∩L(t−) and V̄tn = r−1[t−Γ
√

log n/nhd, t]∩L(t−).

Consider t ∈ Θ0 and de�ne

In =

∫
Vt

n

Φ(tn(x))dx, In =

∫
Vt

n

Φ(tn(x))dx.

We have

In =
1√
2πK̃

∫
Vt

n

∫ bn(x)

−∞
exp

(
−u2

2K̃

)
du dx

where bn(x) =
√
f(x)nhd(t− r(x))/

√
v(x) + t2.

Besides,

bn(x) =

√
|ϕ(x)|

v(x) + t2
b′n(x),

with b′n(x) =
√
nhd(t− r(x))/

√
|r(x)|. Then we can �nd two positive constants

C1 and C2 (whose values will then change from line to line) such that

C1b
′
n(x) ≤ bn(x) ≤ C2b

′
n(x),

which leads us to

In ≥
C1√
2πK̃

∫
Vt

n

∫ b′n(x)

−∞
exp

(
−C2

1u
2

2K̃

)
du dx,

and

In ≤
C2√
2πK̃

∫
Vt

n

∫ b′n(x)

−∞
exp

(
−C2

2u
2

2K̃

)
du dx.

Using the arguments of the proof of Proposition 3.1 in [1], we obtain

C1

√
tK̃√
2π

∫
∂L(t)

1

‖Or‖
∂H ≤ lim

n→∞

√
nhdIn ≤ lim

n→∞

√
nhdIn ≤ C2

√
tK̃√
2π

∫
∂L(t)

1

‖Or‖
∂H.

With similar arguments, we have

C1

√
t

2π
K̃

∫
∂L(t)

dH
‖Or‖

≤ lim
n→∞

√
nhdIn ≤ lim

n→∞

√
nhdIn ≤ C2

√
t

2π
K̃

∫
∂L(t)

dH
‖Or‖

.

These inequalities, Lemma 4.4 and Lemma 4.3 concludes the proof. �
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